
IOTGUARD: Dynamic Enforcement of Security and
Safety Policy in Commodity IoT

Z. Berkay Celik, Gang Tan, and Patrick McDaniel
Pennsylvania State University

{zbc102, gtan, mcdaniel}@cse.psu.edu

Abstract—Broadly defined as the Internet of Things (IoT), the
growth of commodity devices that integrate physical processes
with digital connectivity has changed the way we live, play, and
work. To date, the traditional approach to securing IoT has
treated devices individually. However, in practice, it has been
recently shown that the interactions among devices are often
the real cause of safety and security violations. In this paper,
we present IOTGUARD, a dynamic, policy-based enforcement
system for IoT, which protects users from unsafe and insecure
device states by monitoring the behavior of IoT and trigger-
action platform apps. IOTGUARD operates in three phases: (a)
implementation of a code instrumentor that adds extra logic to
an app’s source code to collect app’s information at runtime, (b)
storing the apps’ information in a dynamic model that represents
the runtime execution behavior of apps, and (c) identifying IoT
safety and security policies, and enforcing relevant policies on
the dynamic model of individual apps or sets of interacting apps.
We demonstrate IOTGUARD on 20 flawed apps and find that
IOTGUARD correctly enforces 12 of the 12 policy violations. In
addition, we evaluate IOTGUARD on 35 SmartThings IoT and
30 IFTTT trigger-action platform market apps executed in a
simulated smart home. IOTGUARD enforces 11 unique policies
and blocks 16 states in six (17.1%) SmartThings and five (16.6%)
IFTTT apps. IOTGUARD imposes only 17.3% runtime overhead on
an app and 19.8% for five interacting apps. Through this effort,
we introduce a rigorously grounded system for enforcing correct
operation of IoT devices through systematically identified IoT
policies, demonstrating the effectiveness and value of monitoring
IoT apps with tools such as IOTGUARD.

I. INTRODUCTION

IoT devices used in smart homes, industrial automation,
agriculture, and transportation have become a fundamental
part of modern society. Such devices enable our living space
to be more autonomous, adaptive, efficient, and convenient.
However, concerns have also been raised about the security and
privacy of these digitally augmented spaces [9]–[11], [16], [17].
These environments necessarily have access to functions that if
abused would put the user security at risk. e.g., unlocking doors
when users are not at home, or creating unsafe or damaging
conditions by turning off the heat at winter. Recently, it has been
shown that the interactions between devices are an increasing
cause of safety and security violations [11], [12], [14], [39]. In
practice, IoT apps interact through a common device or some
common abstract event (such as the home, away or sleeping

modes) when they are co-installed in an environment. These
interactions lead to unsafe and undesired device states through
apps’ joint behavior. For example, an app that opens the water
valve to activate fire sprinklers when there is a fire interacts
with another app that shuts off the water valve when it detects
water leaks. In this case, the joint behavior of the otherwise-safe
apps leaves users at risk from fire.

Another trend is that increasingly trigger-action platforms
such as IFTTT [26], Zapier [53], and Microsoft Flow [35] are
used to bridge the divide between physical (e.g., IoT devices)
and digital (e.g., e-mail services and social media platforms)
processes. These platforms allow users to write rules that
connect the events and actions of IoT devices with the events
and actions of digital services. For example, a rule turns on the
light when the user receives an email, and similarly, another
rule logs the user’s presence to a spreadsheet file when the
front door is unlocked. This inter-tangled environment expands
the interactions among devices to online services [10], [47];
for example, an IoT app that subscribes to the switch “turn-on”
event interacts with a trigger-action platform rule that “turns
on” the switch when the user is tagged in a photo on Facebook.

Most attempts to date in IoT security and privacy aim to
improve perimeter defenses that harden the IoT infrastructure
against attacks using firewalls [30], intrusion detection [54],
access control policies [22], and software patches [32]. Yet,
perimeter security measures do not enforce safe behavior of
physical processes in IoT systems. For example, a firewall rule
does little to guarantee that the door is locked when the user
is not home. Furthermore, past analyses of IoT devices and
environments have focused on securing an IoT app through
source code analysis. For instance, some systems infer an app’s
context to enforce permissions based on that context through
runtime prompts [28] or asking users for authorization through
an interface [49], and others apply static model checking to
find property violations [11]. Unfortunately, current dynamic
approaches are insufficient to identify and ultimately enforce
violations in multi-app environments, and static approaches
lack precision and enforce only a limited set of policies.

In this paper, we present IOTGUARD, a dynamic enforcement
system for the usage of the most sensitive resource in an IoT
system, the physical devices themselves. IOTGUARD directly
blocks unsafe and undesired states in an individual app and
multi-app environments. To achieve this, an app is instrumented
with an assertion of the code blocks to work with IOTGUARD.
Here, IOTGUARD models the app’s lifecycle and adds code to
obtain an app’s events, actions, and predicates that guard each
action. The instrumented app then executes when a subscribed
event occurs. The app transmits its information (e.g., events

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23326
www.ndss-symposium.org

and actions) to IOTGUARD before it executes actions. The
apps information is stored in a dynamic model that consists
of transitions and states. The dynamic model represents the
runtime execution behavior of an individual app if an app
does not interact with other apps, and the unified behavior
of the apps when the apps interact. From this, IOTGUARD

evaluates the (unified) dynamic model of an app against a set
of systematically developed IoT policies. A policy is a system
artifact that represents the physical behavioral specifications of
users’ expectations about the safe and secure behavior of an
IoT system. If an app’s action fails to pass a policy, IOTGUARD

enforces the policy violation by notifying an app with a reject
message; otherwise a pass message. The instrumented app’s
action is conditioned on the security service’s response; thus
an app’s actions that violate a policy are blocked or allowed
depending on the response.

We present two studies evaluating IOTGUARD. In a first study,
we evaluated the effectiveness of IOTGUARD on 15 SmartThings
IoT apps and five IFTTT trigger-action platform apps. These
apps include a flaw or malicious behavior that violates policies
when used in isolation and when used together in multi-app
environments. IOTGUARD correctly identified all policy violations.
The second study is a horizontal market study in which we
evaluated 35 SmartThings and 30 IFTTT market vetted apps in
a simulated smart home, which includes 29 devices with a total
of 20 device types. IOTGUARD enforced eleven unique policies
in five SmartThings and six IFTTT apps. The experiments
also demonstrated that IOTGUARD enforces policies without
significant overhead; it incurs only 17.3% runtime overhead
on an individual app and 19.8% for five apps interacting with
each other. In summary, we make the following contributions:

• We introduce IOTGUARD, a dynamic system for policy
enforcement on IoT devices. IOTGUARD adds extra logic
to an app’s source code to collect its information in
a dynamic model and enforces safety and security
policies in an app and multi-app environments.

• We validate IOTGUARD on a corpus of 20 hand-crafted
flawed apps (15 SmartThings and five IFTTT apps)
and expose safety and security violations in an app and
interacting apps. Furthermore, we evaluate IOTGUARD

on 65 market-vetted apps (35 SmartThings and 30
IFTTT apps) executed in a simulated smart home and
reveal how violations are enforced.

• We evaluate performance of IOTGUARD on SmartThings
and IFTTT apps, showing that policy enforcement
incurs on average a runtime overhead of 17.3% for an
individual app and 19.8% for five interacting apps.

II. BACKGROUND

A. IoT Platforms

IoT systems integrate physical processes with digital con-
nectivity. Regardless of their purpose and complexity, IoT
systems often structure their architecture from bottom to top
with devices, connectivity protocols, and IoT programming
platforms. Such systems often use a hub as a centralized
gateway connecting devices in a physical environment, use
the cloud to synchronize device states and provide interfaces
for remote control and monitoring. The devices are equipped

with embedded sensors and actuators that enable interaction
with a physical environment. Sensors collect physical states
and send events to other devices, the hub, or the cloud. Events
are processed and used to actuate the devices. For example, a
presence sensor detects a presence event and communicates
with the light switch (actuator) that turns on the lights. We
note that a mobile phone or even a coffee machine can be
a sensor as long as it can sense its environment. Protocols
are used to establish communication between heterogeneous
devices and network endpoints. These protocols are selected
according to the constraints of environments such as low
power or lossless connection. IoT programming platforms are
responsible for delivering app-specific services by managing
devices and their interactions. They also enable crucial functions
such as data collection, control, and interoperability. In recent
years, several IoT programming platforms have emerged in a
wide range of domains: Apple’s HomeKit [5], OpenHAB [41],
Samsung’s SmartThings [43] for smart home, Android Sensor
API [2], Google Fit for wearables [20], ThingWorx [42] for
industrial applications, and FarmBeats [50] for agriculture.
These platforms offer web-based environments and tools that
enable developers to write applications through various APIs.

B. Trigger-Action Platforms

Trigger-action platforms such as IFTTT [26], Zapier [53]
and Apiant [4] allow users to connect services together. A
service includes a set of APIs on a trigger-action platform.
Users authorize services to their trigger-action platform ac-
counts. For example, a user with a SmartThings IoT platform
account can authorize the SmartThings service through the
OAuth protocol to communicate with her SmartThings account.
Services communicate with each other using REST APIs over
HTTP(S) [6], [18]. Trigger-action platforms allow users to
create custom automation on services through DO and IF rules.
These rules let users connect a trigger in a service to take the
desired action in another service—when an event happens in a
service, the platform automatically triggers a separate action in
another service. DO rules acts as a virtual button trigger to take
a set of actions; for example, a DO rule may turn on a smart
switch of a user when a button is tapped. IF rules combine two
services using a trigger and an action; for example, an IF Rule
may make a phone call to the security guard when a motion
sensor of a smart home service detects motion after midnight.
Users are required to install a companion app provided by
the trigger-action platform to trigger DO rules. IF rules run
automatically after users configure them via a trigger-action
platform web API. As of May of 2018, IFTTT has the largest
market share in trigger-action platforms [52]; it provides users
with 500 services, 158 of which are IoT services. IFTTT IoT
services fall into different categories such as wearables, fitness
and health devices, home devices, and monitoring systems.

C. Definitions

We adopt a general terminology that describes actions,
events, services, and states in IoT apps and trigger-action
rules. A device has a set of attributes, which are the states
of the device. Actions of a device can change attributes. For
example, the door may have opening, opened, closing and
closed attributes and only open and close actions. Events are
triggered when there is a change to device states. An app

2

Code	Instrumenta.on	Logic	App	a5er	IFTTT-FINAL	

11	
app-tou

ch	

app-touch	

light.off()	

light.on()	

1	

1	

1	

2	

light-on	

mode.home()	

(a)	welcome-home	app	

door.unlock()	

11	
home

-mod
e	

home-mode	
heater.on()	

crockpot.on()	

(c)	home-mode-automa.on	app	

11	
app-touc

h	

app-touch	
light.on()	

light.off()	

(c)	simulate-occupancy	app	

(b)	goodnight	app	

11	
app-touc

h	

app-touch	
alarm.set()	

coffeeMac.on()	

light-o
ff	

light-off	
alarm.set()	

coffeeMac.on()	

mode.home()	

door.unlock()	

home
-mod

e	

home-mode	
heater.on()	

crockpot.on()	

light-on	

	
	

interacts	

interacts	

interacts	
Trigger-ac.on	plaGorm	

simulate-occupancy	DO	rule	

goodnight	app	

home-mode-automa.on	app	

welcome-home	app	
E:	light	turned-on		
A:	ac.vate	home-mode	

E:	home-mode	
A:	turn	on	heater	and	crock-pot,			
					unlock	pa.o-door		

E:	light	turned-off	
A:	set	alarm	at	7	am	and	turn	on				
					coffee	machine	at	7:15	am		

Trigger-ac.on	plaGorm	TwiPer	IF	rule	
interacts	

E:	coffee	machine	turned-on		
A:	post	a	Tweet	

E:	tap	an	app	icon	
A:	turn	on	and	off	lights		

Fig. 1: Events (E) and Actions (A) of IoT apps and trigger-
action platform rules, and their interactions with each other.

subscribes to some event and takes actions when that event
happens. For instance, an app subscribes to the boolean attribute
of a motion detector’s “motion-active” event and changes
the state of a switch to “switch-on”. Trigger-action platforms
connect events and actions of different online services. Events,
in a trigger-action platform, are the state changes in a service,
and actions are the functions that are initiated as a result of the
event. For instance, a trigger-action rule may invoke the “post a
Tweet” action of Twitter when the “coffee machine-turned-on”
event is triggered in an IoT platform.

III. MOTIVATION AND ASSUMPTIONS

Problem Statement. The interaction among IoT devices is
an increasing cause of unsafe and insecure states [11]. To
illustrate, we consider a scenario where there are three IoT
apps and two trigger-action rules in a shared environment, as
shown in Figure 1. A welcome-home app sets the mode to
home when the light in the living room is turned on. A home-
mode-automation app turns on the heater and crock-pot and
unlocks the patio door when home-mode is activated, and a
good-night app sets the alarm and brews coffee at a time
defined by the user when the light is turned off. A Twitter
IF rule posts a tweet of “Good morning, what a beautiful day
in Palo Alto!” when the coffee machine is turned on, and a
simulate-occupancy DO rule simulates the occupancy in a
home at night by turning on and off lights when the user clicks
on a button in an app or at specific times defined by the user.

Joint behavior of otherwise-safe apps may leave the user in
unsafe and insecure states. To illustrate, turning on the switch in
the simulate-occupancy rule interacts with the welcome-home
app, and the welcome-home app interacts with the home-mode-
automation app through the home-mode event. Turning off
the switch in the simulate-occupancy app interacts with the
good-night app. Turning on the coffee machine in the good-
night app interacts with the Twitter IF rule. The interaction
among these apps can turn on the heater, crock-pot, and coffee
machine, unlock the patio-door, set the alarm, and post a tweet
on Twitter. The resulting states may put the user at risk or
cause embarrassment or other harms; e.g., the heater is turned
on, and the door is unlocked when the user is not home, or
post a public tweet when the user is on vacation.

System	Architecture	–	A/er	Dr.	Tan-FinalNDSS		iFTTT	included		
	

...	

Code	
	Instrumentor	

Ac=on	
reject/pass	

Events	
User			
config.	

Ac=on	

y	u	

...	

App	execu=on	

z	App	info	

x	
Instrumented		

IoT	app	

Instrumented		
IoT	app	

Data	
Collector	

IoT	app	

v

{

IoTGuard	

IoT	app	

Security	
Service	

w	

IoT	plaHorm	 Trigger-ac=on	
	plaHorm	

Policies	

Fig. 2: Architecture of the IOTGUARD system.

Definition of Interactions. Apps interact through a common
device or abstract events. For our purposes, we use the term
apps to refer to both IoT apps and trigger-action rules. Two
apps interact with each other, (1) when an event handler of an
app changes a device attribute, which triggers another event
that is subscribed to by another app; for example, an app turns
on the light when there is smoke, and another app unlocks the
door when the light is turned on, (2) when multiple apps change
the same device attribute of some device; for example, a water-
leak-detector app shuts off the water valve when there is a leak,
while a smoke-alarm app opens the water valve to activate the
sprinkler, and (3) when apps that subscribe to the same event
change a device attribute in conflicting ways; for example, when
the motion is active, an app turns on a switch while another
app turns off the switch. These interactions among devices may
cause security, safety, and privacy risks even though individual
apps are safe in operation (See Section V-C). We found that
apps also interact through modes, which are behavior filters that
automate device actions. For instance, an app that changes the
“home” mode to “away” mode when a user leaves home interacts
with an app that uses the “mode change” event to unlock the
door. Lastly, we define the interaction size of an initial event as
the number of apps whose event handlers get executed, either
directly triggered by the initial event or indirectly triggered
(since event handlers may cause attribute changes, generating
more events along the process).

Threat Model. We consider integrity and confidentiality
violations caused by flaws in apps or malicious apps in an IoT
environment. For malicious cases, integrity violations occur
when the adversary inserts malicious code to an app or provides
a user with an app that can cause an unsafe or insecure state;
confidentiality violations happen when private information in
an IoT system becomes publicly available in an online service.
For instance, a user’s presence state is saved to a public file
when the user leaves home. We do not consider adversaries’
ability to thwart security measures (e.g., crypto, forged inputs)
of IoT and trigger-action platforms. We assume IOTGUARD is
tamperproof, and device owners are trusted.

IV. APPROACH OVERVIEW

IOTGUARD is a dynamic, policy-based behavioral enforce-
ment system for IoT, which protects users from unsafe and
insecure device states by monitoring the behavior of IoT apps
(See Figure 2). IOTGUARD acts as a conduit between IoT apps
and devices and could be implemented in several ways, such
as in hub software, as a software service in the cloud, or in a

3

Code	Instrumenta.on	Logic	App	IF	applet	included-camera	ready	

Unified	behavior	of	apps	shown	in	Figure~\ref{}.	

app-tou
ch	

app-touch	

light.off()	

light.on()	

2	 11	

light-o
ff	

light-off	

alarm.set()	

coffeeMac.on()	

mode.home()	

door.unlock()	

home
-mod

e	

home-mode	

home-mode	
heater.on()	

crockpot.on()	

light-on	

coffeeMac-on	

postTweet()	

app-touch
	

app-touch	
light.on()	

light.off()	

(d)	simulate-occupancy		
DO	rule	

(b)	goodnight	app	

11	
light-off	

light-off	 alarm.set()	

coffeeMac.on()	

light-on	

mode.home()	
(a)	welcome-home	app	

door.unlock()	

home-mode	

home-mode	

home-mode	
heater.on()	

crockpot.on()	

(c)	home-mode-automa.on	app	

coffee	mac.-on	

postTweet()	
(e)	TwiOer	IF	rule	

		

11	

11	

11	

11	

Fig. 3: Dynamic models of apps depicted in Figure 1.

local server. We implemented our prototype on a local server.
Compared to a hub-based implementation, our prototype does
not require modifying the hub, which is often closed source.
Compared to a cloud-based implementation, a local-server
implementation eliminates the need to trust cloud providers,
while still providing complete mediation of app behavior.

IOTGUARD checks an app’s events and actions against a
set of policies when the app receives an event and attempts
to invoke actions. The policies are templates of safety and
security properties. For example, a policy, user-not-present–
appliances-off and doors-locked, requires the door is locked,
and appliances are off when the user is not at home. An app is
authorized to execute device actions if all policies are passed.
The IOTGUARD system includes three components: (a) a code
instrumentor, (b) a data collector, and (c) a security service.

The code instrumentor instruments an app’s source code
to work with IOTGUARD. It patches an app with code that
collects an app’s events, actions, and predicates that guard the
actions at runtime. To do so, it first models an app’s lifecycle
before an app is submitted for execution (1). It then adds
instructions necessary for obtaining the app’s information at
runtime (2). A user installs an instrumented app and configures
the app’s settings (e.g., the threshold value required for energy
consumption) through the app’s configuration interface (3).

An attribute change on a device generates an event, which
triggers an event handler method of an app if the app subscribes
to that event (4). When the app receives the event, the event
and corresponding actions and the predicates that guard the
actions are transmitted to the data collector through instructions
added to the instrumented app (5). The data collector stores
this information in the form of a dynamic model. The dynamic
model represents the runtime execution behavior of apps
observed so far; it consists of states and state transitions.
Turning to the apps in Figure 1, the dynamic model of apps after
they get executed is presented in Figure 3. The data collector
merges the dynamic models of apps if apps interact through a
common device or an abstract event. Figure 4 shows the unified
dynamic model of three IoT apps and two trigger-action rules.

When the data collector receives an event and its corre-
sponding actions at runtime, the security service evaluates
them against a collection of IoT safety and security policies.
These policies are adapted from use/misuse case requirements
engineering that addresses the real-world needs of users and

Code	Instrumenta.on	Logic	App	IF	applet	included-camera	ready	

Unified	behavior	of	apps	shown	in	Figure~\ref{}.	

app-tou
ch	

app-touch	

light.off()	

light.on()	

2	 11	

light-o
ff	

light-off	

alarm.set()	

coffeeMac.on()	

mode.home()	

door.unlock()	

home
-mod

e	

home-mode	

home-mode	
heater.on()	

crockpot.on()	

light-on	

coffeeMac-on	

postTweet()	

app-touch
	

app-touch	
light.on()	

light.off()	

(d)	simulate-occupancy		
DO	rule	

(b)	goodnight	app	

11	
light-off	

light-off	 alarm.set()	

coffeeMac.on()	

light-on	

mode.home()	
(a)	welcome-home	app	

door.unlock()	

home-mode	

home-mode	

home-mode	
heater.on()	

crockpot.on()	

(c)	home-mode-automa.on	app	

coffee	mac.-on	

postTweet()	
(e)	TwiOer	IF	rule	

		

11	

11	

11	

11	

Fig. 4: The unified dynamic model of the apps in Figure 3.

environments, and many of them were thoroughly exercised on
the source code of IoT apps through a model checker [11]. The
policies are checked on the dynamic model of an app (if an app
is independent of other apps) or on the unified dynamic model
(if an app interacts with other apps) by means of reachability
analysis. Based on user needs, the security service adopts
two solutions to enforce the policies. First, the instrumented
app guards each action with a predicate conditioned on the
security service’s response. If an action fails to pass a policy,
the security service rejects the action; otherwise, the action
is executed (6). Therefore, an app’s actions that violate a
policy are blocked or allowed based on the response from the
security service (7). Turning to the example apps, IOTGUARD

finds a violation of the user-not-present–appliances-off and
doors-locked policy. The interactions lead to the state of door-
unlock and appliances-on when the simulate-occupancy app
triggers actions through the app-touch event; thus these actions
are blocked, and the user is notified. The second solution
is to present users an interface for approval of each policy
violation through runtime prompts. For instance, when the light
is turned on by simulate-occupancy app, the door-unlock()
action requires user approval to be executed. This allows the
user to be aware of policy violations, and reject or accept them.
Clearly, this option is less secure for users who install apps
without understanding warnings. This paper focuses specifically
on identifying potentially harmful device states, blocking the
action that violates a policy, and building a user interface for
presenting policy violations.

V. IOTGUARD

Implementing IOTGUARD requires addressing several system
challenges that include: implementing a code instrumentation
tool to characterize the app states and transitions (Section V-A),
storing each app’s runtime information in an efficient dynamic
model (Section V-B), identifying a set of security and safety
policies, and enforcing these policies on the (unified) dynamic
model of apps at runtime (Section V-C).

A. Code Instrumentor

The code instrumentor adds extra logic to an app’s source
code to collect its four type of information at runtime: (1)
devices and events, (2) actions invoked for each event in
the event handlers, (3) predicates that guards device actions
(IoT apps may change device states conditionally, for example,
an app may turn off a switch when the energy consumption
is above some threshold and turn on the switch when the
energy consumption is below another threshold. As a result,
those device changes only occur when the predicates in the
conditional branches hold), and (4) numerical-valued attributes

4

Example	app’s	implementa.on	Final	a1er	Dr.	Tan	
//	Devices	
presence_sensor	ps	
light_switch	s		
door	d	
thermostat	t	
power_meter	p	
	

//	User	inputs	
t_away	
thold		
	

when	ps.not-present	
		s.off();	d.lock();	
		t.set(t_away);	
	

when	ps.present		
		t_home=71;	d_thold=5;	
		s.on();	d.unlock();	
		if	(p.power<thold+d_thold){	
				t.set(t_home);	
		}	

1:	
2:	
3:	
4:	
5:	
6:	

	

7:	
8:	
9:	

	

10:	
11:	
12:	

	

13:	
14:	
15:	
16:	
17:	
18:			

	

//	Devices	
presence_sensor	s	
light_switch	s	
door	d	
thermostat	t	
power_meter	p	
	

//	User	inputs	
temp_away	
thold		
	

Characteriza*on	of	Events	and	Ac*ons	in	the	data	collector	A:	door-unlocked	

A:	heater-on	

A:	crockpot-on	E:	light-on	 A:	mode-home	
E:	mode-home	

app1:	welcome-home	
app2:	home-mode-automa.on	

obj1	 obj3	
obj4	

device	ID	
predicates	
event	.me	

block/allow	bit	
app	info.	object	

E:	Event	
A:	Ac.on	

Fig. 5: An example code block for illustrating the code
instrumentation logic of IOTGUARD.

of the device actions (some devices require a numerical value
for invoking the actions, for example, a thermostat requires a
discrete numerical-valued attribute for setting the temperature
heating point). The instrumented app transmits the information
to IOTGUARD’s data collector when the app receives an event and
before the app executes an action. Furthermore, the instrumentor
inserts a guard before each device action that either allows or
blocks the action based on the security service’s response.

Collecting Runtime Information. The code instrumentor
models an app’s lifecycle including its entry points, event
handler methods, and call graphs. It then inserts instrumentation
code that is necessary to collect the app’s runtime information
for policy enforcement. From the inter-procedural control flow
graph (ICFG) of an app, the instrumentor proceeds in three
steps: (1) it first identifies the app’s actions, (2) for each
action, it then performs a path-based static analysis to collect
the event that triggers the action, the path condition for the
action, and the numerical-valued attributes in the action call,
and (3) it inserts instrumentation code before an action to
transmit the action’s information to the data collector. If multiple
actions have the same information (event, path condition,
etc.), their instrumentation code is shared. Furthermore, the
instrumentation code also sends to the data collection the device
ID associated with an action or an event; the device IDs are
important for determining the causal interactions between the
devices. For example, a user may have multiple smart switches
that control a set of devices; thus a turn-on event must be
associated with a specific switch.

To illustrate, we use pseudocode of the “home-away” IoT
app as shown in Figure 5. When the user arrives at home, the
app unlocks the front door, turns on a set of lights and sets
thermostat temperature to a specific value if power consumption
is less than a threshold. When she leaves, it locks the front door,
turns off the lights, and sets the thermostat to another specific
value. The code instrumentor searches for entry points of the
app and finds two entry points: the not-present event handler
that turns off the switch, locks the door, and sets the temperature
(lines 10-12), and the present event handler that turns on the
switch, unlocks the door and sets the temperature (lines 13-18).
For each action, the code instrumentor finds the predicate that
guards the action and the numerical-valued attributes used in the
action call. As one example, s.on() and d.unlock() actions are
triggered when the presence event happens. Since both actions
share the same information (event and path condition), a single
instrumentation code block is inserted before them; in particular,
a code block is inserted before line 15 for transmitting the
following information to the data collector:

Event:
[
“presence sensorid”: present

]
Actions:

[
[“light switchid”: on], [“doorid”: unlock]

]
As another example, the set-thermostat action

t.set(t home) at line 17 is conditioned on p.power>thold+5,
and uses the t home numerical-valued attribute for setting the
thermostat. The instrumentor inserts a code block before line
17 to transmit the following information to the data collector:

Event:
[
“presence sensorid”: present

]
Action:

[
“thermostatid”: set(t home)

]
Action var:

[
“t home”: t home

]
Predicate:

[
“power meterid.power>thold+5”

]
Predicate var:

[
[“power meterid.power”: power meterid.power,

[“thold”: thold]
]

We note that the code instrumentation logic of an IoT
app depends on the APIs that an IoT programming platform
provides. For instance, some platforms explicitly allow access
to the event value (e.g., presence) and device ID when an event
happens, while other platforms provide this information through
an event object such as event.value and event.deviceID. We
present IOTGUARD’s code-instrumentation logic on our target
IoT platform SmartThings in Section VI.

Guarding Actions. The main functionality of IOTGUARD is to
protect users from undesired device states. Therefore, before
each action, the instrumentor also inserts a guard, which is
predicated on the decision by the security service. This allows
an app to execute an action based on the response returned from
the security service. If the action associated with an event passes
all policies, the security service returns true for the predicate
that guards the action. This means the app is allowed to execute
the action. If an app violates a policy, false is returned; thus
the device action is not executed to preserve the system safety.
For instance, the d.lock() action when user is not present (line
11) is guarded by a predicate response[“door.lock”]. We will
discuss more about security service in Section V-C).

B. Data Collector

An instrumented app forwards its information to the data
collector when its event handler is executed. The data collector
stores app’s information in a dynamic model. A dynamic model
is made up of a set of states and transitions. States represent the
attributes of a device when an action is taken, and the transitions
are the events along with the predicates that conditioned on
the device actions. For instance, when the motion-active event
turns on the lights at a patio after sunset, the transition is
the motion-active and sunset, and the state is the light-on
attribute. The actions and events include an app’s device IDs
for inferring the causal relationships between apps.

The data collector maintains a mutable directed graph
for storing the dynamic model with additional properties to
reduce the memory overhead and execution time of the policies
enforced by security service. For illustration, we use two
example IoT apps. The welcome-home app changes the mode
to home when the light switch is turned on, and home-mode-
automation app turns on the heather and crock-pot and unlocks
the door when the mode is changed to home. Figure 6 depicts
the structure of the states and transitions of two example apps
in the data collector. The data collector represents events and
device actions as nodes in the graph. A transition is added

5

Example	app’s	implementa3on	Final	aJer	Dr.	Tan	
//	Devices	
presence_sensor	ps	
light_switch	s	
door	d	
thermostat	t	
power_meter	p	
	

//	User	inputs	
t_away	
thold		
	

when	ps.not-present	
		s.off();	d.lock();	
		t.set(t_away);	
	

when	ps.present		
		t_home=71;	d_thold=5;	
		s.on();	d.unlock();	
		if	(p.power<thold+d_thold){	
				t.SET(t_home);	
		}	

1:	
2:	
3:	
4:	
5:	
6:	

	

7:	
8:	
9:	

	

10:	
11:	
12:	

	

13:	
14:	
15:	
16:	
17:	
18:			

	

//	Devices	
presence_sensor	s	
light_switch	s	
door	d	
thermostat	t	
power_meter	p	
	

//	User	inputs	
temp_away	
thold		
	

Characteriza'on	of	Events	and	Ac'ons	in	the	data	collector	

device	ID	
predicates	
event	3me	

block/allow	bit	
app	info.	object	

A:	door-unlock	

A:	heater-on	

A:	crockpot-on	E:	light-on	 A:	mode-home	
E:	mode-home	

app1:	welcome-home	
app2:	home-mode-automa3on	

obj1	 obj3	
obj4	

E:	Event	
A:	Ac3on	

Fig. 6: Illustration of the unified dynamic model of two IoT
apps recorded in the data collector.

from an app’s event to each device action defined in the event
handler of that event. For instance, a transition is added from
“light-on” event to “mode-home” action of the welcome-home
app when data collector receives the app’s information. Each
transition is an object, which stores an app’s information (e.g., a
unique ID, and app’s definition), a binary bit, predicates and
timestamp of the event. The binary bit guards the actions an
app may execute when a particular event happens. It is initially
set to NULL; however, security service updates it to false or
true after evaluating the policies. The app definition is extracted
from an app’s definition block (if available) specified by the
developer and is used to give better explanations to the users
when a policy violation is enforced. Predicates are the path
conditions of the paths that guard conditional device actions.

When the data collector receives an app’s information, the
insertion of the app’s information to the dynamic model takes
one of the following forms: (1) if an app’s event does not
exist in the dynamic model, a new event state is created, and
a transition is added from the event state to each action of the
app, (2) if an app’s event exists in the dynamic model, a state is
created for each action of the app, and a transition is added from
the existing event to each action. The resulting dynamic model
represents the individual behavior of an app if the app does
not interact with other apps and unified behavior when apps
interact with each other. To illustrate, when the welcome-home
app changes the mode to home, the event handler of the home-
mode-automation app is executed because its event handler
subscribes to the “mode-change” event. The data collector
matches the “mode change” action of the welcome-home app
and the “mode-changed” event of the home-mode-automation
app, and adds transitions from “mode-change” state to the
home-mode-automation app’s actions, which are the heater-
on, crockpot-on and door-unlock states.

The dynamic model supports parallel edges, self-loops, and
loops. As we detail in Section V-C, these properties allow
IOTGUARD to identify policy violations. For instance, if two
apps implement the same functionality by turning on the switch
when motion is active, data collector adds parallel edges from
motion-active state to light-on state and labels the edges with
the app’s objects. In this case, a policy is defined by security
service to prevent the repeated light-on action.

C. Security Service

The security service evaluates an app against IoT safety
and security policies when the data collector receives an app’s
information. The policies are checked on the dynamic model
of an app (if an app is independent of other apps) or on the

Gov	Sys	Rules	-	Final	

S.5:	Missing	events	
mo2on-ac2ve	 switch-on	

mo2on-ac2ve	 switch-on	

S.3:	Inconsistent	events	
mo2on-inac2ve	 switch-on	

mo2on-ac2ve	 switch-on	
switch-on	

S.2:	Same	repeated	a8ributes	

S.1:	A8ributes	of	conflic?ng	values	

mo2on-ac2ve	 switch-on	
switch-off	

mo2on-ac2ve	 switch-on	

S.4:	Race	condi?on	of	events	
user-present	 switch-off	X

G.1:	A8ributes	of	conflic?ng	values	

mo2on-ac2ve	 switch-on	
switch-on	

S.2:	Same	repeated	a8ributes	

S.1:	A8ributes	of	conflic?ng	values	

mo2on-ac2ve	 switch-on	
switch-off	

mo2on-ac2ve	 switch-on	

S.4:	Race	condi?on	of	events	
user-present	 switch-off	X

mo2on-ac2ve	 switch-on	
mo2on-ac2ve	 switch-off	

app1	
app2	

mo2on-ac2ve	 switch-on	
door-lock	
switch-on	

app1	
door-locked	app2	

G.2:	Same	repeated	a8ributes	
X

(untrusted	event)	
switch-on	user	tagged	in	FB	

(trusted	state)	
S.1:	Integrity	viola?on	

X
(private	event)	

post	a	Tweet	user-present	

(public	state)	
S.2:	Confiden?ality	viola?on	

X

X

door-locked	 switch-on	

lock-door	

app1	
switch-on	app2	

G.3:	Cycle	of	device	a8ributes	

smoke	 valve-open	

valve-close	

app1	
water-leak	app2	

G.4:Race	condi?on	of	events	
XX

Fig. 7: Illustration of general and trigger-action platform-
specific policies. Rejected states are marked with X.

unified dynamic model (if an app interacts with other apps). If
an app’s action fails to pass a policy, the security service rejects
the action; otherwise, the action is executed. Implementing
security service requires addressing several challenges including
identifying safety and security policies for IoT (Section V-C1),
and building algorithms to enforce the policies (Section V-C2).

1) Policy Identification: Policies are properties that an app
must satisfy an IoT environment to be safe and secure. To
define this concept for IoT, we extend recently developed IoT
properties [11] to identify IOTGUARD’s policies. These properties
were exercised on the source code of IoT apps through
a model checker [11]. This approach derives requirements
(properties) by evaluating the connections between assets,
functional requirements, and functional constraints, where (a)
assets are artifacts that someone places value upon, e.g., a
door lock, (b) functional requirements define how a system
needs to operate in a normal environment, e.g., when a user
arrives home, the door unlocks, and (c) functional constraints
restrict the use or operation of assets. For example, a door
must open only when an authorized user requests it. We used
use/misuse case requirements engineering as a policy discovery
process on the IoT apps and trigger-action platform rules used
in our evaluation (See Section VII), and identified 30 app-
specific policies (R.1-R.30, see Table I for example policies),
two trigger-action platform-specific policies, and four general
policies (S.1-S.2 and G.1-G.4, see Figure 7). The complete
list of policies is presented in the Appendix.

Application-specific Policies. In developing app-specific poli-
cies, we take a device-centric approach. These policies are
developed based on the use cases of one or multiple devices [11].
For example, R.10 says that a smoke alarm must go off when
there is smoke—thus ensuring the safe use of the smoke alarm.
Another misuse case is to open the valve when there is a water
leak. This leads to R.30, which says that the water valve must
be closed when there is a water leak (thus involving the leak
sensor and water valve). We evaluate an app against a policy
if all of the devices in the policy are used in the app.

Trigger-action Platform-specific Policies. We define two
trigger-action platform-specific policies to address the integrity
and confidentiality violations between trigger-action platform
services and IoT platforms. We first label each event and
action of trigger-action apps with trusted and untrusted labels
for integrity policies, and with public and private labels for
confidentiality policies [27], [47]. The trusted label refers
to events and actions that a user controls, and anyone can

6

TABLE I: Examples of application-specific policies [11]. The
complete list of policies is presented in Appendix A.

ID Policy Description
R.1 The door must always be locked when the user is not home.
R.10 The alarm must always go off when there is smoke.
R.12 The light must be off when the user is not home.
R.13 The devices (e.g., coffee machine, crock-pot) must always

be on at the time set by the user.
R.14 The refrigerator and security system must always be on.
R.17 The AC and heater must not be on at the same time.
R.22 The battery of devices must not be below a specified threshold.
R.28 The sound system must not play music during the sleeping mode.
R.29 The flood sensor must always notify the user when there is water.
R.30 The water valve must be closed if a leak is detected.

cause untrusted events and actions. The private label refers to
information that only a user needs to know, and the public
label refers to information with unrestricted access. An integrity
policy violation happens when an untrusted event changes a
trusted attribute. For example, S.1 says that an app turning
on the light switch when the user is tagged in a photo is an
integrity violation (untrusted user-tag event turns on the light). A
confidentiality policy violation happens when an event changes
an attribute that makes private information publicly available.
For example, S.2 says that an app that posts user’s presence
to social media when the door is unlocked is a confidentiality
violation (user’s presence is shared publicly).

We label the events and actions of an IoT platform trusted
and the information obtained from an IoT system confidential.
We label the events and actions of the trigger-action platform
based on their properties. For instance, if a rule turns on a
smart switch when the user sends an email, the send-email
event is labeled with a trusted label as the user sends the email.
These labels are stored in an app’s dynamic model that the data
collector maintains. We will detail labeling actions and events
of our target trigger-action platform IFTTT in Section VI.

General Policies. General policies are constraints on dynamic
models that are independent of an app’s semantics—intuitively,
these are states and transitions that should never occur re-
gardless of the app domain [11]. We develop general policies
according to the constraints on states and state transitions.
We discuss a couple of cases. G.4 states that two or more
non-complementary handlers must not change an attribute to
conflicting values, e.g., a smoke-detected handler opens the
water valve while leak detector closes the water valve—leading
to a potential race condition when these events happen at the
same time. More subtly, G.3 ensures that apps do not change
a device attribute that leads to an infinite cycle of event-action
pairs, e.g., a door-lock event handler turns on a switch, which
is used in an event handler of another app that locks the door.

Policy Description Language. We illustrate the format and
semantics of IOTGUARD’s policy language (GPL). Users can
refine existing policies or add new policies using the GPL
syntax. Listing 1 defines the policy description language in
the BNF notation. A policy-set is a collection of statements
that includes clauses. The collection of clauses defines a user’s
policies. A policy indicates combinations of transitions and state
strings that should be restricted or allowed. The clauses allow
each user to dictate an independent policy for devices. Restrict
and Allow are two reserved tags. The clauses are compromised
of two parts. The first part, transitions, defines a list of events

〈policy-set〉 ::= [〈statements〉]
〈statements〉 ::= 〈statement〉 ‘;’ [〈statements〉]
〈statement〉 ::= 〈restrict clause〉 | 〈allow clause〉
〈restrict clause〉 ::= ‘restrict’ ‘:’ [〈transitions〉] ‘:’ [〈states〉]
〈allow clause〉 ::= ‘allow’ ‘:’ [〈transitions〉] ‘:’ [〈states〉]
〈transitions〉 ::= 〈transition〉 [‘,’ 〈transitions〉]
〈transition〉 ::= 〈identifier〉 | ‘’
〈states〉 ::= 〈state〉 [‘,’ 〈states〉]
〈state〉 ::= 〈identifier〉 | ‘’
〈identifier〉 ::= 〈word〉
〈word〉 ::= 〈char〉 [〈word〉]
〈char〉 ::= 〈letter〉 | 〈digit〉

Listing 1: IOTGUARD Policy Language (GPL) syntax in BNF.

and predicates. This can be a single transition or a comma-
separated list of transitions. An empty entry means clauses are
allowed or restricted for all transitions. The second part, states,
is a list of device states controlling when this clause will be
executed. A state expresses whether these device states are
allowed or not. For example, a user may restrict a “security
system off” state without specifying an event. Only if all states
and transitions listed in clauses are true, a clause is true.

2) Policy Enforcement: The policies are enforced on the
dynamic model of an app if the app is independent of other
apps or on the unified dynamic model if the app interacts
with other apps. The security service implements reachability
analysis for the app-specific (R.1-R.30) and general policies
(G.1-G.4), and it checks the trigger-action platform policies
(S.1-S.2) based on the integrity and confidentiality labels.

For reachability analysis, the security service first obtains
the events and actions of a dynamic model. It then validates
policies by matching them with the events and actions of a
policy clause. For example, if a set of interacting apps’ unified
dynamic model includes a path from a not-present event to a
door-unlocked action, the security service matches this path
with R.1, which says that the door should not be unlocked
when the user is not present, and rejects the door-unlock action.
To reduce the overhead of policy checks, the security service
uses self-loop, cycle, and parallel edge detection algorithms on
the dynamic model (See Section VI). For instance, G.3 says
that an event of an app must not change a device attribute
to a value that is used as an event that triggers a handler of
another app and that leads to an infinite cycle of event and
actions. To illustrate, an app turns on the switch when the door
is locked, while another app locks the door when the switch
is turned on. Here, the security service enforces G.3 through
a cycle detection algorithm, and rejects the lock-door state
of the second app to prevent the infinite cycle. We note that
to enforce G.1 and G.4 (See Figure 7), the security service
requires users to explicitly specify which action to be blocked.
This is because the security service cannot determine which
action causes violation without users specifying their needs,
especially when there are conflicting policies. For example,
consider when a fire alarm triggered by smoke opens the water
valve to activate a sprinkler, and a moisture detector closes
the water valve to cut off water source. Here the policy that
guarantees the water is not running when moisture is detected
conflicts with the policy that mandates a sprinkler remains
on when smoke is detected. In these cases, IOTGUARD requires
users explicitly specify what action needs to be taken (either

7

to block the valve-open or the valve-close action). If the user
does not specify the policy explicitly, IOTGUARD implements
two solutions: It may either enforce the first matching policy
(allows the valve-open action when smoke is detected and
blocks the valve-close action when the leak is detected) or may
ask users through run-time prompts.

Lastly, the security service implements an information
flow analysis algorithm to enforce trigger-action platform-
specific policies (S.1 and S.2). It first obtains the integrity and
confidentiality labels of the states. It then checks whether a path
exists to a public state that makes private information public,
and from an untrusted state to a trusted state. For integrity
violations, it blocks the trusted state, and for confidentiality
violations, it blocks the public state.

VI. IMPLEMENTATION

We implemented IOTGUARD for SmartThings apps and IFTTT
trigger-action applets. SmartThings supports more devices than
competing IoT platforms and has a growing number of IoT
apps [43]. IFTTT is a widely used trigger-action platform
with over 11 million users and 54 million rules [52]. We
first extract the events and actions of IFTTT rules to map
each IFTTT rule to an IoT app. This allows us to execute the
rules in an IoT simulator (detailed below). IOTGUARD’s code
instrumentor then adds extra code logic to an app’s source code
to collect app’s information at runtime without any change
to the platforms. The instrumented apps are executed in the
SmartThings simulator [46], which simulates the behavior of
physical devices with virtual devices. Apps communicate with
IOTGUARD that operates on a local server through synchronous
HTTP requests. We next detail each step of our implementation.

Identifying IFTTT Applet Events and Actions. For trigger-
action platform rules, we use IFTTT applets designed for
SmartThings [25]. In April of 2018, we obtained over 100
IFTTT SmartThings applets. The IFTTT applets are strings,
for example, “log door openings to Google Spreadsheet when
the door is unlocked by SmartThings.” Here, our goal is to
obtain events and actions of an applet and map them to an app
that executes within the SmartThings simulator. Turning to the
example applet, the app executed in the simulator transmits
“log the door-unlock state to the Google spreadsheet” action to
IOTGUARD when the “door-unlock” event happens. We build a
SmartThings app that subscribes to the door-unlock event, and
create the “log the door-unlock state to the Google spreadsheet”
process when the door-unlock event handler is invoked. The
rule executes in a special security context, where it only has
access to SmartThings devices and the services connected to
the SmartThings devices authorized by the user at install time.

To do so, we first crawl IFTTT applets and obtain the
SmartThings applets. We then tokenize the applets, where each
token is an alphanumeric word, filter tokens that are stop words,
and then stem them with the Porter stemmer [7]. We then create
an inverted index of the tokens. The inverted index is used to
search the IFTTT-provided actions and events. For example, if
the search hits the “door lock” action of SmartThings before
the “when” keyword, it is an action, and if the search hits
“user present” after the “when” keyword, it is an event. When
an applet does not contain “when”, we consider it an IFTTT
DO applet. DO applets only include SmartThings actions, and

FINAL	Example	app’s	implementa3on	in	SmartThings---camera	ready	

//	Devices	
presence_sensor	s	
light_switch	s	
door	d	
thermostat	t	
power_meter	p	
	

//	User	inputs	
temp_away	
thold		
	

when	s.not-present	
		s.OFF();	d.LOCK();	
		t.SET(t_away);	
	

when	s.present		
		t_home=71;	d_thold=5;	
		s.ON();	d.UNLOCK();	
		if	(p.power<thol+d_thold){	
				t.SET(t_home);	
		}	

1:	
2:	
3:	
4:	
5:	
6:	

	

7:	
8:	
9:	

	

10:	
11:	
12:	

	

13:	
14:	
15:	
16:	
17:	
18:			

	

Events	that	can	
not	be	ac3ons	

Ac3ons	that		
might	be	events	

Ac3ons	that	can	
not	be	events	

ac3on1	
…	

ac3onj	

ac3on1		
ac3on2		

…	
ac3onq	

event1	
event2	
event3	
…	

eventn	

Transi'ons	

States	/	Transi'ons	

States	

A:	door-unlocked	

A:	heater-on	

A:	crockpot-on	
E:	light-on	 A:	mode-home	

E:	mode-home	
	

app1:	welcome-home	app	
app2:	home-mode-automa3on	app	

app1	
app2	

app2	
app2	

//	Entry	Point	
	

// Devices and user inputs
preferences	{...}	
// Events
subscribe(presenceSensor,	"presence",	presenceHandler)	
// App information
state.appID	=	"app1"	
state.appDescription	=	"welcome	home	app…"	
state.appName	=	"welcome-home”	
// Entry point	
def	presenceHandler(evt){	
		if(evt.value	==	"present"){	
				def	t_home	=	65	
				def	d_thold	=	5	
				def	power	=	meter.currentValue("power")		
				actions	=	[action:	["s.on()","d.unlock()"],	
				response	=	sendRequest(evt,actions)	
				if(response["s.on"]){s.on()}	
				if(response["d.unlock"]){d.unlock()}	
				if(power	<	thold	+	d_hold){	
						actions	=	[action:	["t.set…(t_home)"],	
						 										action_var:	[t_home:t_home],	
																	pred:	"power<thold+d_hold",			
																	pred_var:	[power:power,thold:thold,	d_thold:d_thold]	
						response	=	sendRequest(evt,actions)	
						if(response["t.setHeatingSetpoint"]){	
						t.setHeatingSetpoint(t_home)	
				}	
}	
// Code block of transmitting app information to IoTGuard	
def	sendRequest(evt,	actions){	
		def	params	// Set IoTGuard server
		def	jsonRequest	 // Create JSON request object
		// Append app info from state object
 // Append event info (e.g., event value (evt.value)) from evt object instance
 // Append device info (e.g., device type (s.typeName)) from device object instance
 // Send request to IoTGuard’s data collector
 httpPostJson(params){	resp->	...	
		}	
 return	response	
}	

1:	
2:	
3:	
4:	
5:	
6:	
7:	
8:	
9:	
10:	
11:	
12:	
13:	
14:	
15:	
16:	
17:	
18:	
19:	
20:	
21:	
22:	
23:	
24:	
25:	
26:	
27:	
28:	
29:	
30:	
31:	
32:	
33:	
34:	
35:	
36:	
37:	
38:	
39:	
40:	

Fig. 8: IOTGUARD’s code instrumentation logic for the app’s
presence event handler depicted in Figure 5 (App’s other event
handlers are similarly instrumented). The instrumented code
is highlighted in grey color. The actions guarded with the
IOTGUARD’s response are highlighted in dashed-red boxes.

the actions are invoked through the IFTTT website or the DO
mobile app. We map triggers of the DO rules to the “app touch”
event of the SmartThings platform and the ”app touch” event
performs actions when a user clicks on a button in the simulated
app. We found that identifying an IFTTT applet’s actions and
events in some cases requires manual effort because IFTTT
applets are not well structured, and their definitions are often
unclear (See our discussion in Section VIII). Therefore, we
manually check each applet and verify the events and actions,
we then associate each action and event with integrity and
confidentiality labels required for checking the trigger-action
platform-specific policies.

Code Instrumentor. Apps are instrumented by the code
instrumentor before they are executed in the SmartThings
simulator. Figure 8 shows the instrumented version of the
example app in Figure 5. The instrumentor works on the
Abstract Syntax Tree (AST) representation of a SmartThings
app’s Groovy code. The Groovy compiler supports customizing
the compilation process with compiler hooks, through which
one can insert extra passes into the compiler (similar to
the modular design of the LLVM compiler [31]). The code
instrumentor visits AST nodes during the Groovy compiler’s
semantic analysis phase when it performs consistency and
validity checks on the AST. Our implementation uses an
ASTTransformation to hook into the compiler, ASTBrowser
to extract entry points, method calls, and expressions inside
AST nodes. This allows our implementation to insert an app’s
information such as the app ID and app name (lines 6-8),
and obtain an app’s events (line 10), actions, numerical-valued

8

attributes, and predicates that guard actions (line 15 and 20).
The information is transmitted to IOTGUARD’s data collector (line
16 and 24) through a JSON object with additional information
obtained from the app’s state, event, and device object instances
(lines 29-40). The event object in SmartThings allows accessing
the event properties [15]; for example, the event type is obtained
through evt.value (line 34). Similarly, a device object allows
accessing device features [13]; for example, the device type
is obtained from developer-defined device input s through
s.typeName. The response returned from IOTGUARD either
allows or denies the app’s actions (lines 17-18 and 25).

The SmartThings programming platform has a number of
idiosyncrasies that the code instrumentor needs to address
for precise code instrumentation: (1) abstract transitions and
states, (2) state variables, and (3) calls by reflection. First,
abstract events are triggered when a user clicks on an app
icon or by a pre-defined event such as location mode change
from away to home. Additionally, events may lead to abstract
states. For instance, setLocationMode() sets the location mode
to a pre-defined mode. The code instrumentor models app
lifecycle based on the complete set of abstract events and states
defined in the SmartThings documentation [44]. Second, apps
may use state variables that are stored in either the global
state or atomicState object to persist data across executions.
State variables are often used in conditional branches to guard
state transitions. The code instrumentor applies field-sensitive
analysis to track the data dependencies of all fields defined
in the state and atomicState objects. Lastly, SmartThings
supports call by reflection (using GString) [44], which allows
a method to be invoked by providing its name as a string. To
handle calls by reflection, the code instrumentor’s call graph
construction adds all methods in an app as possible call targets.

Data Collector and Security Service. The data collector and
security service run on a Jetty [3] local server. App requests
are tunneled from the SmartThings cloud to the local server
running IOTGUARD with ngrok [38]. The data collector extends
Guava’s Graph library [19] to store dynamic models because
of its computation efficacy and openness. The graph library
implements a network data structure that provides important
prerequisites for our purposes, in particular, parallel edges,
self-loops and unique transition objects. The network data
structure uses hash-based (and enum-based) collections, which
implement single-entry operations in constant time and all tree-
based/sorted collections have logarithmic time for single-entry
operations. The security service implements graph algorithms
on top of Guava’s network data structure to enforce policies on
the dynamic models, i.e., reachability analysis, self-loop and
cycle detection, and information-flow analysis.

IoTGuard User Console. Figure 9 shows the user console
of IOTGUARD. The console displays a visual representation of
a policy violation. For each policy violation, it shows the
description of the violated policy and events and actions of
the interacting apps that lead to the violation. The users can
either select IOTGUARD to automate the blocking of an action
that violates a policy (1) or may allow or deny the action
through a runtime prompt (2). The second option is less secure
for users who install apps without understanding warnings.
Furthermore, runtime prompts in some cases may prevent real-
time automation; for instance, users need to be awake to approve
an action. We note that the IoT console can be improved

Final	For	camera	ready	

//	Devices	
presence_sensor	s	
light_switch	s	
door	d	
thermostat	t	
power_meter	p	
	

//	User	inputs	
temp_away	
thold		
	

when	s.not-present	
		s.OFF();	d.LOCK();	
		t.SET(t_away);	
	

when	s.present		
		t_home=71;	d_thold=5;	
		s.ON();	d.UNLOCK();	
		if	(p.power<thol+d_thold){	
				t.SET(t_home);	
		}	

1:	
2:	
3:	
4:	
5:	
6:	

	

7:	
8:	
9:	

	

10:	
11:	
12:	

	

13:	
14:	
15:	
16:	
17:	
18:			

	

Rule Viola*on

Rule viola*on in interac*ng apps

Viola*on cause: Interac*on of smoke-detector, mode-change, and welcome-home

Violated rule : The door must not be unlocked when there is smoke (D1)

smoke-detected
switch-on

switch-on
home-mode door-locked

home-mode

Viola*on Details

smoke-detector mode-change welcome-homeinteracts with interacts with

Block Allow

Lock door in welcome app 	

2

Viola*on Details

Rule Viola*on

Rule viola*on in interac*ng apps

Viola*on cause: Interac*on of smoke-alarm, mode-change, and welcome-home

door-lock ac*on in welcome app is blocked!

Violated rule: The door must not be locked when there is smoke (R.3)

smoke-detected
switch-on

switch-on
home-mode door-lock

home-mode

smoke-detector mode-change welcome-homeinteracts with interacts with

Block Allow

door-lock ac*on in welcome-home app 	

IoTGuard	Automated	Block	op4on	is	ac4ve	

IoTGuard	requires	user	approval	for	

u	

v

Fig. 9: IOTGUARD user console provides two solutions for policy
violations: blocking the undesired state and informing users
about the policy violation (1) and allowing users to reject or
accept the actions through runtime prompts (2).

with various information such as app descriptions and device
locations through IOTGUARD’s data collector to meet the usability
and accessibility requirements for users.

VII. EVALUATION

We present two studies evaluating the IOTGUARD system—
one synthetic and one market-based. The first is a study of
15 hand-crafted SmartThings apps and five IFTTT applets,
which contain a number of representative policy violations
(Section VII-A). In a second study, we execute market vetted
of 35 SmartThings apps and 30 IFTTT applets with various
configurations in a simulated smart home (Section VII-B).
Lastly, we study the performance overhead of the IOTGUARD

system (Section VII-C). In these studies, we sought to validate
the correctness, completeness, and performance of IOTGUARD

on the target apps. We performed our experiments on a laptop
computer with a 2.6GHz 2-core Intel i5 processor and 8GB
RAM, using Oracle’s Java runtime version 1.8 (64 bit) in
its default settings. We use the SmartThings simulator [46]
the execute the apps. The apps send their information to the
IOTGUARD system that runs on a Jetty 8 HTTP server and Java
Servlet container [3]. The requests of the apps are tunneled
from SmartThings cloud to the local server with ngrok 2.0 [38].

A. Effectiveness

This section reports on an application study that uses
IOTGUARD to analyze how 15 hand-crafted SmartThings apps
(ST1-ST15) and five IFTTT (IFTTT1-IFTTT5) applets violate
the policies. Each app represents a unique malicious behavior
or flaw that causes a policy violation in an individual app and
multi-app environments. The apps include various devices and
services covering diverse real-life use cases. We constructed
these apps based on a survey of recent literature on IoT safety
and security [11], [14], [28], [47], [51].

Our analysis of IOTGUARD showed that it correctly enforced
12 of the 12 policy violations, including a policy violation
in an individual app and 11 policy violations in five group
of apps that interact with each other. We manually exercised
the functionality offered by the apps and confirmed the policy
violations. Table II shows the groups of apps, transitions, and
states of the apps, violated policies and blocked states to prevent
the violations. Each group includes a set of apps that are co-
located in an environment and authorized to use the same

9

TABLE II: Effectiveness of IOTGUARD in enforcing the policies
in malicious and flawed apps.

Gr.ID App† Transitions/States Enforced Pol. Blocked States

1 ST1
battery low−−−−−−→ unlock front door R.1 unlock front door (ST1)

2
IFTTT1

11pm−−−→ turn off lights
R.14(x2)

turn off alarm (ST3)
turn off security system (ST3)ST2

lights turned off−−−−−−−−→ to sleeping mode

ST3
mode changed−−−−−−−→ turn off appliances

3

ST4
smoke detected−−−−−−−−→ turn on lights and alarm

R.3

S.2

lock door (ST6)
log public spreadsheet (IFTTT2)

ST5
lights on−−−−→ to home mode

ST6
home-mode−−−−−−→ lock door

IFTTT2
door-locked−−−−−−→ log to a public spreadsheet

4
ST7

contact sensor open−−−−−−−−−−→ turn on lights
G.1 turn off lights (ST8)

ST8
contact sensor open−−−−−−−−−−→ turn off lights

5
IFTTT3

Google Assistant (by voice)−−−−−−−−−−−−−−→ turn off light
G.3 turn off light (ST10)ST9

light turned off−−−−−−−−→ change mode

ST10
mode-change−−−−−−−→ turn off light

6

IFTTT4
Anyone checks in #hashtag−−−−−−−−−−−−−−→ unlock door

S.1

R.13(x3)
R.12

unlock door (IFTTT4)
brew coffee (ST11)
sound music (ST12)
set thermostat cooling (ST14)
set thermostat heating (ST15)

IFTTT5
email sent−−−−−→ turn on light

ST11
light turned on−−−−−−−−→ brew coffee

ST12
light turned on−−−−−−−−→ sound music

ST13
light turned on−−−−−−−−→ change mode

ST14
mode-change−−−−−−−→ set thermostat cooling

ST15
mode-change−−−−−−−→ set thermostat heating

† ST is for SmartThings apps, and IFTTT is for IFTTT applets.

TABLE III: Properties of analyzed IoT apps and trigger-action
platform applets in market-based studies.

Nr. Uniq. Devices Uniq. Services #Events #Actions Func.
IoT 35 20 – 86 78 †

Trigger-action 30 7 12 30 30 ‡

† The SmartThings apps cover functionality including security and safety, green
living, convenience, home automation, and personal care. We determined an
app’s functionality by checking definition block in its source code.
‡ The IFTTT applets connect SmartThings with services of the phone call,
Foursquare, Google Spreadsheet, Google Voice, time, email, Philips, Slack,
Douglas, Twitter, GraspIO, and Wemo.

devices. In the following discussion, we will use app group
IDs (Gr.1-Gr.6) in Table II. For instance, in Gr.1, IOTGUARD

enforces R.1 and blocks the “unlock front door” action of ST1
that unlocks the front door without checking whether the user is
at home. In Gr.3, three IoT apps (ST4-ST6) and one IFTTT app
(IFTTT2) interacts with each other. The interaction between
ST4, ST5 and ST6 violates R.3 by locking the door when there
is smoke at home. ST6 and IFTTT2 violates S.2 by logging
private door-locked state to a public file. IOTGUARD blocks the
“lock door” action of ST6 to prevent violation of R.3, and “log
door-state to a public spreadsheet” action of IFTTT2 to prevent
violation of S.2.

B. Market App Study

We performed two market-based studies to evaluate the
effectiveness of the IOTGUARD in supporting users in avoiding
undesired states. In a first study, we configure apps with a
single separate device, and in a second study, we configure the
apps with multiple devices based on the description of apps.
Through these studies, we evaluate IOTGUARD in violations that
can happen in practice when an app works in isolation and
when multi-apps are co-located in an environment.

Experimental Setup. We simulate a smart home as shown in
Figure 10. The smart home includes 20 different IoT devices,
a total of 29 devices. Some IoT devices are deployed multiple
times; for example, water leak detector (11©) is deployed both
in the kitchen and bathroom. These devices are the most selling
IoT consumer products for smart home [1]. To build automated

3

9

2

1
1

10	
11	

7	 8	

18	

4

5

17	

12	

13	

16	

15	

15	

1
3

44

1

11	

14	
14	

6

Final	for	the	paper	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	

12	
13	
14	
15	
16	
17	
18	
19	
20	

Light	switch(4)	
Door	lock	
Presence	sensor(2)	
Mo;on	sensor(3)	
Contact	sensor	
Temp.	measure.	
AC	
Heater	
Coffee	machine	
Crockpot	
Leak	detector(2)	

Fan	
Power	meter	
Alarm(2)	
Smoke	detector(2)	
Humidity	sensor	
Luminance	sensor	
Speakers	
Window	shade	
Doorbell	

19	

20	

Fig. 10: The simulated smart home used in market app study.

tasks for the smart home devices, we obtained 35 official
(vetted) IoT apps (M.ST1-M.ST35) from the SmartThings GitHub
repository [40] and 30 official IFTTT applets (M.IFTTT1-
M.IFTTT30) from IFTTT market [25], [47] (See Table III). The
IFTTT applets connect seven IoT devices with twelve unique
services such as Google voice and phone call. These apps
and applets include various devices, services, and functionality
that encompass diverse real-life use cases. Some apps require
pre-defined mode inputs. We defined four modes, home, away,
sleeping and vacation based on the use cases of modes in
SmartThings documentation [36]. We generate an app’s all
events to trigger its all event handler methods. If an app requires
a input for a numerical-valued device attribute, we generate
inputs in a range the device supports based on the app logic
(similar to fuzz testing that guides a fuzzer to cover the app
code intelligently [48]). For instance, a thermostat input to set
the temperature value can be generated between 50 and 95.

Apps Used in Isolation. In our first study, we run each app
by configuring with a single separate device. For instance, an
app that turns on lights in the kitchen when motion is active
is configured with a smart switch and a motion detector in the
kitchen. The goal of the study is to enforce policy violations
when apps are used in isolation; however, we found that apps
require a greater number of devices than those found in the
smart home. For instance, eight apps in our corpus use a motion
detector, yet three motion detectors are deployed in the smart
home. To be consistent in our experiments, we assume the apps
sharing a common device are not installed by a user at once.

We found that apps used in isolation lead to unsafe and
undesired states. Table IV rows labeled with 1 shows the
violations and blocked states. IOTGUARD enforced a policy that
an IFTTT app violates, and two policies in two groups that
have four apps. We found that there are three reasons for
policy violations enforced by IOTGUARD. First, though apps are
configured with a single separate device, the interaction of apps
through abstract attributes cause policy violations; for example,
when M.ST4 changes the mode at a specific time, M.ST7 turns
on a configured appliances (heater based on our configuration)
when the user is not at home (R.13). Second, misconfiguration
of numerical-valued device attributes such as thermostat heating
point cause policy violations; for example, AC and heater run at
the same time when a common heating and cooling value is set
(R.17). The reason behind the configuration errors is running
the apps with the complete test inputs that a device supports;
thus these errors depend on the user’s configuration of apps’
numerical-valued attributes at install time. Third, M.IFTTT24
violates S.1 by turning on a light switch when someone Tweets
#ChristmasSpirit. IOTGUARD enforces S.1 and blocks “light turn
on action”. We note that none of the official SmartThings apps

10

TABLE IV: Potential policy violations by 65 (35 IoT apps and
30 IFTTT applets) of the studied apps.

Study Gr.ID App‡ Transitions/States Enforced Pol. Blocked State

1 †

1
M.ST11

temp≥user input−−−−−−−−−→ heater on
R.17

R.13

S.1

AC on (M.ST12)
heater switch on (M.ST7)
light on (M.IFTTT24)

M.ST12
temp≥user input−−−−−−−−−→ AC on

2
M.ST4

time−−→ mode change

M.ST7
mode-change−−−−−−−→ heater switch on

3 M.IFTTT24
anyone Tweets #ChristmasSpirit−−−−−−−−−−−−−−−−→ light on

2 †

1

M.ST21
motion active−−−−−−−→ lights on

G.2(x5)

lights on (M.ST9)
lights on (M.ST15)
lights off (M.ST9)
lights on (M.ST9)
capture photo (M.IFTTT21)

motion inactive−−−−−−−−→lights off

M.ST15
motion active−−−−−−−→ lights on

M.ST9
motion active−−−−−−−→ lights on
motion inactive−−−−−−−−→ lights off

M.IFTTT21
light on−−−−→ capture photo

2

M.ST1
motion inactive−−−−−−−−→ switch off

G.3

R.13(x3)
R.12

R.14

S.1(x2)
S.2

switch on (M.ST7)
heater, coffe mac., crock. on (M.ST7)
light on (M.ST7)
alarm off (M.ST6)
switch on (M.IFTTT20)
send Slack notification (M.IFTTT16)
open window shade (M.IFTTT17)

M.ST2
power>threshold−−−−−−−−−→ switch off

M.ST33
time−−→ switch off

M.IFTTT1
sunrise−−−→ switch off

M.IFTTT28
Google voice−−−−−−−→ switch off

M.ST23
contact sensor open−−−−−−−−−−→ switch off

M.ST10
switch off−−−−−→ mode change

M.ST6
mode change−−−−−−−→ switch off

M.ST7
mode change−−−−−−−→ switch on

M.IFTTT13
leak detected−−−−−−−→ switch on

M.IFTTT20
door ring pressed−−−−−−−−−→ switch on

M.IFTTT9
missed call−−−−−−→ switch on

M.IFTTT30
send email−−−−−→ switch on

M.IFTTT16
switch on−−−−−→ send Slack notification

M.IFTTT17
switch on−−−−−→ open window shade

3

M.ST21
motion inactive−−−−−−−−→ switch off

G.1(x2)
G.2

G.4

switch off (M.ST15)
switch on (M.ST7)
switch off (M.ST6)
switch off (M.ST23)

M.ST15
motion inactive−−−−−−−−→ switch off

M.ST7
contact sensor open−−−−−−−−−−→ switch on

M.ST6
contact sensor open−−−−−−−−−−→ switch off

M.ST18
app touch−−−−−→ switch on

M.ST23
app touch−−−−−→ switch off

† 1 is the study results of apps used in isolation, and 2 is the results of multi-apps co-located in an environment.
‡ M.ST is for SmartThings market apps, and M.IFTTT is for IFTTT market applets.

were flagged as violating policies when apps run in isolation; we
believe this is because of the strict manual vetting enforced on
official SmartThings apps, which takes a couple of months [45].

Apps Co-located in an Environment. In a second study, we
configure the apps and applets with a number of devices based
on app descriptions. For instance, if an app’s description states
that “Turn things off if you are using too much energy”, and
if an applets description states that “At sunrise automatically
turn off a smart device you choose”, we configure the apps
with all switches in the smart home. Our goal in this set of
experiments is to evaluate the effectiveness of IOTGUARD on
policy violations when apps share at least a common device.
Naturally, this can happen in practice when the apps are co-
located in an environment by a user.

We found that multiple apps work in concert violates nine
unique properties. IOTGUARD blocked 18 unsafe and undesired
states in three group of apps violating multiple policies. We
examined 16 apps and nine applets that interact with each other
through 27 events and actions. Table IV rows labeled with 2
shows the app groups, transitions, and states that constitute
violations, violated policies and blocked states. In the following
discussion, we will use app group IDs (Gr.1-Gr.3) in Table IV.
Each group includes a set of apps and applets that a user may
install together and authorize them to use the same devices.

In Gr.1, M.ST21, M.ST9, and M.ST15 turn on the lights when
motion is active and turns off the light when motion is inactive.
This leads to turning on and off the lights multiple times because
of the same functionality provided in some branches of the
apps. Similarly, M.IFTTT20 takes a photo multiple times every

time the lights are turned on. IOTGUARD enforces G.2 and blocks
all repeated states. In Gr.2, a set of apps and applets turns off
the switch with different events such as time, and voice. When
“switch off” event happens, M.ST10 changes the mode. When the
“mode” is changed, M.ST6 and M.ST7 turns off and turns on a set
of devices. The interaction between apps and applets result in
an unauthorized control of a set of devices. IOTGUARD enforces
R.12, R.13, R.14, and G.3 policies and blocks the states that
cause security and safety risks for users. For instance, IOTGUARD

blocks “heater on” and “crockpot on” states (M.ST7), and “alarm
off” state (M.ST6) when the mode is changed to sleeping, away
and vacation. Similarly, a set of applets turns on the switch
when “door ring pressed”, “missed call”, “leak” and “send
email” events happen. In this, IOTGUARD enforces integrity and
confidentiality policies of S.1 and S.2. For instance, “open
window shade” (M.IFTTT17) state is blocked when the door
ring pressed, and “send Slack notification” is blocked when
the switch is turned on. Lastly, in Gr.3, IOTGUARD enforces
G.1 when “contact sensor open” event of M.ST18 and M.ST23
change the switch state to conflicting values of “on” and “off”.
Furthermore, IOTGUARD enforces G.4 when “app touch”, “motion
inactive”, and “contact sensor open” events change a device
state to conflicting “on” and “off” states when these events
happen at the same time.

C. Performance Evaluation

We study IOTGUARD’s code instrumentation and runtime
overhead. We performed the tests during the market app study.

Code Instrumentation Performance. We evaluated IOT-
GUARD’s code instrumentor in terms of the process time required
for adding the instrumentation code to an app, and the number
of Lines of Code (LoC) required for instrumenting an app.
The average time to insert instrumentation code for an app
is 4.1±2 secs. The SmartThings apps are on average 220
LoC, and the number of LoC added to an app is on average
20±8 LoC (9.1%). IFTTT rules are on average 60 LoC after
they are converted to an app that runs on the SmartThings
simulator, and the number of LoC added to an IFTTT rule
is 8±2 (13.3%). We note that IOTGUARD also appends on
average 20 LoC for transmitting the app’s information. An
app’s instrumentation time and the number of LoC depend
on the algorithms developed for extracting the events, actions,
and predicates of the apps. For instance, an app that has many
actions in conditional branches takes more time than an app that
does not have any branches. We note that the code instrumentor
adds the instrumentation code to an app at install time; thus it
does not introduce runtime overhead.

Runtime Overhead. To study the overhead introduced into
a system by IOTGUARD, we record, end-to-end overhead, the
time between when an app receives an event and when an app
executes an action. For instance, the end-to-end overhead of
an app that turns on the switch when the user is present is
the time between triggering the “user-present” event handler
and executing the “switch on” action. We generate the con-
secutive events of the apps with instrumentation and without
instrumentation and measure each test 20 times. The end-to-
end overhead of apps without instrumentation is on average
0.52±0.2 secs. The end-to-end overhead of instrumented apps
includes the time for transmitting the app’s information to the
data collector, checking the policies and sending a response to

11

0 1 2 3 4 5 6 7 8 9 10
Interaction size (number of interacting apps)

0.6

0.61

0.62

0.63

0.64

0.65
En

d-
to

-e
nd

 o
ve

rh
ea

d
(s

ec
)

17.3%
18.1% 18.5%

19.4% 19.8%
20.8%

21.7%
22.3%

23.1% 23.5%

Fig. 11: IOTGUARD’s end-to-end overhead on policy enforcement.
Error bars indicate standard errors, and percentages shows the
overhead with respect to the unmodified system.

the app. Figure 11 shows the end-to-end overhead, in seconds,
of the different number of interacting apps. The interaction size
represents the number of states which impacts the number of
policies that IOTGUARD checks on the unified dynamic model of
interacting apps. For instance, if ten apps are interacting with
each other, IOTGUARD checks more policies because the number
of devices that a unified dynamic model includes is more than
the devices of an app’s dynamic model. As can be seen, most
policy checks on an instrumented app require on average 90 ms
(17.3%) with respect to the unmodified system. The overhead
increases with the number of interacting apps. For instance, the
overhead for ten interacting apps is on average 122 ms, which
constitutes less than a 23.5% runtime overhead. The end-to-end
overhead is dominated by buffering of app’s information and
checking the policies. While these overheads are acceptably
low for many applications, they may be partially reduced by a
tighter coupling of IOTGUARD and the edge system (i.e., hub or
cloud). We note that the actual overhead in an IoT system often
happens due to the communication between the edge system
and physical device; for example, execution of a device action
often has a latency over a second [28], [51]. Thus, IOTGUARD’s
overhead in real-world scenarios would be negligible because
it does not add latency for device action execution.

IoTGuard Console-prompt and Data Storage Overhead.
When the user deactivates the automated blocking, IOTGUARD

provides the user with a console to review the policy violation,
and the user may either deny or allow an app’s action. We
measure the overhead of displaying the console to the users
through a Web interface in 21 policy violations recorded in
our market-based study. The console adds negligible perceived
latency, on the order of milliseconds, to the end-to-end overhead.
We next determine the storage cost of IOTGUARD by measuring
the app’s information recorded in the data collector. We
randomly triggered 500 app events by considering a highly
active IoT user. The data collector imposes 80KB of storage cost.
We note that storage cost can be reduced either by deleting the
logs based on the user’s needs or integrating the IOTGUARD into
the edge system or cloud based on the IoT platform architecture.

VIII. LIMITATIONS AND DISCUSSION

A limitation of IOTGUARD is in taking the right course of
action if a state is blocked. In some cases, merely blocking
a state caused by users or policy errors could have physical
consequences. For example, suppose that a door should be

unlocked only for a security service based on a time window
specified by the user when she is on vacation. However, a
policy that blocks the unlock-door state prevents the security
service from entering the house, which may or may not be
preferable depending on the circumstances. To help keep the
IoT environment stable when an action is rejected, future work
will need to study more complex policies through multiple
users and better handle blocked states.

IOTGUARD allows a user to specify policies through IOT-
GUARD’s GPL. This can pose problems especially when users
create policies in highly complex IoT environments, where an
incorrect policy specification may prevent legitimate states, fail
to block unsafe and insecure states, or conflict with another
policy. For instance, one policy may allow action “a” when a
specific event occurs, while a second policy may deny a set of
actions, of which “a” is a member. To address these issues, we
plan to adapt machine learning and other modeling techniques
to automate the property-discovery process and policy conflict
resolution in IoT devices and domains.

IOTGUARD implements an algorithm to find the events and
actions of IFTTT trigger-action applets. Thereafter, we manually
label the events and actions with integrity and confidentiality
labels. We found that extracting IFTTT events and actions and
labeling them is not a trivial process because an applet’s event
and actions often do not match the device capabilities of an IoT
platform. Additionally, this process does not scale to a large
number of IFTTT applets. We plan to use more semantically
rich natural language processing techniques for automated and
scalable applet processing.

We have shown that IOTGUARD can express meaningful
policies to preserve system safety and security. We plan to
conduct a user study to evaluate the usability of IOTGUARD based
on user configuration of the apps. We will ask independent
users to configure the IoT apps and trigger-action applets with
the assumption that they deploy them in a smart home. We will
then execute the apps and study the effectiveness of IOTGUARD,
focusing on policies, blocked states, and user-perceived risks
based on specific user configurations.

Lastly, IOTGUARD’s implementation and evaluation are based
purely on the SmartThings home automation platform and
IFTTT trigger-action platform apps. There are other IoT do-
mains suitable to evaluate safety and security violations, such as
FarmBeats for agriculture [50], HealthSaaS for healthcare [23],
and KaaIoT for the automobile industry [29], and Zapier [53]
and Microsoft Flow [35] for trigger-action platforms. We plan
to extend IOTGUARD’s algorithms to these platforms and engage
in large-scale analyses of IoT markets and industries.

IX. RELATED WORK

There has been an increasing amount of recent research
exploring IoT security and more broadly safety. We compare
IOTGUARD with several previous approaches that differ in scope,
focus, precision, and runtime. The approaches studied here are
the most applicable that run directly on IoT app source code.
As presented in Table V, IoTGuard supports more features
than any previous approach to IoT security. ContexIoT is a
permission-based system that provides contextual integrity for
IoT apps at run time [28]. SmartAuth generates an authorization
interface for users and enforces the apps permissions after a

12

TABLE V: A comparison of IOTGUARD with other IoT systems.

Constraints

System Multi-app
analysis

Trigger-action
applet analysis

Policy
identification

Runtime policy
enforcement

ContexIoT [28] 7 7 7 7
SmartAuth [49] 7 7 7 7
ProvThings [51] 3 7 7† 7
Soteria [11] 3 7 3‡ 7
IOTGUARD 3 3 3 3
† ProvThings implements a policy engine that allows users to create policies through
provenance database.
‡ Soteria identifies safety and security property violations through source code analysis.

user authorized them [49]. ContexIoT and SmartAuth are only
applicable to an IoT app running in isolation—collecting context
of an individual app. ProvThings logs system-level provenance
through security-sensitive APIs and leverages it for forensic
reconstruction [51]. Lastly, Soteria is a static analysis system
for model checking of IoT apps to validate whether an IoT app
or IoT environment adhere to safety and security properties [11].
ProvThings and Soteria support analysis of interactions among
IoT apps. ProvThings supports this capability through the
analysis of provenance logs of multiple apps, and Soteria
constructs a union state model that represents the unified
behavior of apps when they installed together. However,
ProvThings and Soteria do not handle the interactions between
IoT apps and trigger-action platform services. Furthermore,
none of the systems evaluate and ultimately enforce identified
security and safety policies on market-apps to protect users
from undesired states at runtime.

Traditional security measures have been used to mediate
access to system resources such as files, ports, etc. [27].
Instead, IOTGUARD directly mediates actions sent by apps to
the physical devices. Previous representative efforts at securing
control systems have constructed models using state-space and
control-theoretic approaches to model the normal operation of
the devices for detecting anomalies and faulty systems. The
examples include models built on water control systems [21],
chemical reactor processes [8], medical devices [24] and power
grid systems [33]. These tools model applications using the
domain-specific information and exploit the structure of the
control system implementations, e.g., plant behavior [37] and
process controller code [34]. While we build on these results,
IOTGUARD addresses the diversity of IoT devices in sensors,
resources, and interactions among devices which provides
unique challenges that require a different approach to preserving
the safety and security of the IoT environment.

X. CONCLUSIONS

As users become more comfortable installing IoT apps and
trigger-action platform rules in an IoT environment, the inter-
action between devices will increase. IOTGUARD detects when
an individual app and interactions among apps lead to unsafe
and insecure states and ameliorate these undesired states by
blocking them. We evaluated IOTGUARD in two studies: a study
on a flawed app corpus, and a market study of SmartThings apps
and IFTTT applets. These studies demonstrated that IOTGUARD

accurately identifies policy violations and blocks the undesired
states, both when apps are used in isolation and when they are
used together in multi-app environments. IOTGUARD incurs less
than 17.3% runtime overhead for an individual app and 19.8%
for five interacting apps with respect to the unmodified system.

Future work will expand our analysis to support more
platforms and to continue to study security requirements
engineering process to discover more complex and subtle
policies. This work is the first step toward realizing practical
IoT security and safety. We plan to extend our study to the
complex interactions between users and the smart devices that
they use to enhance their lives.

ACKNOWLEDGMENT

We thank our shepherd Luyi Xing, and Eric Pauley for their
comments and suggestions. Research was supported in part by
the Army Research Laboratory, under Cooperative Agreement
Number W911NF-13-2-0045 (ARL Cyber Security CRA) and
the NSF Grant No. CNS-1564105. The views and conclusions
contained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or
the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

REFERENCES

[1] “Best seller home improvement automation devices,” https://goo.gl/
XLLzUP, [Online; accessed 21-July-2018].

[2] “Android sensor API documentation,” https://goo.gl/vEDwKu, [Online;
accessed 30-July-2018].

[3] Apache, “Jetty servlet engine and Http server,” https://www.eclipse.org/
jetty, 2018, [Online; accessed 30-August-2018].

[4] “Apiant: Connect your apps, automate your business,” https://apiant.com/,
[Online; accessed 11-April-2018].

[5] “Apple’s HomeKit,” https://www.apple.com/ios/home/, [Online; accessed
9-January-2018].

[6] I. Bastys, M. Balliu, and A. Sabelfeld, “If this then what?: Controlling
flows in IoT apps,” in ACM CCS, 2018.

[7] S. Bird and E. Loper, “Nltk: Natural language toolkit,” in ACL Interactive
poster and demonstration sessions. Association for Computational
Linguistics, 2004.

[8] A. A. Cárdenas, S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, and
S. Sastry, “Attacks against process control systems: risk assessment,
detection, and response,” in ACM symposium on information, computer
and communications security, 2011.

[9] Z. B. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan, P. McDaniel,
and A. S. Uluagac, “Sensitive information tracking in commodity IoT,”
in USENIX Security, 2018.

[10] Z. B. Celik, E. Fernandes, E. Pauley, G. Tan, and P. McDaniel,
“Program analysis of commodity IoT applications for security and privacy:
Challenges and opportunities,” arXiv preprint: 1809.06962, 2018.

[11] Z. B. Celik, P. McDaniel, and G. Tan, “Soteria: Automated IoT safety and
security analysis,” in USENIX Annual Technical Conference (USENIX
ATC), 2018.

[12] H. Chi, Q. Zeng, X. Du, and J. Yu, “Cross-app threats in smart homes:
Categorization, detection and handling,” arXiv preprint:1808.02125,
2018.

[13] “SmartThings device API documentation,” https://goo.gl/HCtuka, [On-
line; accessed 29-July-2018].

[14] W. Ding and H. Hu, “On the safety of IoT device physical interaction
control,” in ACM CCS, 2018.

[15] “SmartThings event API documentation,” https://goo.gl/GPPXV3, [On-
line; accessed 29-July-2018].

[16] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging
smart home applications,” in IEEE Security and Privacy (S&P), 2016.

[17] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and
A. Prakash, “FlowFence: Practical data protection for emerging IoT
application frameworks,” in USENIX Security, 2016.

13

[18] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash, “Decentralized
action integrity for trigger-action IoT platforms,” in NDSS, 2018.

[19] Google, “Guava: Google core libraries for Java 1.7+,” https://github.
com/google/guava, 2018.

[20] Google Fit Developer Documentation., https://developers.google.com/fit/,
[Online; accessed 20-August-2018].

[21] D. Hadžiosmanović, R. Sommer, E. Zambon, and P. H. Hartel, “Through
the eye of the PLC: semantic security monitoring for industrial processes,”
in ACSAC, 2014.

[22] W. He, M. Golla, R. Padhi, J. Ofek, M. Dürmuth, E. Fernandes, and
B. Ur, “Rethinking access control and authentication for the home
Internet of Things (IoT),” in USENIX Security, 2018.

[23] “HealthSaaS: The Internet of Things (IoT) Platform for Healthcare,”
https://www.healthsaas.net/, [Online; accessed 20-August-2018].

[24] X. Hei, X. Du, S. Lin, and I. Lee, “Pipac: Patient infusion pattern based
access control scheme for wireless insulin pump system.” in INFOCOM,
2013.

[25] “IFTTT SmartThings platform rules,” https://ifttt.com/smartthings, [On-
line; accessed 11-July-2017].

[26] “IFTTT (if this, then that): Helps your apps and devices work together,”
https://ifttt.com/, [Online; accessed 30-August-2018].

[27] T. Jaeger, “Operating system security,” Synthesis Lectures on Information
Security, Privacy and Trust, 2008.

[28] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M.
Mao, A. Prakash, and S. J. Unviersity, “ContexIoT: Towards providing
contextual integrity to appified IoT platforms,” in NDSS, 2017.

[29] “KaaIoT: Connected car and IoT automotive,” https://www.kaaproject.
org/automotive, [Online; accessed 20-August-2018].

[30] S. Kubler, K. Främling, and A. Buda, “A standardized approach to deal
with firewall and mobility policies in the IoT,” Pervasive and Mobile
Computing, 2015.

[31] C. Lattner, LLVM compiler infrastructure project. The architecture of
open source applications, 2012.

[32] O. Leiba, Y. Yitzchak, R. Bitton, A. Nadler, and A. Shabtai, “Incentivized
delivery network of IoT software updates based on trustless proof-of-
distribution,” arXiv preprint: 1805.04282, 2018.

[33] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against
state estimation in electric power grids,” ACM TISSEC, 2011.

[34] S. E. McLaughlin, S. A. Zonouz, D. J. Pohly, and P. D. McDaniel, “A
trusted safety verifier for process controller code.” in NDSS, 2014.

[35] “Microsoft Flow: Automate processes + tasks,” https://flow.microsoft.
com, [Online; accessed 11-April-2018].

[36] “Modes in SmartThings,” https://goo.gl/DRCHPo, [Online; accessed
21-August-2018].

[37] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, and M. Caccamo, “S3A:
Secure system simplex architecture for enhanced security and robustness
of cyber-physical systems,” in ACM International Conference on High
Confidence Networked Systems, 2013.

[38] “ngrok: Public URLs for exposing your local web server,” https://ngrok.
com/, [Online; accessed 9-July-2018].

[39] D. T. Nguyen, C. Song, Z. Qian, S. V. Krishnamurthy, E. J. Colbert,
and P. McDaniel, “IoTSan: Fortifying the safety of IoT systems,” in
CoNEXT, 2018.

[40] “SmartThings Official App Repository,” https://github.com/
SmartThingsCommunity, [Online; accessed 10-January-2018].

[41] OpenHAB: Open Source Automation Software for Home, https://www.
openhab.org/, [Online; accessed 9-January-2018].

[42] “PTC: Innovation with industrial IoT,” https://www.ptc.com/en/about,
[Online; accessed 20-July-2018].

[43] “Samsung SmartThings,” https://www.smartthings.com/, [Online; ac-
cessed 29-July-2018].

[44] “SmartThings documentation,” http://docs.smartthings.com, [Online;
accessed 29-July-2018].

[45] “SmartThings Code Review Guidelines and Best Practices,” http:
//docs.smartthings.com/en/latest/code-review-guidelines.html, [Online;
accessed 29-July-2018].

[46] “SmartThings iot platform simulator,” https://goo.gl/rfTB7e, [Online;
accessed 9-July-2018].

[47] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L. Jia, “Some
recipes can do more than spoil your appetite: Analyzing the security
and privacy risks of IFTTT recipes,” in World Wide Web (WWW), 2017.

[48] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “CopperDroid:
Automatic reconstruction of Android malware behaviors,” in NDSS,
2015.

[49] Y. Tian, N. Zhang, Y.-H. Lin, X. Wang, B. Ur, X. Guo, and P. Tague,
“Smartauth: User-centered authorization for the Internet of Things,” in
USENIX Security, 2017.

[50] D. Vasisht, Z. Kapetanovic, J. Won, X. Jin, R. Chandra, S. N. Sinha,
A. Kapoor, M. Sudarshan, and S. Stratman, “FarmBeats: An IoT platform
for data-driven agriculture,” in NSDI, 2017.

[51] Q. Wang, W. U. Hassan, A. Bates, and C. Gunter, “Fear and logging in
the Internet of Things,” in NDSS, 2018.

[52] “IFTTT platform size metrics,” https://platform.ifttt.com/pricing, [Online;
accessed 11-August-2018].

[53] “Zapier: Connect your apps and automate workflows,” https://zapier.com/,
[Online; accessed 11-August-2018].

[54] B. B. Zarpelão, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga, “A
survey of intrusion detection in Internet of Things,” Journal of Network
and Computer Applications, 2017.

APPENDIX

A. IoT Policies

We present the description of the general IoT policies in
Table I, trigger-action platform-specific policies in Table II, and
application-specific policies in Table III.

ID Policy Description

G.1 An event handler must not change a device attribute to
conflicting values on some control-flow path, e.g., the
motion-active event handler must not turn on and turn
off a switch in some branch.

G.2 An event handler must not change a device attribute to
the same value multiple times on some control-flow path,
e.g., the motion-active event handler must not turn on the
switch multiple times in some branch.

G.3 An event handler of an app must not change a device
attribute to a value which is used as an event in the event
handler of another app, e.g., door-lock event handler must
not turn on a switch which is used in an event handler of
an app that locks the door.

G.4 Two or more event handlers must not change a device
attribute to conflicting values, e.g., a user-present event
handler turns on the switch while a timer event handler
turns off the switch at midnight. This is because the events
of user presence and midnight may occur at the same time,
leading to a race condition.

TABLE I: Description of general policies.

ID Policy Description

S.1 Integrity Violation: An untrusted action changes a trusted
attribute (untrusted email turns on the light)

S.2 Confidentiality Violation: An action changes an attribute
that makes the private information publicly available (when
an unlock function posts the user’s location to a public log)

TABLE II: Description of trigger action-specific policies.

14

ID† Policy Description

R.1 The door must be locked when a user is not present at home or sleeping.

R.2 The lights (in a bedroom, hallway, etc.) must be turned on if the motion sensor is active.

R.3 When there is smoke, the lights must be on if it is night, and the door must be unlocked.

R.4 The light must be on when the user arrives home.

R.5 The camera controlled doors must be closed when the door is clear of any objects.

R.6 The garage door must be open when people arrive home, and it must be closed when people leave home.

R.7 The location beacon must be inside a geo-fence around the home (defined by a user) to turn on the lights and open the garage door.

R.8 The lights must be turned off when the sleep sensor detects a user is sleeping.

R.9 The security system must not be disarmed when the user is not at home.

R.10 The alarm must sound when there is smoke or CO; and when an unexpected motion, tampering, and entering occurs.

R.11 The valve must be closed when water sensor is wet and when the water level threshold specified by a user is reached.

R.12 The devices (e.g., light switches, music player, cleaning supply cabinets, medicine drawers, or gun cases) must not be open or
turned on when the user is not at home or sleeping.

R.13 Some device functionality (e.g., coffee machine starting brewing, heating up dinner in a crock-pot, turning on AC and heater) must
not be used when the user is not at home or must be turned on before a time specified by a user.

R.14 The refrigerator, alarm, and security system must not be disabled, and their use must not be restricted to save energy.

R.15 The temperature value including idle energy savings must be set to the operating mode values as specified by the user (heating and
cooling values are separate) based on the specific event.

R.16 The thermostat temperature (heating and cooling) entered by the user must be changed when the mode selected by a user is changed
(e.g., from sleeping mode to away mode).

R.17 The AC and heater must not be on at the same time.

R.18 The HVACs, fans, switches, heaters, dehumidifiers must be off when the humidity and temperature values are out of the threshold
specified by the user (e.g., a particular degree above/below the threshold of temperature and humidity).

R.19 The AC must be on when a user is within a specified distance of the house or at a time specified by the user.

R.20 The security camera must take pictures when there is a motion, and contact/door sensors are active.

R.21 The security camera must take a photo and sound alarm when the doors/windows are opening, and when the doors are unlocking at
user-specified times. It must turn off all alarm when one alarm is turned off.

R.22 The battery level of the devices (switch, humidity sensor, etc.) must not be below a specified threshold.

R.23 The door must not be unlocked when a camera does not recognize an unauthorized face.

R.24 The windows must not be open when the heater is on.

R.25 The bell must not chime when the door is open.

R.26 The alarm must go off when the main door is left open for too long (specified by the user).

R.27 The mode must be set to “home” when the user is present at home, and “away” when the user is not present at home.

R.28 The sound system must read (e.g., the day’s weather forecast and the status of the devices) with the user interaction and must not
read at the time not specified by the user (guards against violations when the sleeping mode is on and when the user is not home.)

R.29 The sprinkler system must not be on when it rains, and when the soil moisture is below a threshold defined by a user. Flood sensor
must activate the alarm when there is water.

R.30 The water valve must shut off when water/moisture sensor detects leak around a location such as basement and laundry room.
† We define app-specific policies based on the access granted to the devices in an app. For instance, R.22 is separately defined for an app that
grants access to a switch and a humidity sensor.

TABLE III: Description of application-specific policies.

15

