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ABSTRACT
Many classic software vulnerabilities (e.g., Heartbleed) are rooted
in unused code. In this work, we aim to understand whether unused
Android functionality may similarly open unnecessary attack op-
portunities. Our study focuses on OEM-introduced APIs, which are
added and removed erratically through different device models and
releases. This instability contributes to the production of bloated
custom APIs, some of which may not even be used on a particular
device. We call such unused APIs Residuals.

In this work, we conduct the first large-scale investigation of
custom Android Residuals to understand whether they may lead to
access control vulnerabilities. Our investigation is driven by the in-
tuition that it is challenging for vendor developers to ensure proper
protection of Residuals. Since they are deemed unnecessary, Resid-
uals are naturally overlooked during integration and maintenance.
This is particularly exacerbated by the complexities of Android’s
ever-evolving access control mechanism.

To facilitate the study at large, we propose a set of analysis
techniques that detect and evaluate Residuals’ access control en-
forcement. Our techniques feature a synergy between application
and framework program analysis to recognize potential Residuals in
specially curated ROM samples. The Residual implementations are
then statically analyzed to detect potential evolution-induced access
control vulnerabilities. Our study reveals that Residuals are preva-
lent among OEMs. More importantly, we find that their presence
may even lead to security-critical vulnerabilities.
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1 INTRODUCTION
Never before has any operating system (OS) been so popular and
diverse as Android. Over the last decade, phone manufacturers and
carriers around the globe have built their devices upon the Linux-
based open source platform. Such success, however, does not come
without risks. The open source nature of the OS has long enabled
the Original Equipment Manufacturers (OEMs) to frequently tailor
the existing Android Open Source Project (AOSP) codebases to dif-
ferent custom hardware and services. Despite Google’s efforts (i.e.,
through Treble Project) to regulate Android ecosystem diversity,
OEM customization remains highly under-regulated, leading to the
inevitable introduction of vulnerabilities and security flaws. Indeed,
prominent studies show that OEM introduced functionalities fail to
properly protect underlying sensitive resources [11, 32, 37, 38] and
that significant numbers of pre-installed apps on custom ROMs are
riddled with classic Android vulnerabilities [21, 34].

Of particular interest are the evolution-related vulnerabilities
introduced when OEMs cannot respect well-established security
requirements while keeping up with the fast pace of Android ver-
sion updates and the sophistication of new functional requirements.
For each new Android version and device model, OEM developers
adapt the existing custom codebases to the new requirements by
adding or removing custom functionalities – eventually introducing
new OEM-specific private APIs and removing unused ones. From
a security standpoint, removing unused private APIs, which we
name Residuals, is highly important. Unused functionality not only
increases code complexity but also broadens the attack surface.
Many serious software vulnerabilities in commodity software and
platforms are rooted in features that are never used [1].

Several research efforts [28, 35] have been proposed to inves-
tigate the phenomena of unneeded API removal from Android
codebases, including deprecation practices, developer reactions and
compatibility aftermath. However, to the best of our knowledge, no
effort has looked into the security implications of failing to remove
them. In this paper, we bridge the gap by performing a large-scale
security investigation of Residual APIs. Our study aims to answer
whether Android Residuals do unnecessarily open the door to security
flaws as in other software and platforms.

To conduct the study, we put forward a solution that detects
Residuals and evaluates their access control enforcement within
custom ROMs. Our tool entails extensive program analysis of a large
corpus of custom APIs (26,883), defined over our collection of 628
ROMs. Intuitively, a Residual API can be defined as any private API
that is not used on a particular device but is used in earlier versions
and/or in other models. This definition oversimplifies the nature of
Residuals in Android. A seemingly unused API may be indirectly
called through complex call chains and reachable through multiple
framework entry points. To ensure accurate Residual detection,
our analysis attempts to recover framework entry points through a
specialized backward search over the framework classes.
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The above definition further implies that the mere occurrence of
unused APIs in a few isolated, random ROMs – without accounting
for the APIs’ historical and model-specific use patterns – may not
accurately signal a Residual’s presence. Our approach addresses this
issue by building a usage history of custom APIs over our curated
ROM samples. Specifically, Historical Residuals are detected by
observing gradually or abruptly retiring APIs over time, while
Model Residuals are identified by looking for specific use within
clusters of devices from the same model or series.

To understand the security risks a Residual may pose, we per-
form a thorough security analysis. Our proposed analysis focuses
on evaluating access control enforcement adopted by Residuals.
The evaluation is guided by the intuition that, through various
releases, Android APIs naturally evolve to add, fix and modify exist-
ing access control to patch vulnerabilities or add additional security
requirements. Any failure to keep up with access control evolution
will inevitably introduce anomalies and potential vulnerabilities.
On the one hand, failing to adapt to the unstable device-specific
implications of Android security features (e.g., permissions) will
inevitably introduce security flaws. On the other hand, failing to
keep up with the ever-evolving Android access control mechanism
will lead to the adoption of obsolete security enforcement – thus
unnecessarily re-opening the door to older vulnerabilities and in-
validating current security requirements. Our proposed solution
evaluates Residuals by inspecting implemented access control en-
forcement and verifying that it adopts sound security features and
reflects up-to-date security requirements.
Our findings. Our study is the first to investigate Android Resid-
uals and show that they are indeed pervasive. We run our tool
to automatically evaluate 628 Samsung, LG, Blu, Xiaomi, Huawei,
Lenovo and Asus ROMs, covering 7 OS versions and 105 unique
device models. Our measurement study shows that Residuals are
prevalent among all vendors, comprising up to 42% of the private
APIs in a few models. While some are removed eventually, many
Residuals are spotted even on the latest OS versions and device
models across different OEMs, indicating that this security risk has
yet to come to OEMs’ full attention.

More importantly, our evaluation unveils that Residuals indeed
carry evolution-related access control anomalies; including using
undefined custom permissions, relying on nonexistent package
names for security checks and even enforcing obsolete access con-
trol. Overall, our analysis identified 23% of the reported Residuals
to be weakly protected. To estimate the risk magnitude of weakly-
protected Residuals, we selected and investigated a set of reported
instances (93), for which we had a physical device. We were able
to exploit 8 different instances to conduct high-profile attacks. We
found that a Residual on Samsung’s S10 models can be used to inter-
cept user key and screen taps without any permission requirements,
thus allowing any third-party app to develop a powerful keyloggger
stealthily. We exploited another two Residuals on Samsung’s A/J
Core series and the LG Q6, caused by device-incompatible and un-
sound security features, to write two more keyloggers. We reported
the high-profile Residuals to the corresponding OEMs; Samsung
and LG have acknowledged 8 vulnerabilities. So far, 5 have been
issued CVEs with a NIST rating ranging from 7.1 to 9.8. We note
that for one of the reported cases, which allows us to inject and
corrupt secure system providers, the vendor’s proposed fix entails

recommending the vulnerable Residual for removal. To validate the
scope and magnitude of Residual security at large, we further eval-
uated the reported instances based on several metrics. Our findings
point to unnecessary security risks imposed by Residuals and an
urgent need to debloat them.

We summarize the contributions of the paper as follows:
• We perform the first systematic large-scale study of custom
Residuals. Our study unveils the extent and prevalence of
Residuals and, more importantly, demonstrates that Residu-
als do indeed open the door to various attack vectors.

• We develop a set of new analysis techniques that detects
and evaluates the risks of Residuals. Our techniques are
specially tailored to detect evolution-induced access control
vulnerabilities.

2 BACKGROUND
In this section, we lay the necessary background on the evolution
of private OEM APIs. We then elaborate on a possible security
outcome to motivate our study.

2.1 Private APIs Evolution
As mentioned earlier, OEMs aggressively customize the AOSP base-
lines. For each new Android version and device model, OEM de-
velopers adapt their codebases to new functional requirements by
adding, altering and removing APIs. This extensive API retrofitting
process usually spans Android SDK APIs as well as OEM-specific
private APIs. When retrofitting SDK APIs, OEMs must abide by
Google’s regulations to meet compatibility requirements. That is,
APIs designated for use, deprecation and removal by Google should
be similarly designated by OEMs.

However, when it comes to OEM private APIs, the process is less
regulated. Private APIs, provided to support internal framework
and preloaded app developers, are added and removed frequently
(∼880 and 92 times, respectively, as reported in our dataset). This
under-regulation coupled with OEMs’ efforts to provide a one-size-
fits-all framework implementation contributes to the production of
bloated custom codebases. OEM devices tend to include a substantial
number of private APIs [11, 32] (reaching up to ∼3,500 in Samsung
versions 7.0.1 and 8.1), some of which do not even fit with the
devices’ functional requirements. We refer to such unused APIs as
Residuals.

Residuals not only increase code complexity but also induce
compatibility issues. For instance, invoking an unsupported API
on a particular device will lead to app or system crashes. Even
worse, when Residuals provide sensitive operations and are not
properly protected, they unnecessarily induce security issues. This
is particularly inevitable when OEMs fail to adapt up-to-date and
compatible security checks to safeguard a Residual’s functionality.

2.2 Safeguarding Residuals
To deal with compatibility issues and to properly protect a Resid-
ual’s functionality, OEM developers implement safeguards. At a
high level, the guards attempt to reduce the pool of devices on
which a Residual may be activated or restrict the callers to a set of
verified entities (the expected users of the Residual). Specifically,
the safeguards fall into the following two categories:



1 boolean startATTEntitleforTethering(...){
2 if(SystemProperties.get("ro.build.characteristics").equals("tablet")){
3 if(!telephonyManager.hasIccCard()){
4 Log.d("WifiService", "tablet has no sim card");
5 return false;
6 }
7 if(SystemProperties.get("ro.build.target_country").equals("US")
8 && SystemProperties.get("ro.build.target_operator").equals("ATT"))
9 if(getAppName(Binder.getCallingUid()).equals("com.smartcom"))
10 // perform actual functionality

Figure 1: Configuration Checks in a Custom LG API

(1) Configuration Checks: These guards are adopted to ensure
that an API’s provided functionality is compatible with the current
release and/or is supported on the running platform. For example,
for legacy APIs targeting obsolete functionalities, the guards make
sure that the functionality cannot be triggered in newer releases.
Similarly, for APIs supporting specific capabilities, the configuration
guards ensure that the running platform embeds the corresponding
hardware. Figure 1 depicts a few configuration checks implemented
by LG within a custom API assisting AT&T tethering. Lines 2-3
ensure that the API can only be triggered on devices with mobile
data capabilities; that is, if the device is a tablet, it should embed a
SIM card. Other checks at lines 7 and 8 verify that the functionality
can only be triggered in devices operated by the US-based carrier
AT&T. Even if the API is introduced on devices not conforming to
these checks, its functionality is safeguarded.

(2) Access-Control Checks: These checks reflect traditional An-
droid access control enforcement. In this scenario, they restrict
access based on unforgeable properties (e.g., UID) or acquired per-
missions. The calling entities reflect system processes or preloaded
apps that exist on the devices where the Residuals are active.

While certain access control checks are intrinsically sufficient to
properly protect a Residual, we observe that other checks implicitly
rely on a co-located configuration check for validity. Without this
secondary configuration check, the access control may be totally
flawed. Consider the check performed at line 9 of Figure 1, which
verifies that the calling app matches the name "com.smartcom."
Observe that this check is unsound by itself since a package name
can be squatted. Unless the package exists on the device, any third-
party app can claim to be "com.smartcom" and trigger the privileged
functionality. In this case, we found that "com.smartcom" comes
preloaded on AT&T models, implying that the package check is
actually sufficient under AT&T builds. Hence, the configuration
check at line 8 validates the soundness of the package check.

Given these intrinsic complex properties, coupled with the preva-
lence of Residuals and the fast-paced Android updates, we argue
that ensuring proper and valid safeguards is challenging and error
prone. Access control vulnerabilities may be unnecessarily intro-
duced because of Residuals.

3 PROBLEM
Since Residuals are deemed unnecessary and, at times, not intended
for deployment on a particular device, framework developers may
naturally overlook their implementation during integration and

version upgrades. Evolution-induced access control errors are particu-
larly dangerous in Residuals. On the one hand, a failure to account
for the unstable device-specific implications of security features
will inevitably introduce security flaws. On the other hand, a failure
to keep up with the ever-evolving Android access control mech-
anism will lead to the adoption of obsolete security enforcement
– thus unnecessarily re-opening the door to older vulnerabilities
and invalidating current security requirements. Our study reveals
a plethora of vulnerabilities resulting from these failures, including
enabling third-party apps to exploit a Residual to access sensitive
resources (such as the input driver).

In this paper, we aim to investigate the problem at large. Specifi-
cally, we seek to answer the following critical questions:

• RQ1: Do vendor developers adopt sound, device-compatible
security features while enforcing access control in Residuals?

• RQ2: Do vendor developers propagate up-to-date, consistent
access control enforcement in Residuals throughout version
upgrades?

3.1 Unsound Security Features

Figure 2: Usage of Undefined Permissions in Residual APIs

The correctness of access control enforcement heavily relies on
the soundness of adopted security features (e.g., permission, calling
uid, package name). While some security features are persistently
sound (e.g., relying on the calling UID to verify that the caller is
SYSTEM), others may imply different protections depending on
the running device and model. Hence, if OEM developers do not
account for these changes, a Residual API may use incompatible
and unsound features that imply protections only available in other
devices where the Residual is active.
Motivating Example. Consider the case depicted in Figure 2. As
listed at the top, Samsung introduces a custom API InputManager.
monitorInput(...) in a few device models. The API creates an
input channel that receives input events from the input dispatcher.
It can thus be used to intercept and monitor input events such
as screen tap coordinates and key presses. Given the sensitivity



of the operation, Samsung enforces high-privilege requirements.
The caller must belong to the system process (enforced through
the check getCallingUID() = 1000) or hold Samsung’s custom
permission com.samsung.android.permission.MONITOR_INPUT.
Thus, a third-party app cannot invoke this API unless it can some-
how obtain the permission.

The lower parts of Figure 2 depict the API’s related security
definitions and usage history in Samsung Note Series and A/J Core
Series. As illustrated, in the Note Series, the API is used in versions
6.0.1 to 7.0 (from Oct’15 to Oct’16) by two preloaded apps: Pen-
tastic and Air Reading Glass. Starting from versions 8.1 to 9 (from
Dec’17 to Sep’19), the API is used by Pentastic and another preloaded
app System UI. Observe that the devices define the API’s required
permission ...MONITOR_INPUT and designate it a signature level
protection, which cannot be acquired by third-party apps.

In contrast, consider the usage history of the API in the Samsung
A/J Core Series, illustrated at the bottom. As shown, the API is
introduced in the first release of the devices (version 8.1, Dec’17)
and has been consistently defined up to version 9 (Aug’18) in J2 Core
(note that A2 Core was discontinued). However, no active usage site
has ever been identified throughout the versions – thus making the
API a Residual in A/J models. Though the API seemingly enforces
access control checks, it is actually vulnerable. Since the API is
deemed nonfunctional, the framework developers have overlooked
defining the required permission (i.e., ...MONITOR_INPUT).

Since the permission is undefined, any entity that defines it can
acquire it and subsequently trigger the Residual’s privileged opera-
tion. In this particular case, we were able to exploit the Residual to
develop a keylogger without any permission requirements. Observe
that the vulnerability has been dormant since its introduction in
Dec. 2017, in part because the API has never been used since then.
The issue has been acknowledged and fixed by Samsung. 1

We note that undefined security features may also occur in non-
Residual APIs. However, as uncovered by our study, they are sub-
stantially more prevalent in Residuals (refer to Section 8.3).

3.2 Obsolete Access Control Enforcement
Android has expanded beyond the traditional smartphone to sup-
port other device types and use scenarios. Alongwith the expansion,
new security features and requirements are incrementally added
with each update. A failure to keep Residuals up-to-date and com-
pliant with the new requirements can cause anomalies.
Motivating example. Figure 3 depicts the access control evolution
of two APIs: AOSP’s getDeviceId() and LG’s getDeviceIdFor
VZW(), both allowing the caller to read the device’s ID (e.g., IMEI).
We note that LG’s API is defined in different models (versions 5-8),
but is only used in VZW-specific models. Thus, it is a Residual in
all other models.

As shown, AOSP’s access control has evolved from enforcing a
single dangerous permission READ_PHONE_STATE in versions 5.0-
5.1.1 to requiring two different protections in versions 6.0 to 8.1
– either the permission READ_PRIVILEGED_PHONE_STATE or the
permission READ_PHONE_STATE as well as explicit user approval
indicated by an AppOps operation check. In contrast, LG’s Residual
has not seen a similar update, instead still adopting the obsolete

1CVE to be issued as soon as reported by Samsung.

single permission requirement. Under this anomaly, a malicious
app could exploit the weakly protected Residual to read the device’s
IMEI. We have confirmed the vulnerability and reported it to LG. 2

It is worth mentioning that starting from Android 10, Google
prohibits third-party apps from accessing non-resettable identifiers
such as the IMEI. AOSP’s getDeviceId returns NULL in devices
running 28 and older. Yet LG’s Residual still returns a valid id.

Figure 3: Access Control Evolution of Two LG APIs

3.3 Our Solution
In this paper, we investigate the prevalence and magnitude of access
control anomalies in Residuals at a large scale. We analyze a broad
spectrum of custom factory ROMs manufactured by 7 vendors,
tailored for 105 models and spanning 7 versions. Our proposed
investigation proceeds as follows. First, through program analysis of
framework and preloaded apps, we recognize and pinpoint potential
Residual instances in a ROM. We then build and investigate their
usage patterns over a set of curated ROM samples. Confirmed
Residuals (e.g., those following declining, retiring usage trends) are
then fed to our proposed security analysis. We statically analyze the
confirmed instances to identify the presence of unsound security
features and obsolete access control checks.

The overall accuracy of the system relies heavily on the correct
identification of Residual APIs. In light of custom call chains and
API use patterns, detecting APIs that are defined but not used is
not straightforward. Specifically, the detection entails the following
two challenges:

Challenge 1: Identifying Entry Points Leading to a Target
API.We identify through our analysis that custom APIs are often
not directly invoked by other preloaded apps and framework ser-
vices (hereafter referred to as components). Rather, they are usually
wrapped in Manager APIs that are transitively wrapped around
framework methods from both OEMs and Android; hence forming
a long call chain from the components to custom APIs.

Consider Samsung’s customAPI IUrspManager.setUrspBlack
ListUidRule(...) shown in Figure 4.

The API is introduced in most SM-G38xxx models. As shown, it
is wrapped in a customManager API UrspManager.setUrspBlack
ListUidRule(), which is transitively called by four other methods.
The call chain is depicted by the dashed arrows. First, it is invoked
directly by disableMdo(), a custom method added by Samsung to
AOSP’s ConnectivityManager class. The disableMdo() method

2The issue has been acknowledged by LG.



Figure 4: Multiple framework entry points leading to the
custom API IUrspManager.setUrspBlackListUidRule(...)

is in turn called by three other methods within the same class. All to-
gether, the call chain introduces five valid framework entry points to
the target IUrspManager.setUrspBlackListUidRule(...). Apps
can call any of them to trigger the target. To correctly detect Resid-
uals, our analysis recovers all entry points for each API instance
through a specialized backward search over the framework classes.
More details are in Section 5.1.

This technique guarantees that we do notmiss a target’s active us-
age points within the device. It also avoids wrongly flagging certain
APIs as Residuals even if we cannot identify an active site. Specifi-
cally, observe in the above example that ConnectivityManager.
requestNetwork(...) is a public Android SDK API, implying that
the private API IUrspManager.setUrspBlackListUidRule(...)
is designated by Samsung to be indirectly reachable to third-party
apps. Obviously, even if our analysis does not spot a usage point,
the API could still be invoked via the public SDK API by other third-
party apps to be installed later. We leverage this observation to rule
out inspecting custom APIs reachable through public SDK APIs
from our analysis. Specifically, after recovering framework entry
points for a target API, our analysis proceeds to identify its usage
points only if it is not transitively reachable via a public SDK en-
try point. Thus, IUrspManager.setUrspBlackListUidRule(...)
will be skipped.

Challenge 2: RecognizingResidual Patterns overTime /Mod-
els. Studying one Residual instance within the whole population
may not reveal interesting properties. As such, we must clearly
define our investigation scope to infer meaningful Residual access
control properties. To this end, we formally group Residuals into
two categories based on their usage patterns: (1) Historical Residuals
denote APIs that were active in older models but have ceased being
used in successor and new models while (2) Model Residuals reflect
APIs that are exclusively active on select device models from vari-
ous versions. We detect Historical Residuals by observing the usage
history of the APIs and recognizing the ones retiring (gradually
or abruptly) over time. In contrast, to detect Model Residuals, we
cluster similar devices (at the series or model level) and identify
model-specific usages regardless of the version.

In the next section, we describe our solution in detail and elabo-
rate on how we solve the above challenges.

4 OVERVIEW
To investigate Residuals at large scale, we design and implement
ReM 3, a set of new analysis techniques that detect and evaluate the
risks of custom Residuals. In this section, we first present our high-
level idea and then describe the details of the proposed techniques.
Architecture. ReM is composed of three components: a ROM An-
alyzer, Usage-Pattern Extractor and Risk Identifier. Given a set
of custom APIs in a device, the ROM Analyzer identifies Likely
Residuals through a synergy between framework and preloaded
app analysis. At the framework layer, ReM exhaustively collects
public entry points that transitively lead to the invocation of the
custom APIs. Through preloaded app analysis, ReM identifies live
usage sites leading to a custom API either directly by calling the
API’s Remote Procedure Call (RPC) point or indirectly by calling the
identified entry points. Unused APIs are flagged as Likely Residuals.

The Usage-Pattern Extractor confirms Actual Residuals through
a large-scale cross-ROM analysis. Specifically, the module identifies
Historical Residuals by running the above analysis repeatedly over a
pool of curated ROMs for a target vendor, ordered by release date. It
similarly recognizesModel Residuals by running the analysis over a
cluster of ROMs from the same model/series. It subsequently builds
a usage history for each Likely Residual in an attempt to identify the
ones conforming to Actual Residual patterns characterized by an
abrupt or a gradual retirement over time, or reflecting a consistent
model-specific use.

Finally, Residuals are handed over to the Risk Identifier, which
performs specialized program analysis on the Residual implementa-
tions to uncover two potential flaws: (1) Unsound security feature
use and (2) obsolete access control. To detect the former, it lever-
ages a set of patterns indicating unsound feature use and looks
statically for their presence. Examples of these patterns include the
use of package checks without co-located configuration checks and
the use of an undefined permission. To detect the latter, the Risk
Identifier performs a highly-optimized inconsistency detection and
accordingly infers anomalous obsolete access control enforcement.
It finally reports vulnerable Residuals.

5 AUTOMATED DETECTION OF RESIDUALS
IN CUSTOM ROMS

Given the sheer number of analysis targets (framework and sys-
tem app classes) and the large number of ROMs required for the
historical analysis, ReM ’s analysis must be scalable and efficient.

5.1 Identifying Likely Residuals in a ROM
ReM conducts program analysis of the framework and preloaded
apps to detect unused custom APIs. It first identifies framework-
level entry points leading to the custom APIs and then statically
looks for usage sites leading to the invocation of the APIs or corre-
sponding entry points.

As mentioned earlier, identifying framework entry points is im-
portant since OEM private APIs are often available to framework
and system app developers through custom Manager APIs (e.g.,
UrspManager.setUrspBlackListUidRule in Figure 4). TheseMan-
ager APIs may be transitively invoked by other internal framework

3ReM: Short for REMNANT



and SDK methods, forming indirect call chains from the compo-
nents to the custom APIs.
Collecting framework entry points: We first use Wala to pro-
cess the framework libraries and extract defined classes and meth-
ods. Now, performing a forward search on each method to extract
reachable APIs may sound compelling. However, it is likely that it
will encounter and analyze many irrelevant methods and code frag-
ments, unarguably affecting the scalability of the overall detection.
To tackle the issue, we propose a more focused approach. We start
with our set of target custom APIs, and perform backward expan-
sion to iteratively discover public calling methods. Specifically, we
use WALA to perform a class hierarchy analysis of the extracted
classes and methods. Then for each method, we perform a depth-
first reachability analysis on its call graph and locate the occurrence
of a target custom API. If the latter is located, the calling method is
added to the set of the target API’s callers and is transitively fed
back to the analysis loop to locate its potential public callers. The
backward exploration constructs a mapping between each custom
API and its calling methods and stops once no public callers can be
encountered. Since the call chains are inherently deep, we optimize
the exploration by:

• Caching discovered caller-callee mappings. The exploration
consults the cache before moving on to look for other callers
in order to avoid duplicate path exploration.

• The exploration stops preemptively if a public SDKmethod is
encountered. That is, if a caller matches the name of a public
API (which we have compiled for each Android release), the
target API is ruled out from further analysis since it can be
invoked by third-party apps. We further rule out the public
API’s direct and transitive callees from subsequent analysis,
essentially considering the whole call chain accessible to
third-party apps.

Collecting usage points in apps: In this task, we statically ana-
lyze the apps and internal framework classes to collect usage points
of a target API. Specifically, for each app, we perform standard
forward reachability analysis starting from the app’s public entry
points (Android component life cycle methods and callback meth-
ods) and search for invocations to the targets. The analysis looks for
invocations to the API’s exposed Binder method and to its extracted
framework entry points. To optimize the exploration, the search
prioritizes entry points at the top level of the recovered caller-callee
mappings chain and skips looking for a callee if a caller has already
been encountered. Our analysis further handles calls to the APIs
through Java reflection. During the reachability analysis, we treat
reflection call methods as potential sinks if the arguments match
the API’s recovered framework entries or the RPC method itself.
Specifically, for each Java reflection call that allows method invo-
cation, we perform string analysis to extract the value of the call
parameters (class names and method names). We use constant prop-
agation within an analyzed app’s inter-procedural CFG to resolve
the method name in a reflective call (e.g., method.invoke(object))
and the class name that the method belongs to. A string variable
from external input is modeled by a special value that denotes any
string. We note that we are not interested in resolving the type/val-
ues of the arguments passed. This is sufficient for most of the cases
we encountered.

Collecting usage points in system services.We further look for
call sites to the target APIs in the system services classes. We note
that triggering the system service functionality may be initiated by
the system server itself (e.g., in init methods, inner methods not
exposed through IPC, etc.) through non-traditional channels (e.g.,
from the native layer). Thus, we mark any API that is triggered
on the server side as a used API. Observe that this approach is
conservative and is likely to overestimate the usage sites of APIs
since a recovered site might not be necessarily invoked (i.e., it might
occur in a dead code area).

At this stage, identifying Likely Residuals is straightforward;
unused custom APIs are flagged as Likely Residuals.

5.2 Characterizing and Confirming Residuals
As stated earlier, we categorize Residuals based on their usage
patterns, as follows:

(1) A likely Residual is a Historical Residual if it gradually or
abruptly retires over time. That is, the API’s usage pattern de-
creases over time, until it is no longer in use in new successor
devices.

(2) A likely Residual is a Model Residual if it is consistently used
in specific device series and models but not in others.

Observe that the two categories are inherently overlapping, since
Model Residuals may also become unused over time.
ROM collection and curation. To detect Historical and Model
Residuals, we perform a broad analysis of 628 custom ROMs re-
leased over the last ∼10 years (from Oct 2011 to May 2021). These
ROMs are representative of major mobile vendors. More details on
the sample ROMs can be found in Section 7.

We curate the samples for our analysis by carefully considering
the following three properties of a ROM: (1) vendor, (2) model and
(3) release date. We construct a usage history for a given API by
analyzing chronologically ordered ROMs produced by the same
vendor. We similarly build model-specific usage by grouping ROMs
from similar series and models.

To identify the properties, we process a ROM’s build.prop file
(containing device properties) and extract the values of ro.product.
brand, ro.product.model and ro.build.version.release. Note
that a few vendors customize these attributes so we had to treat
them on a case-by-case basis.
Scope of analysis. ReM builds the usage patterns of the likely
Residuals by running a per-ROM analysis over our curated pools
of samples. In total, our analysis involved inspecting 48,000 unique
preloaded apps (more than 250,000 all together) and led to identify-
ing 6,349 custom APIs that exhibit actual Residuals patterns. More
details can be found in Section 7.2.

In the next section, we describe how we evaluate the detected
Residuals’ security properties.

6 AUTOMATED SECURITY EVALUATION OF
CUSTOM RESIDUALS

In this section, we evaluate Residual access control enforcement.
Our focus is on evolution-induced access control vulnerabilities that
arise when framework developers do not safeguard Residuals. We
classify these vulnerabilities as either unsound security features or



obsolete access control enforcement. Unsound security features in-
clude undefined and device-incompatible features. Obsolete access
control occurs when Residuals are not maintained and their access
control enforcement is not updated and strengthened along with
non-Residual APIs.
Evaluation scope.We note that both classes of evolution-induced
access control vulnerabilities examined in our security evaluation
result from the presence of unused functionality. We focus on these
particular vulnerabilities since, intuitively: (1) unused functionality
is likely to be overlooked during updates and model customization
and (2) in many cases, unused functionality is not even intended for
use on a target device. Other types of vulnerabilities – particularly
those that are equally likely to occur in used APIs, such as improper
input validations, are out of scope for our evaluation.

Next, we describe how ReM detects the two classes of evolution-
induced access control vulnerabilities.

6.1 Unsound Security Features
As stated earlier, the correctness of access control enforcement
heavily relies on the soundness of adopted security features. Certain
features may imply different protections depending on the running
device version and build characteristics. Thus, a sound feature on a
device where an API is used might not be sound on other devices
where the API is not used.
Undefined custom permissions and broadcasts. Custom per-
missions and protected broadcasts are introduced by customization
stakeholders to protect custom resources. They are added, removed
and renamed frequently. Removing a custom permission is per-
formed when the defining stakeholder is not involved in a particular
customization or when the permission is not needed. Other custom
permissions are introduced by vendors and are tightly related to
hardware. They are debloated when the corresponding resource is
considered nonfunctional. For example, Samsung may remove per-
missions required to access its Pen functionality if the device does
not embed a physical pen hardware. Protected broadcast definitions
are removed for similar reasons.

Removing custom permissions and protected broadcast defini-
tions is largely fine when all APIs referencing them are simultane-
ously removed. However, in the case of unmaintained Residuals,
the occurrence of such references is highly problematic. Using an
undefined security feature is unsound. As reported by the study
[13], any app that defines removed features can silently gain the
privilege to access the components referencing them. (Refer to Sec-
tion 3 for an example.) To detect this pattern, ReM performs the
following analysis:

• For each reported Residual, ReM statically extracts its imple-
mented access control enforcement and identifies used secu-
rity features. Specifically, it first builds the Residual’s inter-
procedural Control Flow Graph (CFG) and traverses it to ex-
tract invocations to security-relevant APIs (e.g., checkPermi-
ssion, enforceCallingPermission). It then traces back
from the APIs and keeps track of the permission string con-
stants passed as arguments. ReM similarly processes reg-
istration sites of framework-defined broadcast receivers to
extract corresponding actions.

• For each ROM with Residual instances, ReM collects the
definitions of security features by running an XML parser
over the framework and preloaded apps’ manifest files.

• Last, ReM conducts a differential analysis to pinpoint Resid-
uals that use undefined security features.

Package name checks without a co-located check. Using pack-
age names for access control enforcement is not always sound. Since
the names are forgeable identifiers, any party can squat the prop-
erty and pretend to be the caller. In the Residuals scenario, since the
expected calling package does not exist, the property is forgeable.
Nonetheless, the property may become sound if used in conjunc-
tion with other checks. As stated earlier, configuration checks can
validate a package name check. Traditional checks such as signa-
ture checks and other persistently sound checks (e.g., UID checks)
naturally strengthen package name checks.

To detect the use of unsound package name checks, ReM tra-
verses a target Residual’s interprocedural CFG to collect invocations
to the following: (1) APIs that retrieve the package name of the caller
(e.g., PackageManager.getNameforUid and PackageManager.get
PackagesForUid), (2) signature checks (e.g., PackageManager.ch
eckSignature) and other checks for extracting the caller’s unforge-
able identifiers and (3) configuration checks. ReM then inspects the
collections and marks sole invocations to package name checks as
potentially unsound. Last, ReM verifies whether the target ROMdoes
not include the specified package name to confirm unsoundness.
Resolving strings.We observe through our analysis that package
names returned from the PackageManager APIs (e.g., getNameFor
Uid) are sometimes comparedwith dynamically constructed strings;
i.e., by concatenating substrings, including constants, parameters
and return values of other methods. We employ def-use analy-
sis and examine if the package name returned from the target
PackageManagerAPIs is compared with a string. We then use inter-
procedural backward slicing and forward constant propagation to
transitively resolve the strings. String arguments to other pack-
age check APIs (e.g., PackageManager.getPackageUid) may also
be dynamically constructed and we resolve them similarly. We
model strings that cannot be statically resolved (e.g., read from a
framework resource file) with a placeholder that denotes any string.
Our analysis conservatively considers a package name string that
cannot be fully resolved to be sound.
Collecting custom configuration checks. Besides using com-
mon AOSP APIs (e.g., SystemProperties.get() and global static
fields (e.g., OS.Build), we observe through our analysis that ven-
dors use a variety of custom methods for device configuration
checks. Our inspection shows that these methods are often wrap-
pers around AOSP APIs and usually involve multiple call chains.
While performing inter-procedural CFG traversal will ultimately
discover the underlying AOSP checks, it will encounter many irrel-
evant methods and affect the overall extraction performance. We
tackle the issue by performing a one-time per vendor backward
propagation (similar to the approach discussed in Section 5.1). The
backward exploration builds a mapping between AOSP configu-
ration check APIs and their calling methods, which we manually
inspect to filter out custom configuration checks.

For each vendor, the automated backward propagation yielded 42
to 74 candidate configuration check methods. Our manual filtering



yielded 19 to 24 actual configuration methods per vendor. We note
that the manual filtering process is a small scale, one time effort.
References to deprecated security features. For graceful re-
moval of a security feature, framework developers may first flag
it as deprecated, through the Java @Deprecated annotation. The
deprecation subsequently pressures the developers to refactor their
code and migrate to other alternative features. Eventually, after a
few releases, the deprecated features are removed.

While the use of a deprecated security feature is not a vulnerabil-
ity per se, we argue that it may eventually lead to one. Since Resid-
uals are not used, they may not be properly maintained throughout
version upgrades, leading to the persistence of deprecated security
feature usage, even after the feature removal.

To detect this pattern, we use Wala to extract the Java anno-
tations associated with the definition points of permissions and
protected broadcasts (defined in the class Manifest$permission)
and flag those annotated with java.lang.Deprecated.

6.2 Obsolete Access Control Enforcement
Android APIs are continuously evolving to add, fix and modify
enforced access control. The evolution addresses new security re-
quirements (e.g., migrating from a single-user to amulti-user device)
and fixes reported flaws. A failure to keep up with the fast-paced
evolution could induce obsolete access control enforcement, which
may reflect weaker or absent access control enforcement.

Recognizing obsolete access control enforcement is not straight-
forward. Residuals implement custom functionality, with no publicly-
available security specifications. As such, it is challenging to infer
whether enforced access control is up-to-date. A popular approx-
imate solution is to perform consistency analysis – essentially,
comparing the access control enforced across multiple paths to the
same resource and reporting inconsistencies; i.e., one path includes
access control while the other does not. Various work exists in
the area, ranging from approximate solutions [14, 16, 32] to more
precise ones [11]. ReM follows an adapted version of the former
approach since conducting a path-sensitive analysis will not scale
to tackle the sheer number of APIs in our studied ROMs.

ReM conducts a largely-localized convergence analysis to iden-
tify other framework APIs that converge in functionality with the
reported Residuals. It then extracts access control enforcement
along the new APIs and compares them to those enforced by the
Residuals. Observe that performing a framework-wide convergence
analysis would not scale as some ROMs are extensively customized
(e.g., more than 2000 custom APIs). To speed up the analysis, we
limit our convergence analysis to (1) APIs defined within the same
system service and (2) APIs defined in system services providing
similar functionality. We leverage similar naming patterns to infer
whether two system services provide overlapping functionality (e.g.,
SemClipboard and Clipboard services, ISmsEx and ISMS services).

To infer whether a Residual reflects updated access control, ReM
further conducts a cross-ROM inconsistency analysis similar to [11].
Specifically, ReM compares the access control enforced by an API
across multiple ROMs with different use scenarios; i.e., cases where
the API is used in one but the Residual in the other.

We applied ReM to evaluate the access control enforcement of the
Residuals identified in our ROM samples (i.e., 6,349 Residuals). ReM

uncovered 1,453 violations. Details about the Residuals landscape
and pertaining security properties are discussed next.

7 LARGE-SCALE MEASUREMENT STUDY

Table 1: Collected ROMs

EOM Statistics

API Level / Version Numbers
19 21-22 23 24-25 26-27 28 29
4.4 - 5.0 - 6.0 – 7.0 - 8.0 - 9 10

(#) 4.4.4 5.1.1 6.0.1 7.1.2 8.1

Sa
m
su

ng ROMs 16 23 61 48 52 116 49
Models 13 22 29 33 15 32 17
APIs 3482 2462 4273 3588 3454 2282 2386
Apps 168 257 308 310 315 335 345

B
lu

ROMs 16 14 31 14 3 2 2
Models 12 11 26 11 3 2 1
APIs 403 516 582 562 636 476 794
Apps 107 108 99 109 97 122 101

LG

ROMs 6 7 5 4 3 4 4
Models 3 3 4 3 2 3 3
APIs 1352 1017 875 1422 1101 902 896
Apps 140 151 104 159 214 202 237

X
ia
om

i ROMs 3 2 4 2 2 5 3
Models 3 2 4 2 2 4 3
APIs 773 962 1033 714 771 589 539
Apps 133 154 181 182 182 207 197

H
ua

w
ei ROMs 17 1 2 2 2 3 7

Models 13 1 2 2 2 1 1
APIs 1233 157 963 576 725 461 286
Apps 109 115 119 89 97 93 143

Le
no

vo

ROMs 38 11 6 2 2 4 1
Models 31 8 4 2 2 3 1
APIs 1651 1375 990 820 556 373 199
Apps 121 131 135 113 156 143 111

A
su

s

ROMs 3 3 2 5 2 2 2
Models 2 2 1 3 2 2 2
APIs 1064 773 948 892 599 364 89
Apps 147 167 131 161 179 176 156

To measure the pervasiveness of Residuals in the fragmented
Android ecosystem and to understand the scope and magnitude of
access-control anomalies they may pose, we perform a large-scale
study of 628 ROMs.
Study Setup. The study has been conducted using 4 server ma-
chines equipped with 1/4 TB RAM, 16 cores, 64 Gbps net, 4 NVIDIA
K10 GPU cards, each containing 2 GK104 GPUs.

7.1 Data Collection and Processing
Factory ROMs collection. We collected 628 custom ROMs re-
leased over the last ∼10 years (from Oct 2011 to May 2021). The
ROMs cover 7 major releases (from 4.0 to 10) and are customized by
7 vendors and cover 105 device models. We developed a crawler that
automatically downloads vendor ROMs from public repositories.
The crawler tries to cover as many distinct models and versions as
possible to identify Historical and Model Residuals.

Table 1 lists the detailed statistics of our collected dataset. As
shown, the ROMs are representative of big and medium players in
the mobile market. We note that unlike Samsung and Blu ROMs,
for which many dedicated public repositories are available, some
vendor ROMs aremore difficult to obtain and thus constitute smaller
sample sizes in the dataset.



samsung asus blu lenovo lg huawei xiaomi

Vendor

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

N
u
m
b
er

of
E
n
tr
y
P
oi
n
ts

Figure 5: Distribution of the # of Entry
Points per vendor
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Figure 6: Residuals Breakdown

Framework, preloaded apps and configuration files Extrac-
tion. We preprocess the ROMs to extract framework classes and
preloaded apps. To do this, we first locate the system partition,
which contains the relevant classes.
Locating the System Partition. For Android versions 4 through 9, we
search for the system partition within system.img or system.img
.ext4 files. For LG images, the firmware is often packaged in a
kdz file. To extract the system partition from kdz files, a modified
version of the SALT tool [8] is used to generate dz files and to
extract the embedded system partition (system.image). Once the
system partition has been located, imjtool[5] is used to extract the
image file, which is then mounted. When working with Android 10
ROMs, the system partition identification process differs slightly.
Android 10 introduces the dynamic partitioning system, which
allows partitions to be resized, created and removed during over-
the-air updates [4]. As a dynamic partition, the system partition is
housed within a larger super partition (super.img). To unpack the
super partition, the sparse image is first converted to a raw image
using simg2img [9]. Then we unpack the raw image using the
lpunpack[6] tool, obtain a system.img file and proceed to mount
the system partition.
Extraction of Framework classes and Preloaded Apps.We extract each
mounted image’s build properties, specified in build.prop files.
We then extract any framework or app odex, vdex, and apk files and
use the vdexextractor[10], baksmali[3], smali[3], apktool[2],
and oat2dex[7] tools to generate dex and manifest files.

7.2 Analysis Complexity
Codebases. Our analysis investigated 26,883 distinct private APIs
and 48,000 preloaded apps. Table 1 presents the detailed statistics.
The third row of each OEM entry lists the average number of private
APIs recovered by ReM (not including AOSP’s exposed APIs). As
shown, vendors introduce 880 APIs, and the extent of customization
differs between OEMs – with Samsung and LG exhibiting signifi-
cantly more private APIs. As further illustrated in the fourth row
of each vendor, the number of preloaded apps increases between
major releases: it is larger in the latest releases. Observe that the re-
sults are reported as averages; some vendor-specific models include
less preloaded apps than others (e.g., Samsung A/J Core models
include ∼30% less apps compared to ZFlip models).
Recovered entry points. As discussed in Section 5, ReM collects
framework entry points leading to custom APIs to accurately detect

Residuals. Figure 5 reports the distribution of the recovered entry
points, per OEM. For all OEMs, 50% of the APIs have 1 to 2 entry
points; 25% have no entry points (meaning that the API is solely
invoked via its RPC entry); and 25% exhibit a significantly larger
number reaching up to 31 for Xiaomi. We investigated a few ran-
domly selected samples that fall in the last category and found they
often corresponded to methods for accessing custom information,
e.g., custom profile information, whitelists for different services
and keyguard information. Clearly, performing a simpler analysis
that relies only on the RPC entry points and direct managers is
likely to generate inaccurate Residual estimations.

7.3 Residuals Landscape
Among all the 26,883 extracted private APIs, ReM discovered 6,349
instances that are Residuals in specific models/series or at specific
release versions. We reiterate that as per our Model and Historical
Residual detection, a used API is only flagged as a Residual if it
exhibits certain trends (refer to Section 3.3).

Figure 6 depicts a breakdown of the reported Residuals per OEM.
As shown, Residuals are prevalent among all vendors, reaching up
to 42% in LG and Huawei (major releases 8.0 and 9, respectively).
Blu ROMs exhibit the lowest number of Residuals since they are the
least customized (i.e., smaller number of private APIs). We further
note that Lenovo records 2% Residuals in version 10 because it was
the least customized out of all the Lenovo samples.

Observe that the number of Historical Residuals is lower in
version 4, since the analysis cannot pick up the usage trend yet, as
no data is available for earlier releases. The analysis only reflects
the number of Residuals that are persistently unused on all releases.
Analysis Accuracy. From all the reported Residuals, we randomly
sampled 50 and manually analyzed their usage in the corresponding
ROMs (7 ROMs). We employed a simple word lookup to identify
references to the Residuals (using the grep utility) in the preloaded
apps and further investigated the references to verify if they were
actively used (i.e., not included in dead code). We note that this
analysis is simplistic since it is difficult to verify if a code region is
dead, especially in the case of long call chains and obfuscated apps.
Out of 50 instances, only 4(8%) were found to be false Residuals;
that is, falsely reported to be not used while they were actually
used in preloaded apps. Looking into these positives, we found that
they occurred in obfuscated apps.
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To estimate missed Residuals, we have similarly sampled 70 re-
ported non-Residuals and manually analyzed their usage in the
corresponding ROMs (11 ROMs). In all 70 samples, 5 (7.14%) were
missed by ReM ; i.e., Residuals considered to be used. We investi-
gated these cases and found that they are caused by ReM ’s reflection
handling (see Section 5.1). Since we do not resolve the type/values
of the arguments passed in Java reflective calls, ReM cannot distin-
guish overloaded methods. Other cases were, due to infeasible code
paths, conservatively treated by ReM as feasible.

7.4 Residual Lifespans
Figure 7 displays violin plots representing the distributions of the
active and Residual lifespans for each OEM’s Residuals. The active
lifespan is the total number of versions a Residual is being actively
used by some framework service or preloaded app, while the Resid-
ual lifespan is the total number of versions from a Residual API’s
introduction to its complete disappearance. Problems arise when an
active lifespan is shorter than its corresponding Residual lifespan,
as is the case for most vendors depicted in Figure 7.

The density of each violin plot corresponds to the frequency that
a given lifespan is present in the larger population of active lifespans
or Residual lifespans. We can see that, consistently, in overlapping
regions between Residual and active lifespan distributions, the
density is much higher for the Residual lifespan distributions.

For both Model and Historical Residuals, we can further spot
that the mean active lifespan is almost always lower than the mean
Residual lifespan. Note that a mean lifespan of zero implies that
our analysis, spanning versions 4-10, did not identify any ROM
instance actively using the Residual.
7.5 New versus Inherited Residuals

As shown in Figure 6, the percentage of Residuals is higher in
versions 7-8 and starts a downward trend in versions 9 and 10. Al-
though this signals that vendors are debloating Residual APIs more
notably in newer versions, the issue of Residuals is still prevalent
among new versions. As shown in the Figure, Residuals exist in sig-
nificant proportions in the latest versions; for example, LG, Huawei
and Asus record between 23 and 28% Residuals in version 10.

To further demonstrate the importance of the Residuals issue in
recent ROMs, we report the percentage of newly-introduced versus
inherited Residuals throughout each new release. Figure 8 depicts
the results; note that the results are aggregated for all vendors (per
version). As shown, 27% of Residuals are newly-introduced; i.e.,

they were active in version 9. This experiment clearly demonstrates
that Residuals are not an issue of the past. This observation has yet
to come to the vendors’ full attention.
8 RESIDUALS SECURITY LANDSCAPE
In this section, we answer the following research questions:

• RQ1: Do vendor developers adopt sound, compatible security
features while enforcing access control checks in Residuals?

• RQ2: Do vendor developers propagate up-to-date, consistent
access control enforcement in Residuals throughout version
upgrades?

8.1 Unsound Security Features
Among all OEMResidual instances, ReM identified 978 flaws caused
by the use of unsound security features. Observe that some of
these flaws can be attributed to the same property (e.g., an OEM
may use an undefined permission in three distinct Residuals, thus
introducing three flaws). We also note that, although less common,
multiple flaws may occur within the same API (< ∼ 3%).

Columns 2-7 in Table 2 depict a breakdown of unsound security
features use per OEM. As listed, the number of flaws varies between
vendors, with deprecated permissions being the least common in
most vendors except for Samsung.

Undefined permissions are pervasive among Samsung samples.
Examples include com.samsung.accessory.manager permission
.AUTHENTICATION_CONTROL, USE_LINK_TO_WINDOWS_REMOTE_APP
_MODE and com.samsung.android.knox.permission.KNOX_EBI
LLING_NOMDM, which ReM identified as causing more than 40 flaws
in versions 9 and 10. All vendors used an unsound package check
at the Residuals implementation. Examples include com.sprint.*,
com.verizon* and *.docomo.*, which are left over from carrier-specific
models. Lenovo and Huawei have the least flaws.

We note that the majority of our findings are spotted in Samsung
largely because of its sample size (our collection includes more than
49 Samsung models as opposed to an average of 4 in other vendors).

8.2 Obsolete Access Control Enforcement
Columns 8-9 in Table 2 report the results of our conducted incon-
sistency analysis. As depicted, OEM Residuals do induce anomalies.
ReM reported 14 to 442 inconsistency instances (505 all together),
caused by the Residual leveraging a different security check to pro-
tect its underlying resources. We have inspected the results and



Table 2: Unsound Security Features Use

Vendor

Undefined Deprecated Unsound Package Obsolete
Permissions Permission Checks Access Control

Residual Used Residual Used Residual Used Residual Used
APIs APIs APIs APIs APIs APIs APIs APIs

Samsung 273 19 229 90 339 188 402 113
Blu 2 0 0 0 23 6 14 9
LG 6 0 2 1 29 13 102 37
Xiaomi 0 0 0 0 26 10 48 25
Asus 8 0 0 0 18 7 31 16
Lenovo 12 5 0 0 4 7 33 21
Huawei 0 0 0 4 7 11 21 15

confirmed that a significant proportion (∼ 67%) exist due to OEMs
overlooking the integration of User and AppOps checks. For ex-
ample, LG adds 8 Historical Residuals in its custom ISms service
which allows the handling of SMS functionalities without enforcing
AppOps operation checks.

8.3 Comparison with Non-Residual APIs
Prevalence of Flaws amongNon-Residuals. Evolution-induced
anomalies may also occur in non-Residual APIs. Nonetheless, in
contrast to Residuals, active APIs are better maintained and often
undergo extensive security testing. To demonstrate that evolution
induced flaws are less common in non-Residuals, we evaluate them
using ReM . In Table 2, columns 3, 5 and 7 report the prevalence of
unsound access control features and column 9 reports the number
of detected inconsistencies. With the sole exception of Huawei’s
use of deprecated permissions in four non-Residual APIs, the flaws
are significantly more prevalent in Residuals. In Section A of the
Appendix, Figure 10 depicts a breakdown of the flaws. As shown,
Residuals are responsible for most of the reported vulnerabilities.
Comparison of Access Control Updates. To demonstrate that
vendors may overlook updating Residuals in comparison to active
APIs, we perform another experiment. For each custom API, we
approximate its received access-control related updates as follows:
we build a history of its adopted access control enforcement over
time and report the number of observed distinct checks. We then
compare the estimated numbers for Residual and non-Residual
instances. Figure 9 reports the results. Both Historical and Model
Residuals tend to receive less updates than Active APIs.
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Figure 9: Average API Access Control Updates

9 EXPLOITING RESIDUALS
We note that not every Residual is exploitable. Clearly, just like
any other Android API, a Residual is exploitable depending on its

provided functionality (e.g., a Residual that provides less sensitive
operations may not be exploitable). Nonetheless, a privileged Resid-
ual API can open the door for exploits. While the ideal fix for a
Residual is through its removal, it can be protected by a strong ac-
cess control requirement or by a persistent non-configurable device
property. However, if the proper protections are not in place, a
Residual can be exploited to achieve security damages.

9.1 End-to-end POCs
To understand the security issues Residuals may pose, we ana-

lyzed a small subset of the reported weakly protected instances (93
cases). Our selection of the targets was based on the following three
criteria: (1) comprehensibility of the Residual code, i.e., we avoided
instances referring to proprietary functionalities with no public
description; (2) availability of physical devices (specifically, LG and
Samsung) and (3) sensitivity of operations – we prioritized sensitive
APIs. Our manual analysis confirmed 8 exploitable Residuals. A
summary of the findings is presented in Table 3. Note that, though
the exploits span different devices as reported by ReM , we are
conservatively listing here only the devices on which the attacks
were manually confirmed. We have reported our findings to LG
and Samsung. 7/8 have been acknowledged and fixed. One instance
was marked as duplicate. Next, we describe a few instances.

.
Injecting Data into Privileged Content Providers. Our histor-
ical analysis of the LG samples reveals another major vulnerable
Residual. The victim API ISms.insertDBForLGMessage(...) is
defined in all LG devices running 4.4.4 up to version 10 4 but is only
used up to version 8.0 – thus becoming a Residual in versions 9 and
10. The Security analysis module reveals that it enforces obsolete ac-
cess control – it requires the permission android.permission.REC
EIVE_SMS while another path enforces a System check. A further
dive into the Residual’s implementation reveals that it allows in-
serting data to any Telephony-accessible content providers, while
solely enforcing the aforementioned permission. Specifically, the
Residual takes as arguments a Uniform Resource Identifier (URI)
along with content values and then inserts the supplied values
into the URI. Since the defining service ISms runs within the con-
tent of the Telephony process, the Residual can be exploited to
insert data to any privileged provider that the process has access to
– e.g., Settings.Secure and Settings.System providers, which
maintain secure/system preferences that apps can read but not
write. We confirmed the vulnerability through a PoC that targets
Settings.Secure content provider to automatically replace the
default IME with our specified IME (e.g., containing malicious key-
logging functionality). LG has acknowledged and fixed the vul-
nerability. It is worth noting that, as confirmed by LG, the fix for
Android R entails removing the API.
Keylogger on LG.We have identified another Residual IWindow
Manager.setInputFilter(.). on LG Q6 that exhibits a similar
pattern to the previous example. The Residual is defined on a few
LG ROMs from versions 4.4.4 to 10 but is only used up to ver-
sion 8.0. The Residual allows intercepting and controlling all input

4The API may have been introduced before version 4.4.4.



Table 3: Confirmed Exploitable Residuals

Vendor Model Residual Location Impact Vendor Reaction CVE NIST Ranking*

Samsung S9 InputMethodManager Corrupt Service Manager Confirmed, Fixed CVE-2018-21088** High (7.5)
Device Shutdown

Samsung S10 SPENGesture Keylogger Confirmed, Fixed CVE-2019-20597 Critical (9.1)

Samsung S9 PersonaManager Alter OEM Lock configurations Confirmed, Fixed CVE-2020-25055 Critical (9.8)
Disable Keyguard Features
Alter Profile Restrictions

LG LG Q6 WindowManager Keylogger Confirmed, Fixed CVE-2020-12754 High (7.8)

LG LG Q6 Isms Insert data into system providers Confirmed, Fixed CVE-2021-30162 High (7.1)

Samsung J2/ A2 Core InputManager Keylogger Confirmed, Fixed To be issued –

Samsung S6 Note PersonaManager Launch activities through the system Confirmed, Duplicate – –

LG LG Q Stylo 4 IPhoneSubInfo Read phone IMEI Confirmed, Not Fixing – –
*The severity metric is reported based on CVSS 3.x.
**We note that we re-discovered CVE-2018-21088 using our tool. The issue was initially discovered by us manually.

events before they are dispatched to the system or apps by reg-
istering an input filter. Alarmingly, our security module flagged
the case as using an unsound security feature. Specifically, the
API verifies if the calling package matches one of the two names:
"com.lge.systemserver" or "com.lge.onehandcontroller",
and accordingly allows access to the filter registration. However,
the API does not include any other checks – i.e., no configuration
or signature checks. The historical analysis revealed that the above
package names were indeed preloaded on the older devices and
corresponded to the users of the API. However, in later versions,
"com.lge.onehandcontroller" was removed, leaving the first
path open to exploit. Observe that the other package, "com.lge.
systemserver," persisted in the later version but did not invoke
the target API.We have confirmed that the Residual can be exploited
to build a keylogger by simply squatting the removed package name.
LG acknowledged and fixed this issue.
Keylogger on Samsung. We discovered through our historical
analysis that Samsung has introduces anAPI ISpenGestureService
.getCurrentInputContext(...) in 27 ROMs starting from ver-
sion 7.0 through version 8.1. Our cross-model analysis revealed
though that the API is used only by 8 ROMs; all from SM-N95x
and SM-T82x series (corresponding to SNote and STab devices).
Consequently, the API was flagged as a Residual in the rest of the
19 ROMs. We have manually investigated this case and found that
the API can obtain an instance to an IInputContext object, main-
tained by the defining system service (i.e., SpenGestureService).
IInputContext abstracts the input method to an app and allows
reading, editing and controlling user inputs such as taps and hard
key presses. Given these privileged operations, obtaining this object
is restricted to the system and input method managers in other
framework call sites. Our security analysis module revealed the
Residual has no security checks at all, allowing any third-party app
to get the IInputContext object with no permissions. We have con-
firmed that the Residual can be exploited to intercept all user input
including lock screen passwords, payment data and app credentials.
We have further confirmed that it can be exploited to inject and
compromise the integrity of user inputs. Samsung confirmed and
fixed the vulnerability. NIST ranked the vulnerability as critical.
LaunchingActivitieswith SystemPrivilege.Our historical anal-
ysis discovered the presence of a Residual instance in the majority

of our collected Samsung samples (versions 8.0 through 10). The API
ISemPersonaManager.startActivityThroughPersona(..) was
introduced and exclusively used in earlier Samsung devices running
version 7.0. Our security analysis flagged the case as potentially
vulnerable since it enforced obsolete access control. We inspected
the Residual and surprisingly found that it allows starting any An-
droid activity within the highly-privileged context of the defining
system service (named Persona). Specifically, it takes as an argu-
ment any arbitrary intent describing the activity to be launched
and invokes Android’s Context.startActivity() to trigger the
specified intent. This is clearly alarming since it can be exploited
to trigger system activities without a privilege requirement.

We have built an end-to-end PoC for version 8.0 to demonstrate
possible damages. For instance, we supplied an intent with ac-
tion "android.intent.action.ACTION_REQUEST_SHUTDOWN" to
trigger a system shutdown. In another instance, we crafted an
intent to call emergency phone numbers (with an explicit destina-
tion to the package "com.android.phone" with data "tel:911");
all by exploiting the unnecessary Residual functionality.

Samsung marked this vulnerability as duplicate. The issue was
previously reported and fixed.

9.2 Other Impacts
The impacts of Residuals are significant. Besides the end-to-end

PoCs we built (Section 9.1), we randomly selected 250 reported
weakly-protected Residuals and manually investigated potential
consequences that could happen once they were exploited. We note
that the instances here are randomly selected. We do not necessarily
have a corresponding physical device, and the Residual implementa-
tion may correspond to undocumented proprietary functionalities.
As such, all we could do is to statically inspect the code and esti-
mate possible consequences once a Residual is invoked. Such an
analysis may not be accurate, but it is still important for evaluating
the impacts of weakly-protected Residuals that have never been
investigated before. The results of our analysis are shown in Table 4.
We group the possible impacts by category (first column) and give
a few examples for each category (third column).

As shown in the table, 23 instances of Residuals can be exploited
to expose (sensitive) user data. Particularly, we identified one in-
stance that could be invoked to register a listener, allowing an



attacker to receive notifications of location updates. Other analyzed
Residuals (18) allow manipulating data, including deleting cached
files and other files under a specific directory. Our analysis further
reveals 29 instances that can cause DoS attacks. One identified
instance causes the device to deny and drop received SMS text mes-
sages. Another instance can be used to deny access to the external
directory. We further identified other Residuals instances (34) that
can be used to manipulate global settings, including Wlan configu-
rations and SMS parameters. We could not predict the effect of 79
Residuals since they corresponded to undocumented proprietary
features, while 67 other instances did not seem to lead to a clear
security impact. As mentioned earlier, just like other APIs, weakly
protected Residuals are not exploitable unless they implement a
privileged functionality.

Table 4: Impacts of 250 Randomly-Selected Residuals

Impact Count Examples Cause Vendor(s)

Data leakage 23 Infer location OAC Samsung
Get Mac address OAC Asus, Lenovo

Read network variables USF Lenovo
Infer running apps USF Huawei

Data pollution 18 Delete files under dir USF Xiaomi
Delete cache files OAC Xiaomi

Insert text message to ICC OAC Blu

DoS 29 Change subscription state OAC Xiaomi
Deny SMS receipt USF Samsung

Remount file system OAC Blu

Global setting 34 Change Wlan configuration OAC Xiaomi, Blu
manipulation Change keyguard configuration USF Samsung

Change audio output path OAC Xiaomi
Change SMS parameters USF Blu, LG

Unclear – 79 Set Drx Mode USF Samsung
Undocumented features Change cycle time USF Samsung

Process AT Command USF Blu
Infer ENDIP sample OAC LG

No Risk 67 – – –
OAC: Obsolete Access Control; USF: Undefined Security Feature

10 RELATEDWORK
Android API Security Analysis. Developers frequently overes-
timate the permissions that their applications require as Android
does not provide a complete permission specification. Earlier work
has developed permission mapping strategies that can be incorpo-
rated into tools that detect application over-privilege and access
control inconsistency. Stowaway [22] uses a feedback-directed test-
ing approach to determine the maximum set of permissions that an
Android application requires. PScout [14] relies on static analysis
techniques to generate conservative permissionmappings. Axplorer
[16] improves upon previous permission mapping approaches by
creating a static model of the Android framework that attempts
to approximate the behavior of the threading mechanisms relied
upon by framework services. The Arcade [12] tool goes a step fur-
ther by generating a path-sensitive permission map that can be
used to deduce an API’s minimum required permissions. The cur-
rent state-of-the-art permission mapping tool, Dynamo [20], uses a
greybox fuzzing technique to generate path-sensitive permission
mappings. We rely on these contributions to evaluate access control
enforcement in Residual APIs using ReM .
Vendor Customization. Vendors tend to extensively customize
device drivers, system applications and system services [27]. Since

this customization is unregulated, it often introduces new security
risks. Both Gallo et al. [23] and Possemato et al. [30] study the effect
of vendor customization and find that it adversely affects Android
device security. Zhou et al. [38] evaluate problematic vendor modi-
fications to Linux device drivers. Harehunter [13] detects hanging
attribute references, which can occur when customization results
in references to nonexistent attributes that can then be defined
by a malicious party. IPC Inspection [22] and ARF [25] focus on
permission re-delegation vulnerabilities in Android applications
and system services. Hay [26] analyzes the security of customized
Android bootloaders. InVetter [37] identifies weakened input vali-
dation checks within customized system services. The Chizpurfle
tool [19] uses a greybox fuzzing approach to uncover vulnerabilities
in customized framework services. Zhang et al. [36] explore the
impact of customization on the ION unified memory management
interface used in ARM-based Android devices.
Evaluation of Customization/Custom APIs. Inconsistent ac-
cess control at the API level, both within a single Android image
and across images, can allow malicious third-party applications or
users to perform privileged operations or access restricted resources
[11]. Kratos [32] performs a path-insensitive static analysis to de-
tect security policy inconsistency in application-accessible system
services. AceDroid [11] models a wider array of security checks
by transforming the checks into canonical security conditions and
performing a path-sensitive analysis. ACMiner[24] takes another
approach to inconsistency detection by relying on association rule
mining. Our work is orthogonal in that it examines a specific cate-
gory of Android APIs: Residual APIs, which are uniquely introduced
by vendors but not used within applications or system services.
Dangers of Bloated Codebases. Most works exploring the se-
curity dangers/benefits of software debloating are limited to web
applications. Azad et al. [15] explore the server-side, while Schwarz
et al. [31] and Snyder et al. [33] focus on client-side browser secu-
rity. Others, such as Mururu et al. [29] present binary debloating
approaches, while Brown and Pande [17] [18] propose a new tool
and metrics to assess the security impact of debloating. Ours is the
first work to examine Residuals’ impact on Android security.

11 CONCLUSION
As OEMs continue to customize AOSP codebases without regu-
lation, the private OEM API lifecycle will inevitably lead to the
persistence of Residual APIs. Our work is the first to center analysis
of the OEM private APIs specifically on the security implications
of Residuals. We analyze vendor Residual trends across time and
models. We perform the first large-scale study of Residuals, cov-
ering 628 ROMs and spanning 7 vendors. We find that Residuals
are pervasive and, more importantly, that they do indeed introduce
serious access control vulnerabilities.
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