
CO673/CS794–working §13 VARIANCE REDUCTION University of Waterloo �

13 Variance Reduction

Goal

Sampling, bias and variance, finite sum, variance reduction, SVRG, IG, IAG, SAG

Alert 13.1: Convention

Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.

Definition 13.2: Problem

In this lecture we continue our discussion of the most common problem in ML:

min
w

ℓ(w) + r(w)︸ ︷︷ ︸
f(w)

, where ℓ(w) :=
1

n

n∑
i=1

ℓi(w),

where each ℓi and r are (closed) convex functions. Our main interest is the setting where n is extremely
large, so that naively computing the (sub)gradient at each iteration is likely infeasible.

As mentioned in Example 12.3, we can apply stochastic gradient algorithms, where in each iteration t
we randomly sample a minibatch It = *i1, . . . , im+ ⊆ {1, . . . , n} of functions and update with the stochastic
(sub)gradient:

∂̂ℓ(wt) :=
1

|It|
∑
i∈It

∂ℓi(wt) ≈
1

n

n∑
i=1

∂ℓi(wt) =: ∂ℓ(wt).

Remark 13.3: The bias and variance

We may think of each minibatch as a random set of size m (or in more fancy language, random counting
measure or point process). We define its intensity

µi,t = EIt(i),

where It(i) is the random number of repetitions of ℓi in our minibatch It (of size m) at iteration t. Then,

E∂̂ℓ(wt) :=
1

m
E

[∑
i∈It

∂ℓi(wt)

]
=

1

m

n∑
i=1

µi,t∂ℓi(wt).

Thus, as long as µi,t ≡ m/n we obtain an unbiased estimate of the (sub)gradient. Similarly, let

si,j,t = EIt(i)It(j) ≤
√
si,tsj,t, where si,t := si,i,t = EI

2
t (i).

Then, we also have

E∥∂̂ℓ(wt)∥22 :=
1

m2
E

∥∥∥∑
i∈It

∂ℓi(wt)
∥∥∥2
2
=

1

m2

n∑
i,j=1

si,j,t ⟨∂ℓi(wt), ∂ℓj(wt)⟩

≤ 1

m2

∑
i,j

√
si,tsj,t∥∂ℓi(wt)∥2 · ∥∂ℓj(wt)∥2 =

1

m2

(∑
i

√
si,t∥∂ℓi(wt)∥2

)2

≤ 1

m2

∑
i

si,t∥∂ℓi(wt)∥22.

Yaoliang Yu 132 –Version 0.0–November 29, 2020–

CO673/CS794–working §13 VARIANCE REDUCTION University of Waterloo �

Exercise 13.4: Sampling w/o replacement

The following three sampling schemes are usually used in practice:

• Sampling with replacement. Verify that

It ≡
m∑

k=1

δZk
,

where Zk’s are i.i.d. uniformly random sample from {1, . . . , n}, and δZ is the delta mass such that
δZ(A) = 1 if Z ∈ A and 0 otherwise. It then follows that

µi,t = EIt(i) = m/n, si,t = m/n+m(m− 1)/n2≤ 2m/n, ∀i ̸= j, si,j,t = m(m− 1)/n2 =⇒

E∂̂ℓ(wt) = ∂ℓ(wt), E∥∂̂ℓ(wt)∥22 ≤
2

m
· 1
n

n∑
i=1

∥∂ℓi(wt)∥22.

This is the most common and convenient scheme as we need only draw the m minibatch samples
independently and identically. See Zhou et al. (2018) for some interesting extension.

• Sampling without replacement, in which case

µi,t =

(
n− 1

m− 1

)
/

(
n

m

)
=

m

n
, si,t = µi,t =

m

n
, ∀i ̸= j, si,j,t =

(
n− 2

m− 2

)
/

(
n

m

)
=

m(m− 1)

n(n− 1)
≤ m

n

E∂̂ℓ(wt) = ∂ℓ(wt), E∥∂̂ℓ(wt)∥22 ≤
1

m
· 1
n

n∑
i=1

∥∂ℓi(wt)∥22.

See Shamir (2016) for some interesting analysis.

• Randomly permuting the n functions followed by taking the n/m consecutive blocks as minibatches.
This scheme empirically behaves similarly to sampling without replacement. See Gürbüzbalaban et al.
(2019) for some interesting analysis.

Thus, we see that we can obtain unbiased estimate of the gradient while the size of the minibatch reduces the
variance proportionally. However, inspecting Theorem 12.6 we see that reducing the variance helps improve
the constant, but it does not seem to affect the O(1/

√
t) rate of convergence.

Zhou, P., X. Yuan, and J. Feng (2018). “New Insight into Hybrid Stochastic Gradient Descent: Beyond With-
Replacement Sampling and Convexity”. In: Advances in Neural Information Processing Systems 31.

Shamir, O. (2016). “Without-Replacement Sampling for Stochastic Gradient Methods”. In: Advances in Neural In-
formation Processing Systems, pp. 46–54.

Gürbüzbalaban, M., A. Ozdaglar, and P. A. Parrilo (2019). “Why random reshuffling beats stochastic gradient
descent”. Mathematical Programming.

Theorem 13.5: Faster rate under strong convexity

Under the same setting as in Remark 12.8, if f is L-Lipschitz continuous and σ-strongly convex (w.r.t. the
norm ∥ · ∥2), and the noise in (sub)gradient has variance bounded by ς2, then with ηt =

1
σ(t+1) we have

min
0≤t≤T−1

E[f(wt)− f(w)] ≤
T−1∑
t=0

1

T
E[f(wt)− f(w)] ≤ (L2 + ς2) ln(T + 1)

2σT
.

Proof: The proof is similar to that of Theorem 4.18. Conditioned on wt:

E ∥wt+1 −w∥22 ≤ ∥wt −w∥22 + η2tE ∥ŵ∗
t ∥

2
2 − 2ηt ⟨wt −w,Eŵ∗

t ⟩

[unbiasedness] � = ∥wt −w∥22 + η2t [∥Eŵ∗
t ∥

2
+Var(ŵ∗

t)]− 2ηt ⟨wt −w,w∗
t ⟩

Yaoliang Yu 133 –Version 0.0–November 29, 2020–

https://en.wikipedia.org/wiki/Dirac_delta_function
https://papers.nips.cc/paper/2018/hash/67e103b0761e60683e83c559be18d40c-Abstract.html
https://papers.nips.cc/paper/2018/hash/67e103b0761e60683e83c559be18d40c-Abstract.html
https://proceedings.neurips.cc/paper/2016/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://doi.org/10.1007/s10107-019-01440-w
https://doi.org/10.1007/s10107-019-01440-w

CO673/CS794–working §13 VARIANCE REDUCTION University of Waterloo �

[σ-strong convexity] � ≤ (1− σηt) ∥wt −w∥22 + η2t [∥w∗
t ∥

2
+Var(ŵ∗

t)] + 2ηt(f(w)− f(wt))

[∂f is bounded by L] � ≤ t

t+ 1
∥wt −w∥22 + η2t (L

2 + ς2) + 2ηt(f(w)− f(wt)).

Telescoping we obtain

TE ∥wT −w∥22 ≤
L2 + ς2

σ2

T−1∑
t=0

1

t+ 1
+

2

σ

T−1∑
t=0

E[f(w)− f(wt)].

Thus,

min
0≤t≤T−1

E[f(wt)− f(w)] ≤
T−1∑
t=0

1

T
E[f(wt)− f(w)] ≤

(L2 + ς2)
∑T−1

t=0
1

t+1

2σT
≤ (L2 + ς2) ln(T + 1)

2σT
,

as claimed.

If we define w̄T = 1
T

∑T−1
t=0 wt, then obviously

E[f(w̄T)− f(w)] ≤
T−1∑
t=0

1

T
E[f(wt)− f(w)] ≤ (L2 + ς2) ln(T + 1)

2σT
.

Exercise 13.6: Stochastic GDA under strong convexity

Extend Theorem 13.5 to the stochastic gradient descent ascent algorithm for any monotone VI.

Alert 13.7: Grave danger of wrong parameter

What if we do not know σ and unfortunately overestimate it? The following example from Nemirovski et al.
(2009) is quite illuminating.

Consider f(w) = w2/10 (so that σ = 1/5) and C = [−1, 1]. Suppose we set ηt = 1/(t+ 1). Then

wt+1 = wt − 1
t+1

1
5wt =

(
1− 1

5(t+1)

)
wt.

Thus, with w0 = 1 we have

wt =

t∏
s=1

(
1− 1

5s

)
= exp

{
−

t∑
s=1

ln
(
1 + 1

5s−1

)}
> exp

{
−

t∑
s=1

1
5s−1

}
> 0.8(t+ 1)−1/5,

which is even slower than the O(1/
√
t) rate we obtained in Remark 12.8 without strong convexity!

Of course, if we guessed the strong convexity parameter σ correctly and used ηt = 5/(t+1), the algorithm
would converge to the minimizer 0 in a single iteration! Unfortunately, it is not easy to line search σ, especially
in the presence of stochastic noise.
Nemirovski, A., A. Juditsky, G. Lan, and A. Shapiro (2009). “Robust Stochastic Approximation Approach to Stochas-

tic Programming”. SIAM Journal on Optimization, vol. 19, no. 4, pp. 1574–1609.

Yaoliang Yu 134 –Version 0.0–November 29, 2020–

https://doi.org/10.1137/070704277
https://doi.org/10.1137/070704277

CO673/CS794–working §13 VARIANCE REDUCTION University of Waterloo �

Algorithm 13.8: Stochastic variance reduced gradient (SVRG, Johnson and Zhang, 2013)

Algorithm: Stochastic variance reduced proximal gradient
Input: w0 ∈ dom f

1 for k = 0, 1, 2, . . . do
2 gk ← 1

n

∑n
i=1∇ℓi(wk) // compute the full gradient at epoch k

3 wk,0 ← wk

4 for t = 0, . . . ,m− 1 do
5 randomly draw it = i with probability pi
6 gk,t ← gk − 1

npit
∇ℓit(wk) +

1
npit
∇ℓit(wk,t) // update gradient in amortized fashion

7 wk,t+1 ← Pηk
r (wk,t − ηkgk,t) // stochastic proximal gradient

8 wk+1 ← 1
m

∑m
t=1 wk,t // in practice, can also do wk+1 ← wk,m

The above algorithm, with r ≡ 0, is due to Johnson and Zhang (2013) and later extended by Xiao and
Zhang (2014) to any convex r whose proximal map can be easily computed. The main idea is to amortize the
computation of full gradient. Compared to vanilla stochastic gradient, on average SVRG requires computing
2 gradients per step (3, if we choose to recompute each ∇ℓit(wk) instead of storing them).

Let us note that the stochastic gradient used in SVRG is still unbiased:

Egk,t = gk +

n∑
i=1

pi · 1
npi

[−∇ℓi(wk) +∇ℓi(wk,t)] = gk − gk + 1
n

n∑
i=1

∇ℓi(wk,t) = ∇ℓ(wk,t).

Moreover, if wk ≈ wk,t, e.g. when the algorithm is close to convergence, the variance of gk,t will be small
(since the random fluctuations cancel each other). Indeed, let L = maxi Li/(npi) where ℓi is Li-smooth.
Then,

E∥gk,t − Egk,t∥22 ≤ E∥ 1
npit

[∇ℓit(wk,t)−∇ℓit(wk)]∥22 =

n∑
i=1

1
n2pi
∥∇ℓi(wk,t)−∇ℓi(wk)∥22

[(a+ b)2 ≤ 2(a2 + b2)] � ≤ 4L

n∑
i=1

1
2nLi

[∥∇ℓi(wk,t)−∇ℓi(w⋆)∥22 + ∥∇ℓi(wk)−∇ℓi(w⋆)∥22]

[Alert 3.25] � ≤ 4L

n∑
i=1

1
n [Dℓi(wk,t,w⋆) + Dℓi(wk,w⋆)] = 4L[Dℓ(wk,t,w⋆) + Dℓ(wk,w⋆)]

≤ 4L[f(wk,t)− f(w⋆) + f(wk)− f(w⋆)],

where we applied Proposition 2.20 to w⋆ ∈ argmin f in the last line.
Johnson, R. and T. Zhang (2013). “Accelerating Stochastic Gradient Descent using Predictive Variance Reduction”.

In: Advances in Neural Information Processing Systems.
Xiao, L. and T. Zhang (2014). “A Proximal Stochastic Gradient Method with Progressive Variance Reduction”. SIAM

Journal on Optimization, vol. 24, no. 4, pp. 2057–2075.

Lemma 13.9: Inexact proximal gradient

Let ℓ be L-smooth convex and r be convex. For any η ∈ (0, 1/L] define

w+ = Pη
r

(
w − η(∇ℓ(w) + ε)

)
= argmin

z
⟨z,∇ℓ(w) + ε⟩+ 1

2η∥z−w∥22 + r(z).

Then, for any z we have

f(z) ≥ f(w+) + 1
η

〈
w −w+, z−w

〉
+ 1

2η∥w −w+∥22 −
〈
z−w+, ε

〉
(13.1)

Yaoliang Yu 135 –Version 0.0–November 29, 2020–

https://papers.nips.cc/paper/2013/file/ac1dd209cbcc5e5d1c6e28598e8cbbe8-Paper.pdf
https://doi.org/10.1137/140961791

CO673/CS794–working §13 VARIANCE REDUCTION University of Waterloo �

Proof: We apply Proposition 2.20 to w+:

⟨z,∇ℓ(w) + ε⟩+ 1
2η∥z−w∥22 + r(z) ≥

〈
w+,∇ℓ(w) + ε

〉
+ 1

2η∥w −w+∥22 + r(w+) + 1
2η∥z−w+∥22.

Adding the following inequalities from L-smoothness and convexity:

ℓ(w) +
〈
w+ −w,∇ℓ(w)

〉
+ 1

2η∥w −w+∥22 ≥ ℓ(w+)

ℓ(z) ≥ ℓ(w) + ⟨z−w,∇ℓ(w)⟩ ,

and rearranging and simplifying leads to (13.1).
When ℓ or r are strongly convex, we can sharpen the bound (13.1), although this is not needed below. When
ε = 0, i.e. the gradient is exact, the resulting bound has been obtained and used before (e.g. with z = w).

Theorem 13.10: Linear convergence of SVRG (Xiao and Zhang, 2014)

Let ℓi be Li smooth convex and f be σ-strongly convex. Let L = maxi Li/(npi) and ηk ≡ η ∈ (0, 1/(4L)).
Then, for the epoch updates:

E[f(wk+1)− f⋆] ≤ cE[f(wk)− f⋆], where c =
1/(ησ) + 4ηL(m+ 1)

(1− 4ηL)m
.

Note that c < 1 if m is sufficiently large.

Proof: Let w⋆ = argmin f and we bound the progress of SVRG in the inner-loop as usual:

∥wk,t+1 −w⋆∥22 = ∥wk,t −w⋆∥22 + 2 ⟨wk,t −wk,t+1,w⋆ −wk,t⟩+ ∥wk,t+1 −wk,t∥22
[Lemma 13.9] � ≤ ∥wk,t −w⋆∥22 − 2ηk[f(wk,t+1)− f(w⋆)] + 2ηk ⟨wk,t+1 −w⋆,∇ℓ(wk,t)− gk,t⟩

Let w̃k,t+1 := Pηk
r (wk,t − ηk∇ℓ(wk,t)) we can continue bounding

⟨wk,t+1 −w⋆,∇ℓ(wk,t)− gk,t⟩ ≤ ⟨wk,t+1 − w̃k,t+1,∇ℓ(wk,t)− gk,t⟩+ ⟨w̃k,t+1 −w⋆,∇ℓ(wk,t)− gk,t⟩
≤ ∥wk,t+1 − w̃k,t+1∥2 · ∥∇ℓ(wk,t)− gk,t∥2 + ⟨w̃k,t+1 −w⋆,∇ℓ(wk,t)− gk,t⟩
≤ ηk∥∇ℓ(wk,t)− gk,t∥22 + ⟨w̃k,t+1 −w⋆,∇ℓ(wk,t)− gk,t⟩ .

Taking expectations and noting that w̃k,t+1 does not depend on it, we apply the unbiasedness and variance
bound in Algorithm 13.8:

E∥wk,t+1 −w⋆∥22 ≤ E∥wk,t −w⋆∥22 − 2ηkE[f(wk,t+1)− f⋆] + 8Lη2kE[f(wk,t)− f⋆ + f(wk)− f⋆]

Summing over t from 0 to m− 1 and noting that wk,0 = wk:

E∥wk,m −w⋆∥22 ≤ E∥wk −w⋆∥22 − 2ηk

m−1∑
t=0

E[f(wk,t+1)− f⋆] + 8Lη2k

m−1∑
t=0

E[f(wk,t)− f⋆ + f(wk)− f⋆].

Rearranging and using the definition of wk+1:

2ηk(1− 4ηkL)mE[f(wk+1)− f⋆] ≤ E∥wk −w⋆∥22 + 8η2kL(m+ 1)E[f(wk)− f⋆]

≤
(
2/σ + 8η2kL(m+ 1)

)
E[f(wk)− f⋆].

Dividing the constant we obtain the formula for c and the proof is complete.
If we let η = 1/

√
4σL(m+ 1) with m+ 1 > 4κ, where κ := L/σ ≥ 1 is the condition number, then

c =
4
√
κ

√
m+ 1− 2

√
k
· m+ 1

m
,

leading to the expected overall complexity O
(
(n+ κ) log 1

ϵ

)
for an ϵ-approximation minimizer.

Xiao, L. and T. Zhang (2014). “A Proximal Stochastic Gradient Method with Progressive Variance Reduction”. SIAM
Journal on Optimization, vol. 24, no. 4, pp. 2057–2075.

Yaoliang Yu 136 –Version 0.0–November 29, 2020–

https://doi.org/10.1137/140961791

CO673/CS794–working §13 VARIANCE REDUCTION University of Waterloo �

Exercise 13.11: Non-uniform vs. uniform sampling

To minimize L = maxi Li/(npi), we solve

min
p∈∆

max
i

Li/pi.

Prove that the optimal pi ∝ Li, leading to L = 1
n

∑
i Li, which makes intuitive sense: the more “curvy” (i.e.

a large Li) a component function is, the more attention we pay to it.
In contrast, if we set pi ≡ 1/n, then L = maxi Li, which is strictly larger.
When Li’s are not available or expensive to estimate, we may use the successive difference of the gradients

to approximate it; recall the line search procedure of Khobotov in Remark 21.7.

Algorithm 13.12: Incremental gradient (IG, e.g. Bertsekas, 2011)

Algorithm: Incremental gradient (IG)
Input: w ∈ dom f

1 for k = 0, 1, 2, . . . do
2 for t = 0, . . . ,m− 1 do
3 choose it // cyclic or random
4 w← Pηk

rit
(w − ηk∇ℓit(w)) // proximal gradient on component ℓit + rit

For simplicity, let us assume r =
∑

i ri ≡ 0 and we choose the cyclic rule (hence m = n). Then, we may
write the inner loop compactly as:

wk+n = wk − ηk
1

n

n∑
i=1

ℓi(wk+i−1), where wk+i = wk+i−1 − ηk
1
n∇ℓi(wk+i−1)

= wk − ηk∇ℓ(wk) + ηk
1

n

n∑
i=1

[∇ℓi(wk)−∇ℓi(wk+i−1)]︸ ︷︷ ︸
εk

If ℓi’s are L-smooth and ηk → 0, then it is possible for the gradient error to diminish, see e.g. Bertsekas
(2011) and Lan and Zhou (2018).

Bertsekas, D. P. (2011). “Incremental proximal methods for large scale convex optimization”. Mathematical Program-
ming, vol. 129, pp. 163–195.

Lan, G. and Y. Zhou (2018). “Random Gradient Extrapolation for Distributed and Stochastic Optimization”. SIAM
Journal on Optimization, vol. 28, no. 4, pp. 2753–2782.

Yaoliang Yu 137 –Version 0.0–November 29, 2020–

https://doi.org/10.1007/s10107-011-0472-0
https://doi.org/10.1137/17M1157891

CO673/CS794–working §13 VARIANCE REDUCTION University of Waterloo �

Algorithm 13.13: Incremental/Stochastic averaged gradient (I/SAG, e.g. Blatt et al., 2007)

Algorithm: Incremental/stochastic averaged gradient (I/SAG)

Input: w0 ∈ dom f , G ∈ Rd×n

1 g−1 ← 1
nG1 // G stores most recent gradient for each ℓi

2 for t = 0, 1, 2, . . . do
3 choose it // cyclic or random
4 gt ← gt−1 − 1

nG:,it +
1
n∇ℓit(wt) // replace old with new

5 G:,it ← ∇ℓit(wt)
6 wt+1 ← Pηt

r (wt − ηtgt) // inexact proximal gradient

When we update the component functions ℓi sequentially, the update may be written more compactly
as:

wt+1 ← Pηt
r

(
wt − ηt

1
n

n∑
i=1

∇ℓit−n+i
(wt−n+i)

)

The sequential version was analyzed in Gürbüzbalaban et al. (2017), Mokhtari et al. (2018), Vanli et al.
(2018), and Gürbüzbalaban et al. (2019) while the randmized version in Schmidt et al. (2017), achieving
similar rates of convergence as SVRG (see Theorem 13.10).
Blatt, D., A. O. Hero, and H. Gauchman (2007). “A Convergent Incremental Gradient Method with a Constant Step

Size”. SIAM Journal on Optimization, vol. 18, no. 1, pp. 29–51.
Gürbüzbalaban, M., A. Ozdaglar, and P. A. Parrilo (2017). “On the Convergence Rate of Incremental Aggregated

Gradient Algorithms”. SIAM Journal on Optimization, vol. 27, no. 2, pp. 1035–1048.
Mokhtari, A., M. Gürbüzbalaban, and A. Ribeiro (2018). “Surpassing Gradient Descent Provably: A Cyclic Incre-

mental Method with Linear Convergence Rate”. SIAM Journal on Optimization, vol. 28, no. 2, pp. 1420–1447.
Vanli, N. D., M. Gürbüzbalaban, and A. Ozdaglar (2018). “Global Convergence Rate of Proximal Incremental Ag-

gregated Gradient Methods”. SIAM Journal on Optimization, vol. 28, no. 2, pp. 1282–1300.
Gürbüzbalaban, M., A. Ozdaglar, and P. A. Parrilo (2019). “Why random reshuffling beats stochastic gradient

descent”. Mathematical Programming.
Schmidt, M., N. L. Roux, and F. Bach (2017). “Minimizing finite sums with the stochastic average gradient”. Math-

ematical Programming, vol. 162, pp. 83–112.

Yaoliang Yu 138 –Version 0.0–November 29, 2020–

https://doi.org/10.1137/040615961
https://doi.org/10.1137/040615961
https://doi.org/10.1137/15M1049695
https://doi.org/10.1137/15M1049695
https://doi.org/10.1137/16M1101702
https://doi.org/10.1137/16M1101702
https://doi.org/10.1137/16M1094415
https://doi.org/10.1137/16M1094415
https://doi.org/10.1007/s10107-019-01440-w
https://doi.org/10.1007/s10107-019-01440-w
https://doi.org/10.1007/s10107-016-1030-6

