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4 Subgradient Algorithms

Goal

Subgradient, optimality condition, subdifferential calculus, necessity of non-descending.

Alert 4.1: Convention

Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.

Definition 4.2: Problem

In this lecture we consider the generic minimization problem:

inf
w∈C

f(w)

where f : Rd → R ∪ {∞} is a convex function and C ⊆ Rd is a closed convex set. We do not pose any
smoothness or structural assumption on f .

Example 4.3: (Soft-margin) Support Vector Machines (SVM)

Given a binary dataset (xi, yi) ∈ Rd×{±1}, SVM aims at finding a hyperplane that minimizes the following
objective function:

min
w∈Rd,b∈R

1

n

n∑
i=1

(1− yiŷi)+ + C∥w∥22, where ŷi := ⟨w,xi⟩+ b,

each term in the first summation is called the hinge loss (for the i-th training example) and the second
Euclidean norm is called the (inverse) margin (of the hyperplane parameterized by normal vector w and
offset b). The hinge loss equals 0 if yiŷi ≥ 1 (in which case our prediction sign(ŷi) would coincide with
the groundtruth yi) while we pay a linear penalty if yiŷi ≤ 1. Notably, we still pay a small penalty when
0 < yiŷi < 1, i.e., even when our prediction is correct: sign(ŷi) = yi.

The hinge loss is not differentiable, due to the kink at origin. While many algorithms have been developed
for optimizing SVM, it eventually became clear that the classic subgradient algorithm, when applied directly
to the above formulation, is as competitive (Shalev-Shwartz et al., 2011).
Shalev-Shwartz, S., Y. Singer, N. Srebro, and A. Cotter (2011). “Pegasos: primal estimated sub-gradient solver for

SVM”. Mathematical Programming, vol. 127, pp. 3–30.

Definition 4.4: Subgradient and subdifferential

We define the subdifferential of a convex function f at some point w as the set:

∂f(w) := {g ∈ Rd : ∀z, f(z) ≥ f(w) + ⟨z−w;g⟩}

Any g ∈ ∂f(w) is called a subgradient of f at w. It is clear from the definition that the subdifferential is
always closed and convex.

Yaoliang Yu 60 –Version 0.1–September 24, 2021–

https://doi.org/10.1007/s10107-010-0420-4
https://doi.org/10.1007/s10107-010-0420-4


CO673/CS794–working §4 SUBGRADIENT ALGORITHMS University of Waterloo �

Theorem 4.5: Optimality condition for nonsmooth minimization

w⋆ ∈ argmin f iff 0 ∈ ∂f(w⋆).

Proof: Clear from the definition.
The subdifferential and the above theorem extend naturally to nonconvex functions. However, the subtlety
is that for an arbitrary nonconvex function, even though the subdifferential is nonempty at the minimizers,
it can be empty at other points. We need convexity (or more generally local Lipschitz continuity) to have
nonempty subdifferential everywhere.

Remark 4.6: Subdifferential as limits

One remarkable property of convex functions (and more generally locally Lipschitz continuous functions) is
that they are differentiable almost everywhere. This allows us to define the subdifferential as the following
limit (Clarke, 1990):

∂f(w) = conv{g : ∃z→ w,∇f(z)→ g}.

It then follows that when f is continuously differentiable, its subdifferential reduces to the singleton ∂f =
{∇f}.
Clarke, F. H. (1990). “Optimization and Nonsmooth Analysis”. reprinted from the 1983 edition. SIAM.

Alert 4.7: Subdifferential calculus: Successes and failures

The usual calculus rules for derivatives no longer hold for subdifferentials. For instance:

• ∂(αf) = α · ∂f only when α > 0 while the equality typically fails when α < 0.

• ∂(f + g) ⊇ ∂f + ∂g, where equality is attained when one of the function is continuous at the point
(and the other function is finite).

• ∂(f ◦ g) = (∇g) · (∂f) when f : Rp → R is convex and g : Rd → Rp is continuously differentiable.
Note that ∇g ∈ Rd×p whose j-th column is the gradient of gj and ∂f ⊆ Rp so the multiplication
makes sense. We may derive this result using Remark 4.6. Note that even though we still use the same
notation ∂, the subdifferential here is not necessarily the same one as in Definition 4.4 (so Theorem 4.5
may not apply), unless of course f ◦ g is convex.

Example 4.8: Subdifferential calculation

Consider the positive part function ℓ(t) = (t)+ that appeared in SVM. Using Remark 4.6 we obtain its
subdifferential as

∂ℓ(t) =


1, t > 0

0, t < 0

[0, 1], t = 0

.

We may also verify the above formula from the definition:

∀s, (s)+ ≥ (t)+ + g(s− t).

Indeed, for t > 0, choosing s > t we obtain g ≤ 1 while choosing 0 < s < t we obtain g ≥ 1 hence g = 1. For
t = 0, choosing s > 0 we obtain g ≤ 1 while choosing s < 0 we obtain g ≥ 0, i.e. g ∈ [0, 1]. Lastly, for t < 0,
choosing 0 > s > t we obtain g ≤ 0 while choosing s < t we obtain g ≥ 0.
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Example 4.9: Envelope function

Let f(w) = maxi∈I fi(w) be the upper envelope of the continuously differentiable functions fi. To apply
the last rule in Alert 4.7, we need to compute the subdifferential of the max function h(t) = maxi∈I ti, i.e.

find all g s.t. ∀s, h(s) ≥ h(t) + ⟨s− t,g⟩ . (4.1)

Let I∗ = I∗(t) = {i ∈ I : h(t) = ti} be the active indices. Then, we claim

∂h(t) = conv{ei : i ∈ I∗(t)},

where ei is 0 except 1 in the i-th entry. Indeed, choose any i ∈ I∗ and let g = ei, we have

h(s) ≥ h(t) + ⟨s− t,g⟩ ⇐= h(s) ≥ ti + si − ti ⇐= h(s) ≥ si.

Thus, ei ∈ ∂h(t).
To prove the converse,

• we first note that g must be nonnegative, for otherwise we may just let some component of s go to
−∞, pushing the right-hand side of (4.1) to ∞ while capping the left-hand side.

• choose any j ̸∈ I∗ and set s = t+ δej for some small δ ≥ 0 such that h(s) = h(t). It then follows from
(4.1) that gj ≤ 0 and hence gj = 0.

• let s = t+ δ1, then from (4.1) we obtain for any subgradient g:

h(t) + δ = h(s) ≥ h(t) + δ ⟨1;g⟩ ,

whence follows ⟨1;g⟩ = 1 since δ is arbitrary. This completes our proof as the set {g ≥ 0 : ⟨1;g⟩ =
1, gj = 0 ∀j ̸∈ I∗} was exactly our claim for the subdifferential.

Exercise 4.10: More subdifferentials

• Compute the subdifferential of the absolute function f(t) = |t|.

• We mentioned before that any norm is not differentiable at the origin. Prove that

∂∥0∥ = {g : ∥g∥◦ ≤ 1}.

Alert 4.11: It is differentiable almost everywhere, so what?!

Let us consider the following function

f(x, y) = |x|+ 1
2y

2.

Obviously, we have a unique minimizer at (x⋆, y⋆) = (0, 0). Assuming we are at (x, y) = (0, 1) and we choose
the subgradient g = (1, 1). Let us try to find an optimal step size:

min
η≥0

|η|+ 1
2 (1− η)2,

leading to η = 0. Thus, we are stuck at an obviously suboptimal point (x, y) = (0, 1) had we chosen a wrong
subgradient and used Cauchy’s rule to find an optimal step size!
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Alert 4.12: The subtlety in nonsmooth optimization

Given a direction vector d ∈ Rd, we define the directional derivative

f ′(w;d) := lim
t↓0

f(w + td)− f(w)

t
, (4.2)

which always exists for a convex function (when w ∈ int dom f). Under mild regularity conditions, it can be
shown that

argmin
∥d∥2≤1

f ′(w;d) = − argmin
d∈∂f(w)

∥d∥2, since f ′(w;d) = σ∂f(w)(d), (4.3)

which can be interpreted as the steepest descent direction at w. Therefore, a natural algorithm for minimizing
nonsmooth convex function is:
Algorithm: The minimum-point subgradient algorithm, may NOT converge
Input: w0 ∈ dom f

1 for t = 0, 1, . . . do
2 dt ← argmin

d∈∂f(wt)

∥d∥2 // choose the minimum subgradient

3 choose step size ηt // e.g. Cauchy’s rule: ηt = argmin
η≥0

f(wt − ηtdt)

4 wt+1 ← wt − ηtdt

This algorithm is appealing in two aspects:

• It reduces to gradient descent when f is smooth.

• It is a descent algorithm, i.e. if wt is not optimal, then dt ̸= 0 according to Theorem 4.5. Choosing
the step size suitably then guarantees f(wt+1) < f(wt) (see (4.3) and (4.2)).

Surprisingly, as the following example shows, the descending property may prevent the algorithm from
converging to a global minimum!

Example 4.13: Cauchy’s rule no longer works

Consider the following nonsmooth function

f(x, y) =

{
5
√

9x2 + 16y2, x > |y|
9x+ 16|y|, x ≤ |y|

,

which is not differentiable on the ray x ≤ 0, y = 0, but f(x, y)→ −∞ as x→ −∞. We verify the following
subdifferential:

• For x < 0, ∂f(x, 0) = {(9, v) : |v| ≤ 16}.

• If we approach (0, 0) from the upper case, we have

∇f(x, y) = (u, v) = ( 45xr , 80y
r ), where r =

√
9x2 + 16y2.

Thus, considering x > |y|, we have (u/15)2 + (v/20)2 = 1, u > 9. If we approach (0, 0) from the lower
case, we have ∂f(x, 0). Thus,

∂f(0, 0) = {(u, v) : (u/15)2 + (v/20)2 ≤ 1, u ≥ 9}.

Wolfe (1975) showed that starting with x > |y| > (9/16)2|x|, Cauchy’s rule leads to a polygonal path of
successively orthogonal segments that converges to the origin! Intuitively, the algorithm only “sees” the
upper case and converges myopically to its minimizer.

Yaoliang Yu 63 –Version 0.1–September 24, 2021–



CO673/CS794–working §4 SUBGRADIENT ALGORITHMS University of Waterloo �

Wolfe, P. (1975). “A method of conjugate subgradients for minimizing nondifferentiable functions”. Mathematical
Programming Study, vol. 3, pp. 145–173.

Algorithm 4.14: The subgradient algorithm

Algorithm: The subgradient algorithm
Input: w0 ∈ C

1 for t = 0, 1, . . . do
2 choose dt ∈ ∂f(wt)
3 optional: dt ← dt/∥dt∥2 // normalize
4 choose step size ηt // e.g. ηt = O(1/t)
5 wt+1 ← PC(wt − ηtdt)

It turns out that asking the algorithm to always descend is too much when the function is nonsmooth.
Instead, we resort to open loop rules:

• ηt → 0,
∑

t ηt =∞, e.g. ηt = O(1/
√
t)

•
∑

t ηt =∞,
∑

t η
2
t <∞, e.g. ηt = O(1/t)

• ηt ≡ η

• ηt = ηt

When the minimum value f⋆ is known in advance, we may also use the following rule (Polyak, 1969):

ηt =
f(wt)− f⋆
∥dt∥

.

Polyak, B. (1969). “Minimization of unsmooth functionals”. USSR Computational Mathematics and Mathematical
Physics, vol. 9, no. 3, pp. 14–29.
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Example 4.15: To normalize or not?

Consider minimizing the convex function f(w) = w4. We obtain the iterates with or without normalizing
the (sub)gradient:

wt+1 = wt − 4ηtw
3
t = (1− 4ηtw

2
t )wt

w̄t+1 = w̄t − ηt sign(w̄t) = sign(w̄t)(|w̄t| − ηt).

It is clear that the latter w̄t → 0 as long as ηt → 0 and
∑

t ηt =∞. However, for the former, if we start with
w1 = 1 and ηt = 1/t, then

w2
t ≥ 1/ηt =⇒ w2

t+1 = (4ηtw
2
t − 1)2w2

t ≥ (4wt − 1)2w2
t ≥ 9w2

t ≥ 9t ≥ t+ 1 = 1/ηt+1,

i.e. |wt| → ∞.

Proposition 4.16: Euclidean projection to convex set is nonexpansion

Let C ⊆ Rd be a closed convex set. Then its (Euclidean) projection PC is nonexpansive:

∀w, z ∈ Rd, ∥PC(w)− PC(z)∥2 ≤ ∥w − z∥2.

Proof: Applying the optimality condition in Theorem 19.12 we obtain:

⟨PC(z)− PC(w),w − PC(w)⟩ ≤ 0

⟨PC(w)− PC(z), z− PC(z)⟩ ≤ 0.

Adding the two inequalities:

⟨PC(w)− PC(z), z− PC(z)−w + PC(w)⟩ ≤ 0 ⇐⇒ ∥PC(w)− PC(z)∥22 ≤ ⟨w − z,PC(w)− PC(z)⟩
=⇒ ∥PC(w)− PC(z)∥22 ≤ ∥w − z∥2 · ∥PC(w)− PC(z)∥2.

Canceling the common factor completes our proof.

It is crucial that the set C is convex, for otherwise the projection may not even be single-valued.

Theorem 4.17: Convergence of the subgradient algorithm

Let C ⊆ Rd be a closed convex set and f : C → R be an L = L[0]-Lipschitz continuous convex function
(w.r.t. ∥ · ∥2). Start with w0 ∈ C, for any w ∈ C, the sequence generated by Algorithm 4.14 (without
normalizing the subgradient) satisfies:

min
0≤t≤T−1

f(wt)− f(w) ≤
T−1∑
t=0

ηt∑T−1
s=0 ηs

(f(wt)− f(w)) ≤
∥w0 −w∥22 + L2

∑T−1
t=0 η2t

2
∑T−1

s=0 ηs
.

Proof: According to the update rule in line 5 of Algorithm 4.14:

∥wt+1 −w∥22 = ∥PC(wt − ηtdt)−w∥22
[w ∈ C] = ∥PC(wt − ηtdt)− PC(w)∥22

[projections are nonexpansive] ≤ ∥wt − ηtdt −w∥22
= ∥wt −w∥22 + η2t ∥dt∥22 − 2ηt ⟨wt −w,dt⟩

[dt is a subgradient, ηt ≥ 0] ≤ ∥wt −w∥22 + η2t ∥dt∥22 + 2ηt(f(w)− f(wt))
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[∂f is bounded by L] ≤ ∥wt −w∥22 + η2t L
2 + 2ηt(f(w)− f(wt)).

Telescoping we obtain

∥wT −w∥22 ≤ ∥w0 −w∥22 + L2
T−1∑
t=0

η2t + 2

T−1∑
t=0

ηt∑T−1
s=0 ηs

(f(w)− f(wt)) ·
T−1∑
s=0

ηs.

Thus,

min
0≤t≤T−1

f(wt)− f(w) ≤
T−1∑
t=0

ηt∑T−1
s=0 ηs

(f(wt)− f(w)) ≤
∥w0 −w∥22 + L2

∑T−1
t=0 η2t

2
∑T−1

s=0 ηs
,

as claimed.

The bound on the right-hand side vanishes iff
∑

t ηt →∞ and ηt → 0.
If we fix a tolerance ϵ > 0 beforehand, then setting ηt = c/L2 · ϵ for some constant c ∈]0, 2[ leads to:

min
0≤t≤T−1

f(wt)− f(w) ≤ ϵ,

as long as T ≥ L2∥w0−w∥2
2

c(2−c) · 1
ϵ2 . The same claim holds for w̄T :=

∑T−1
t=0

ηt∑T−1
s=0 ηs

wt.
The choices min

0≤t≤T−1
f(wt), f(w̄T ), or f(wT ) are all used in practice.

Theorem 4.18: Convergence of the subgradient algorithm: strongly convex

Under the same setting as in Theorem 4.17, if f is additionally σ-strongly convex (w.r.t. the norm ∥ · ∥2),
then with ηt =

1
σ(t+1) we have

min
0≤t≤T−1

f(wt)− f(w) ≤
T−1∑
t=0

1

T
(f(wt)− f(w)) ≤

L2
∑T−1

t=0
1

t+1

2σT
.

Proof: From the proof of Theorem 4.17:

∥wt+1 −w∥22 ≤ ∥wt −w∥22 + η2t ∥dt∥22 − 2ηt ⟨wt −w,dt⟩

[σ-strong convexity] ≤ (1− σηt) ∥wt −w∥22 + η2t ∥dt∥22 + 2ηt(f(w)− f(wt))

[∂f is bounded by L] ≤ t
t+1 ∥wt −w∥22 + η2t L

2 + 2ηt(f(w)− f(wt)).

Telescoping we obtain

T ∥wT −w∥22 ≤
L2

σ2

T−1∑
t=0

1

t+ 1
+

2

σ

T−1∑
t=0

f(w)− f(wt).

Thus,

min
0≤t≤T−1

f(wt)− f(w) ≤
T−1∑
t=0

1

T
(f(wt)− f(w)) ≤

L2
∑T−1

t=0
1

t+1

2σT
,

as claimed.

If we define w̄T = 1
T

∑T−1
t=0 wt, then obviously

f(w̄T )− f(w) ≤
T−1∑
t=0

1

T
(f(wt)− f(w)) ≤

L2
∑T−1

t=0
1

t+1

2σT
.
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We note that
∑T−1

t=0
1

t+1 = Θ(log T ) hence the right-hand side above converges to 0 at rate O( log T
T ).
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