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14 Randomized smoothing

Goal

convolution, duality between smoothness and decay, randomized smoothing, gradient-free, zero-th order
optimization

Alert 14.1: Convention

Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.

Definition 14.2: Problem

In this lecture we revisit our old problem

min
w∈C⊆Rd

f(w), (14.1)

where C is closed convex and f is (non)convex. We impose a new twist: we can only evaluate the function
value f(w) at any w but not its (sub)gradient. Can we still solve (14.1), efficiently? And how?

Definition 14.3: Convolution

The convolution of two functions f and g is defined through integration:

(f ∗ g)(w) = f ∗ g(w) :=

∫
z

f(w − z)g(z) dz =

∫
z

f(z)g(w − z) dz =: (g ∗ f)(w).

Note the similarity to the infimal convolution in ??. Recall the Fourier transform and its inverse:

(Ff)(w∗) = Ff(w∗) =

∫
w

exp(−2πi ⟨w,w∗⟩)f(w) dw, (F−1g)(w) =

∫
w∗

exp(2πi ⟨w,w∗⟩)g(w∗) dw∗,

where w is usually called the time variable and w∗ the frequency variable. It is well-known that

F (f ∗ g) = Ff ·Fg, FF−1 = F−1F = Id, Ff (k) = (−2πiw∗)kFf,

where zk :=
∏d

j=1 z
kj

j and f (k) :=
∏d

j=1 ∂kjf is the partial derivative. In particular, how fast a function
decays (than a polynomial of certain degree) corresponds to how smooth its Fourier transform is, and vice
versa. It also follows that

F (f ∗ g)(k) = (−2πiw∗)k ·F (f ∗ g) = [(−2πiw∗)kFf ]Fg = F (f (k) ∗ g) = F (f ∗ g(k)),

and applying the inverse transform we obtain the familiar formula of differentiating under the integral:

(f ∗ g)(k) = f (k) ∗ g = f ∗ g(k),

where of course the partial derivative of a function needs proper interpretation.
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Alert 14.4: Existence and finiteness of expectation/integral

When one writes the expectation of a random variable, or more generally an integral such as∫
w

f(w)g(w) dw,

some conditions on f and g are needed to make sure the above integral makes sense. In this ?? we always
assume the expectation (integral) exists and is finite, while ignoring to state the standard conditions.

Definition 14.5: Randomized Smoothing

For any (vector-valued) function f : Rd → Rc we define its randomized smoothing as:

fγ(w) = Ef(w + γε),

where ε is some random noise with zero mean and identity covariance. W.l.o.g., we may take ε to be
symmetric (i.e., ±ε are identically distributed), for otherwise we may replace ε with βε where β is an
independent {±}-valued Bernoulli random variable. Let p be the probability density function (pdf) of ε
where p(w) = p(−w) due to symmetry. We define the dilated density pγ = 1

γd p(
1
γ ·). Then,

fγ
symmetry

= Ef(w − γε) = f ∗ pγ , hence fγ → f as γ → 0,

as is intuitively expected. (The convergence is pointwise but can be made uniform on compact sets.)
More generally, we can allow non-additive noise:

fγ(w) = Ef(w, ε).

For instance, if f represents a deep network, we can add the noise ε to network input x which transforms
into a highly nonlinear random effect on the network weights w.

Exercise 14.6: Moment inequalities

Define the k-th moment of a standard normal random variable X as

Mk = E|X|k.

It is easy to see that (Mk)
1/k is an increasing function of k. Prove that

∀k ≥ 2, M
1/k
k ≤

√
k +M2

2 .

Exercise 14.7: Calculus for randomized smoothing

Prove the following:

• The map f 7→ fγ is linear.

• If f is convex/concave, so is fγ .

• If f is convex, then fγ ≥ f .

• If f is L0-Lipschitz continuous (w.r.t. ∥ · ∥2 say), so is fγ . Moreover,

∥fγ − f∥2 ≤γL0E∥ε∥2 ≤ γL0

√
E∥ε∥22 = γL0

√
d.
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• If f is L1-smooth (w.r.t. ∥ · ∥2 say), so is fγ . Moreover,

fγ − f ≤γ2L1

2 E∥ε∥22 = γ2L1d
2 ,

whereas a two-sided bound holds if both ±f are L1-smooth.

• If f is L2-smooth (w.r.t. ∥ · ∥2 say), i.e.

f(z) ≤ f(w) + ⟨z−w;∇f(w)⟩+ 1
2

〈
z−w;∇2f(w)(z−w)

〉
+ L2

6 ∥z−w∥32,

so is fγ . Moreover,

fγ − f − γ2

2 tr∇2f ≤γ3L2

6 E∥ε∥32 ≤
γ3L2

6 (3 + d)3/2,

whereas a two-sided bound holds if both ±f are L2-smooth.

This last exercise reveals that the square dependence on γ cannot be further improved even if the function
f is smoother than L1-smooth.

Exercise 14.8: Gradient approximation

Prove the following:

• If ±f is L1-smooth, then ∥∇fγ −∇f∥◦ ≤ γL1
√
d. In fact, ∇fγ = (∇f)γ , and

∥∇f∥◦ ≤ ∥∇fγ∥◦ + γL1
√
d.

• If ±f is L2-smooth, then ∥∇fγ −∇f∥◦ ≤ γ2L2d/2. In fact, ∇fγ = (∇f)γ and ∇2fγ = (∇2f)γ .

Remark 14.9: Justifying the name

Differentiating under the integral we obtain

f (k)
γ := [f ∗ pγ ](k) = f (k−l) ∗ p(l)γ , in particular ∇kfγ(w) =

∫
z

∇k−1f(w − z)⊗∇pγ(z) dz.

Therefore, if f is Lk−1-smooth, then fγ is Lk-smooth, where

Lk ≤ Lk−1

∫
z

∥∇pγ(z)∥2 dz = Lk−1

γ

∫
z

∥∇p(z)∥2 dz = sLk−1

γ where s := E∥∇ ln p(ε)∥2, ε ∼ p.

In other words, fγ is (at least) 1 degree more smoother than f , as long as the score function ∇ ln p has finite
expectation (in norm). The case k = 1 is of particular interest to us, so we repeat the formula:

∇fγ(w) =

∫
z

f(w − z)∇pγ(z) dz = 1
γE[f(w − γε)∇ ln p(ε)] = − 1

γE[f(w + γε)∇ ln p(ε)]

= −E
[
f(w + γε)− f(w)

γ
∇ ln p(ε)

]
= −E

[
f(w + γε)− f(w − γε)

2γ
∇ ln p(ε)

]
.

Interestingly, when f is directionally differentiable (e.g. f is convex or an envelope), we have the limit:

∇f0(w) := −E[f ′(w; ε)∇ ln p(ε)], where f ′(w; ε) := lim
γ↓0

[f(w + γε)− f(w)]/γ

= −E[σ∂f(w)(ε)∇ ln p(ε)]

Needless to say, when f is actually differentiable, we have ∇f0 = ∇f .
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Example 14.10: Gaussian and uniform

Two choices of the noise distribution p are common:

• ε ∼ N (0, I), i.e. p(ε) = (2π)d/2 exp(−∥ε∥22/2) hence −∇ ln p(ε) = ε, s = E∥∇ ln p(ε)∥2 ≤
√
d, and

∇fγ(w) = 1
γE[f(w + γε)ε] = E

[
f(w+γε)−f(w)

γ ε
]
= E

[
f(w+γε)−f(w−γε)

2γ ε
]
.

This setting, considered by Nesterov and Spokoiny (2017), is convenient since fγ is in fact infinitely
many times differentiable, although it requires f to be defined on entire Rd.

• ε ∼ Uniform(K), i.e. p(ε) = 1/vd if ε ∈ K and 0 otherwise, where vd is the volume of the (symmetric,
isotropic, i.e. Eεε⊤ = I) compact set K (with smooth boundary). It follows from multivariate
integration by parts (e.g. Stokes’ theorem, see Katz, 1979) that ∇p(ε) = 1∂K · n(ε)/vd, where n(ε) is
the (positively oriented) normal vector at ε ∈ ∂K. Thus, s = ud−1/vd where ud−1 is the surface area
of ∂K, and

∇fγ(w) = − s
γE[f(w + γδ)n(δ)] = −sE

[
f(w+γδ)−f(w)

γ n(δ)
]
= −sE

[
f(w+γδ)−f(w−γδ)

2γ n(δ)
]
,

where δ ∼ Uniform(∂K). This setting only requires f to be defined (and bounded) over C + γK if we
are only interested in f over C. In particular, let K = B2(0,

√
d+ 2) we have n(δ) = −

√
d+ 2δ/∥δ∥2

and s = d/
√
d+ 2 ≤

√
d, which was considered in the seminal book of Nemirovski and Yudin (1983)

and later used in Flaxman et al. (2005) for online bandits.

Nesterov, Y. and V. Spokoiny (2017). “Random Gradient-Free Minimization of Convex Functions”. Foundations of
Computational Mathematics, vol. 17, pp. 527–566.

Katz, V. J. (1979). “The History of Stokes’ Theorem”. Mathematics Magazine, vol. 52, no. 3, pp. 146–156.
Nemirovski, A. S. and D. B. Yudin (1983). “Problem complexity and method efficiency in optimization”. Wiley.
Flaxman, A. D., A. T. Kalai, and H. B. McMahan (2005). “Online convex optimization in the bandit setting: gra-

dient descent without a gradient”. In: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete
algorithms, pp. 385–394.

Algorithm 14.11: Randomized smoothing for gradient-free optimization

We can now put everything together:

• We optimize fγ as a smoothed approximation of f . The approximation error is bounded in Exercise 14.7
for function values and in Exercise 14.8 for gradients.

• We compute an unbiased, stochastic (sub)gradient of fγ by

(I). ∂̂1fγ(w) = − 1
γ f(w + γϵ) · ∇ ln p(ϵ);

(II). ∂̂1,0fγ(w) = − f(w+γε)−f(w)
γ ∇ ln p(ε);

(III). ∂̂1,1fγ(w) = − f(w+γε)−f(w−γε)
2γ ∇ ln p(ε);

(IV). ∂̂f0(w) = −f ′(w; ε)∇ ln p(ε).

Note that except the last choice, we only require 1 or 2 evaluations of the function itself, and these
stochastic (sub)gradients, except the last one, are in general biased for the original function f .

• We bound the second moment of the stochastic (sub)gradient, as shown in Exercise 14.13 below.

• We apply the stochastic GDA algorithm in Lecture 12 and obtain convergence towards fγ .

• We set γ appropriately so that we obtain convergence towards f , in much the same way as in ??.
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Example 14.12: Concrete rates

We give some concrete examples on how to set γ:

• If f is L0-Lipschitz continuous and convex, then using ∂̂1,0fγ we obtain from Remark 12.8 that

E[f(w̄t)− f(w)]− γL0
√
d ≤ E[fγ(w̄t)− fγ(w)] ≤

∥w0 −w∥22 +
∑t

k=0 η
2
k[L

2
γ+ς2]

2Ht

≤
∥w0 −w∥22 +

∑t
k=0 η

2
kL

2
0(d+ 1)2

2Ht
.

Setting

γ =
ϵ

2L0
√
d
, ηt =

diam(C)

(d+ 1)L0
√
t+ 1

we have

E[f(w̄t)− f(w)] ≤ ϵ, if t > 4(d+1)2

ϵ2 [diam(C)]2L20,

which is d2 times slower than running subgradient directly on f .

• If f is L1-smooth and convex, then using again ∂̂1,0fγ we obtain similarly

E[f(w̄t)− f(w)]− γ2L1d
2 ≤ E[fγ(w̄t)− fγ(w)] ≤

∥w0 −w∥22 +
∑t

k=0 η
2
kE∥∂̂1,0fγ(wk)∥22

2Ht
.

With γ = O
(

1
d

√
ϵ
L1

)
and ηt ≡ O

(
1

dL1

)
, an ϵ-approximate minimizer of f can be found in O

(
d
ϵL1 diam2(C)

)
many steps, which is d times slower than running (projected) gradient directly on f .

accelerated and nonconvex algorithm in (Nesterov and Spokoiny, 2017)
Nesterov, Y. and V. Spokoiny (2017). “Random Gradient-Free Minimization of Convex Functions”. Foundations of

Computational Mathematics, vol. 17, pp. 527–566.

Exercise 14.13: Second moment bound

Prove the following for the Gaussian smoothing (so that ∇ ln p(ε) = −ε):

• If f is differentiable, then

E∥∂̂f0(w)∥22 = E∥ε∥42
〈

ε
∥ε∥2

,∇f(w)
〉2

= E∥ε∥42 · E
〈

ε
∥ε∥2

,∇f(w)
〉2

= (d+ 2)∥∇f(w)∥22,

where we use the fact that ∥ε∥22 and ε
∥ε∥2

are independent while the former follows χ2
d and the latter

follows uniform on the sphere.

• If f is L0-Lipschitz continuous, then E∥∂̂1,0fγ(w)∥22 ≤ L20d(d+ 2).

• If ∇f is L1-Lipschitz continuous, then E∥∂̂1,0fγ(w)∥22 ≤
γ2L2

1

2 d(d+ 2)(d+ 4) + 2(d+ 2)∥∇f(w)∥22.

• If ±f is L±1 -smooth, then E∥∂̂1,1fγ(w)∥22 ≤
γ2(L+

1 +L−
1 )2

8 d(d+ 2)(d+ 4) + 2(d+ 2)∥∇f(w)∥22.

• If ∇2f is L2-Lipschitz continuous, then E∥∂̂1,1fγ(w)∥22 ≤
γ4L2

2

18 d(d+2)(d+4)(d+6)+2(d+2)∥∇f(w)∥22.
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Remark 14.14: Square root dependence on dimension

The dependence on dimension has been further reduced in (Ghadimi and Lan, 2013; Duchi et al., 2015). See
also the recent work in (Auger and Hansen, 2016; Bach and Perchet, 2016; Shamir, 2017; Balasubramanian
and Ghadimi, 2018; Bergou et al., 2020).

Runge-Kuta approximation of the gradient?

f(w + γd)− f(w)

γ
≈ f ′(w;d) +O(γ)

f(w + γd)− f(w − γd)

2γ
≈ f ′(w;d) +O(γ2)

Ghadimi, S. and G. Lan (2013). “Stochastic First- and Zeroth-Order Methods for Nonconvex Stochastic Program-
ming”. SIAM Journal on Optimization, vol. 23, no. 4, pp. 2341–2368.

Duchi, J. C., M. I. Jordan, M. J. Wainwright, and A. Wibisono (2015). “Optimal Rates for Zero-Order Convex
Optimization: The Power of Two Function Evaluations”. IEEE Transactions on Information Theory, vol. 61,
no. 5, pp. 2788–2806.

Auger, A. and N. Hansen (2016). “Linear Convergence of Comparison-based Step-size Adaptive Randomized Search
via Stability of Markov Chains”. SIAM Journal on Optimization, vol. 26, no. 3, pp. 1589–1624.

Bach, F. and V. Perchet (2016). “Highly-Smooth Zero-th Order Online Optimization”. In: Proceedings of the 29th
Annual Conference on Learning Theory, pp. 257–283.

Shamir, O. (2017). “An Optimal Algorithm for Bandit and Zero-Order Convex Optimization with Two-Point Feed-
back”. Journal of Machine Learning Research, vol. 18, pp. 1–11.

Balasubramanian, K. and S. Ghadimi (2018). “Zeroth-order (Non)-Convex Stochastic Optimization via Conditional
Gradient and Gradient Updates”. In: Advances in Neural Information Processing Systems 31, pp. 3455–3464.

Bergou, E. H., E. Gorbunov, and P. Richtárik (2020). “Stochastic Three Points Method for Unconstrained Smooth
Minimization”. SIAM Journal on Optimization, vol. 30, no. 4, pp. 2726–2749.

Alert 14.15: When to use?

• Same dependence on ϵ!

• Only 1 or 2 evaluation of the function per step!

• Convergence in terms of expectation or high probability.

• Much worse dependence on the dimension!

Use only if you have to!

Example 14.16: More

(Cohen et al., 2019; Jia et al., 2020; Levine and Feizi, 2020; Li et al., 2019; Salman et al., 2019; Zhai et al.,
2020)
Cohen, J., E. Rosenfeld, and Z. Kolter (2019). “Certified Adversarial Robustness via Randomized Smoothing”. In:

Proceedings of the 36th International Conference on Machine Learning, pp. 1310–1320.
Jia, J., X. Cao, B. Wang, and N. Z. Gong (2020). “Certified Robustness for Top-k Predictions against Adversarial

Perturbations via Randomized Smoothing”. In: International Conference on Learning Representations.
Levine, A. and S. Feizi (2020). “Wasserstein Smoothing: Certified Robustness against Wasserstein Adversarial At-

tacks”. In: AISTATS.
Li, B., C. Chen, W. Wang, and L. Carin (2019). “Certified Adversarial Robustness with Additive Noise”. In: Advances

in Neural Information Processing Systems 32, pp. 9464–9474.

Yaoliang Yu 144 –Version 0.0–December 1st, 2020–

https://doi.org/10.1137/120880811
https://doi.org/10.1137/120880811
https://doi.org/10.1109/TIT.2015.2409256
https://doi.org/10.1109/TIT.2015.2409256
https://doi.org/10.1137/140984038
https://doi.org/10.1137/140984038
http://proceedings.mlr.press/v49/bach16.html
http://jmlr.org/papers/v18/16-632.html
http://jmlr.org/papers/v18/16-632.html
http://papers.nips.cc/paper/7605-zeroth-order-non-convex-stochastic-optimization-via-conditional-gradient-and-gradient-updates.html
http://papers.nips.cc/paper/7605-zeroth-order-non-convex-stochastic-optimization-via-conditional-gradient-and-gradient-updates.html
https://doi.org/10.1137/19M1244378
https://doi.org/10.1137/19M1244378
http://proceedings.mlr.press/v97/cohen19c.html
https://openreview.net/forum?id=BkeWw6VFwr
https://openreview.net/forum?id=BkeWw6VFwr
https://arxiv.org/abs/1910.10783
https://arxiv.org/abs/1910.10783
http://papers.nips.cc/paper/9143-certified-adversarial-robustness-with-additive-noise.pdf


CO673/CS794–working §14 RANDOMIZED SMOOTHING University of Waterloo �

Salman, H., J. Li, I. Razenshteyn, P. Zhang, H. Zhang, S. Bubeck, and G. Yang (2019). “Provably Robust Deep
Learning via Adversarially Trained Smoothed Classifiers”. In: Advances in Neural Information Processing Systems
32, pp. 11292–11303.

Zhai, R., C. Dan, D. He, H. Zhang, B. Gong, P. Ravikumar, C.-J. Hsieh, and L. Wang (2020). “MACER: Attack-
free and Scalable Robust Training via Maximizing Certified Radius”. In: International Conference on Learning
Representations.

Alert 14.17: Check

Bubeck, S., R. Eldan, and Y. T. Lee (1975). “Kernel-based Methods for Bandit Convex Optimization”. Journal
of the ACM, vol. 68, no. 4, pp. 1–35.

Bubeck, S., O. Dekel, T. Koren, and Y. Peres (2015). “Bandit Convex Optimization:
√
T Regret in One Dimension”.

In: Proceedings of the 28th Conference on Learning Theory (COLT).
Lattimore, T. and A. Gyorgy (2021). “Improved Regret for Zeroth-Order Stochastic Convex Bandits”. In: Proceedings

of Thirty Fourth Conference on Learning Theory.
Hazan, E. and K. Levy (2014). “Bandit Convex Optimization: Towards Tight Bounds”. In: Advances in Neural

Information Processing Systems 27.
Hazan, E., K. Singh, and C. Zhang (2017). “Efficient Regret Minimization in Non-Convex Games”. In: Proceedings

of the 34th International Conference on Machine Learning, pp. 1433–1441.
Bubeck, S. and R. Eldan (2019). “The Entropic Barrier: Exponential Families, Log-Concave Geometry, and Self-

Concordance”. Mathematics of Operations Research, vol. 44, no. 1, pp. 264–276.

Yaoliang Yu 145 –Version 0.0–December 1st, 2020–

http://papers.nips.cc/paper/9307-provably-robust-deep-learning-via-adversarially-trained-smoothed-classifiers.html
http://papers.nips.cc/paper/9307-provably-robust-deep-learning-via-adversarially-trained-smoothed-classifiers.html
https://openreview.net/forum?id=rJx1Na4Fwr
https://openreview.net/forum?id=rJx1Na4Fwr
https://doi.org/10.1145/3453721
https://proceedings.mlr.press/v40/Bubeck15a.pdf
https://proceedings.mlr.press/v134/lattimore21a.html
https://papers.nips.cc/paper_files/paper/2014/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
http://proceedings.mlr.press/v70/hazan17a.html
https://doi.org/10.1287/moor.2017.0923
https://doi.org/10.1287/moor.2017.0923

