
CO673/CS794–working §18 LOWER BOUND I University of Waterloo �

18 Lower Bound I

Goal

Black-box optimization, local oracle, performance estimation, lower bound for nonsmooth minimization,
lower bound for smooth minimization

Alert 18.1: Convention

An overview of information-based complexity bound is Traub and Werschulz (2009), and a classic reference
for this lecture is Nemirovski and Yudin (1983).

Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.

Traub, J. F. and A. G. Werschulz (2009). “Information-based complexity and information-based optimizationInformation-
based Complexity and Information-based Optimization”. In: Encyclopedia of Optimization. Ed. by C. A. Floudas
and P. M. Pardalos, pp. 1603–1608.

Nemirovski, A. S. and D. B. Yudin (1983). “Problem complexity and method efficiency in optimization”. Wiley.

Remark 18.2: Summary so far

The following table summarizes the algorithms we have learned so far:

✓: inherited by generality �: not fully discussed –: not discussed at all green: this lecture.

alg code obj cons step size rate opt?
Cauchy Amijo const diminish func grad dist

gd 1.4 smooth é ✓ ✓ ✓ – – 1√
t

– é

projgrad 19.15 smooth ✓ – ✓ ✓ – 1
t – – é

proxgrad 2.17 sum ✓ – ✓ ✓ – 1
t – – é

condgrad 3.7 sum ✓ ✓ ✓ ✓ ✓ 1
t – – ✓

subgrad 4.14 convex � é – � ✓ 1√
t

– 1√
t

✓

md 5.10 convex � é – � ✓ 1
t or 1√

t
– 1√

t
✓

metricgrad 6.8 smooth � ✓ – ✓ – – 1√
t

– ?

An obvious question we have now is that, are any of these algorithms optimal? If yes, in what sense?
If no, how do we find provably better ones? In this lecture we establish lower complexity bounds that any
algorithm would have to respect, and starting from the next lecture we will develop faster algorithms that
hopefully will close any gap between the lower bounds we prove below and the upper bounds shown in the
above table.

We emphasize that we are mostly interested in dimension independent bounds, i.e., algorithms whose
required number of iterations to reach a pre-defined tolerance does not depend on the dimension at all or very
mildly (e.g. logarithmically). Of course, the per-step complexity of an algorithm may still be proportional
to the dimension and vary from algorithm to algorithm. Needless to say, the actual running time of an
algorithm is the product of the number of iterations and the per-step cost.

Definition 18.3: Function, oracle, algorithm and performance in black-box optimization

Formally, we are interested in minimizing a class of functions F ⊆ RW. We start from w0 ∈ W̄, a possible
enlargement of W when it is difficult to maintain feasibility. We restrict our access to the function f through

Yaoliang Yu 169 –Version 0.1–October 18, 2021–

https://doi.org/10.1007/978-0-387-74759-0_281
https://doi.org/10.1007/978-0-387-74759-0_281

CO673/CS794–working §18 LOWER BOUND I University of Waterloo �

an oracle

O : W̄∗ ×F → O, where W̄∗ :=

∞⋃
t=1

W̄t.

In other words, we do not inspect the underlying function f per se, but through querying an oracle to
obtain information about it. Suboptimal at first glance, this black-box view turns out to be quite insightful
when the underlying function is too complicated or when the chosen algorithm is limited either inherently
or externally.

An algorithm is formally defined as a mapping

A : W̄ × O∗ → W̄

such that with the short-hand Of := O(·, f), sequentially we have:

w1 = A
(
w0,Of (w0)

)
w2 = A

(
w0,Of (w0),Of (w0,w1)

)
...

wt = A
(
w0,Of (w0),Of (w0,w1), . . . ,Of (w0,w1, . . . ,wt−1)

)
,

or collectively (and slightly abusing the notation) as

(w1, . . . ,wt) := At(w0,Of).

We evaluate an algorithm based on some performance metric

P(Of ,w0, . . . ,wt,w⋆), where w⋆ ∈ argmin
w∈W

f(w)

is assumed to exist and supplied to the performance metric (which the algorithm cannot access). It will also
be important to ensure

∥w0 −w⋆∥2 ≤ R

for some given constant R, for otherwise it may take forever for any algorithm to make any progress.

Example 18.4: First-order oracle in black-box optimization

For example, we may let F = Fσ,L[1] be σ-strongly convex and L[1]-smooth functions (w.r.t. the ℓ2 norm) on
W̄ = W = Rd. A first-order oracle returns the function value and gradient at the current iterate:

O1
f (w0, . . . ,wt−1) = O1

f (wt−1) =
(
f(wt−1),∇f(wt−1)

)
.

All of our algorithms so far fall into this setting. With this oracle, we may choose the following performance
metrics:

P(O1
f ,w0, . . . ,wt,w⋆) = f(wt)− f(w⋆), or min

0≤s≤t
f(ws)− f(w⋆)

P(O1
f ,w0, . . . ,wt,w⋆) = ∥∇f(wt)∥2, or min

0≤s≤t
∥∇f(ws)∥2

P(O1
f ,w0, . . . ,wt,w⋆) = ∥wt −w⋆∥2.

A local oracle is one that satisfies:

∀t, Of (w0, . . . ,wt−1) = Og(w0, . . . ,wt−1)

whenever f and g agree on a neighborhood around w0, . . . ,wt−1. Obviously, any-order oracle is local.

Yaoliang Yu 170 –Version 0.1–October 18, 2021–

CO673/CS794–working §18 LOWER BOUND I University of Waterloo �

Definition 18.5: Performance estimation problem (PEP) (Drori and Teboulle, 2014)

Remarkably, the worst-case performance of an optimization algorithm can itself be formulated as an opti-
mization problem, as noted by Drori and Teboulle (2014):

p(F ,O,P, T,R,A) = sup
f,w0,...,wT ,w⋆

P(Of ,w0, . . . ,wT ,w⋆)

s.t. f ∈ F
w⋆ ∈ argmin f

(w1, . . . ,wT) = AT (w0,Of)

∥w0 −w⋆∥2 ≤ R,

based on which we can also define the minimax optimal performance among all possible algorithms:

p(F ,O,P, T,R) :=
[
inf
A

p(F ,O,P, T,R,A)
]
= inf

A
sup
f∈F

P(Of ,w0, . . . ,wT ,w⋆), (18.1)

subject to the constraints on w’s above. The challenge is that solving p is an infinite-dimensional optimization
problem (due to the function class F)! Fortunately, we only run the algorithm A for finitely many steps (i.e.
T), which allows us to relativize to a finite dimensional problem.
Drori, Y. and M. Teboulle (2014). “Performance of first-order methods for smooth convex minimization: a novel

approach”. Mathematical Programming, vol. 145, pp. 451–482.

Alert 18.6: Ordering matters!

We emphasize that the maximin complexity

p(F ,O,P, T,R) := sup
f∈F

inf
A
P(Of ,w0, . . . ,wT ,w⋆) = 0,

which amounts to swapping the inf and sup in (18.1), is trivial. The reason is that for any given function f ,
the “trivial” algorithm that simply outputs wt ≡ w⋆ cannot be beaten. (If one feels like we are cheating by
allowing an algorithm to access w⋆, consider the uncountable set of algorithms that output each w ∈ Rd all
the time. One of them would have guessed w⋆ correctly, no matter what.)

Whence it is also clear that even in the minimax complexity (18.1), the function class F must be
sufficiently rich, otherwise an algorithm could just be lucky in “guessing” the minimizer.

Example 18.7: PEP with first-order oracle

Indeed, with the first-order oracle O1
f in Example 18.4, we obtain the following equivalent problem:

p(F ,O1,P, T,R,A) = sup
{wt,ft,gt}, f

P({wt, ft,gt}) (18.2)

s.t. ∃f ∈ F with O1
f (wt) = (ft,gt), ∀t ∈ {0, . . . , T, ⋆}

g⋆ = 0

(w1, . . . ,wT) = At

(
w0, (f0,g0), . . . , (fT−1,gT−1)

)
∥w0 −w⋆∥2 ≤ R.

The performance metrics mentioned in Example 18.4 can be explicitly written as:

fT − f⋆ or min
0≤t≤T

ft − f⋆, ∥gT ∥2 or min
0≤t≤T

∥gt∥2, ∥wT −w⋆∥2.

The algorithm constraint can often be simplified as a linear system for many existing first-order algorithms
(examples will follow). The functional constraint basically amounts to the following interpolation problem:

Yaoliang Yu 171 –Version 0.1–October 18, 2021–

https://doi.org/10.1007/s10107-013-0653-0
https://doi.org/10.1007/s10107-013-0653-0

CO673/CS794–working §18 LOWER BOUND I University of Waterloo �

find function f ∈ F with given function value ft and gradient gt at point wt for all t ∈
{0, . . . , T, ⋆},

whose solution is well-known for certain function classes!

Theorem 18.8: Interpolating L[1]-smooth convex function (Taylor et al., 2017)

There exists an L = L[1]-smooth convex function f with given function value ft and gradient gt at point wt

for all t ∈ T iff

∀s, t ∈ T, fs ≥ ft + ⟨ws −wt,gt⟩+ 1
2L∥gs − gt∥22. (18.3)

We allow L =∞ above in which case L-smoothness is vacuous.

Proof: This result is well-known for L =∞. For L <∞, a duality argument based on Alert 3.25 suffices for
the reduction to L =∞.

It then follows immediately that the iff condition for interpolating a σ-weakly convex and L-smooth
function is:

∀s, t ∈ T, fs − σqs ≥ ft − σqt + ⟨ws −wt,gt − σwt⟩+ 1
2(L−σ)∥gs − σws − gt + σwt∥22,

where qt = q(wt) =
1
2∥wt∥22. Introducing

Dσ(s, t) := fs − ft − ⟨ws −wt,gt⟩ − σ
2 ∥ws −wt∥22

D∗
1/σ(s, t) := ft − fs − ⟨wt −ws,gs⟩ − 1

2σ∥gs − gt∥22,

we may simplify the iff condition as:

∀s, t ∈ T, Dσ(s, t) +
σ
LD

∗
1/σ(s, t) ≥ 0. (18.4)

We note that condition (18.3) is clearly necessary, and quite pleasantly it turns out to be also sufficient.

Taylor, A. B., J. M. Hendrickx, and F. Glineur (2017). “Smooth strongly convex interpolation and exact worst-case
performance of first-order methods”. Mathematical Programming, vol. 161, pp. 307–345.

Example 18.9: PEP for function class Fσ,L[1] with first-order oracle

With (18.4), we can now further simplify (18.2):

p(Fσ,L,O1,P, T,R,A) = sup
{wt,ft,gt}

P({wt, ft,gt})

s.t. Dσ(s, t) +
σ
LD

∗
1/σ(s, t) ≥ 0, ∀s, t ∈ {0, . . . , T, ⋆}

g⋆ = 0

(w1, . . . ,wT) = At

(
w0, (f0,g0), . . . , (fT−1,gT−1)

)
∥w0 −w⋆∥2 ≤ R,

which is completely finite dimensional now! The only thing left to specify is the algorithm.

Yaoliang Yu 172 –Version 0.1–October 18, 2021–

https://doi.org/10.1007/s10107-016-1009-3
https://doi.org/10.1007/s10107-016-1009-3

CO673/CS794–working §18 LOWER BOUND I University of Waterloo �

Remark 18.10: Simplification

We note that if the algorithm is translation equivariant w.r.t. the initializer w0 and the function class F is
translation invariant, i.e.

∀z, f ∈ F , A(w0 + z,Of) = A(w0,Of) + z, f(·+ z) ∈ F ,

then we may simply take w⋆ = 0. If the algorithm and function class are shift invariant, i.e., A(w0,Of) =
A(w0,Of+c) and f + c ∈ F whenever f ∈ F , then we may also assume f⋆ = 0. Of course, we implicitly
assumed that translation or shifting does not affect the performance measure.

The above conditions are satisfied by the fixed step-size first-order methods:

wt = w0 −
t∑

s=1

ht,sgs−1, (18.5)

where the matrix H ∈ RT×T is fixed and lower-triangular (so that an update will not depend on future
information).

Example 18.11: PEP for Fσ,L[1] with first-order oracle and fixed step-size

Putting everything above together we have:

p(Fσ,L[1] ,O1,P, T,R,H) = sup
{wt,ft,gt}

P({wt, ft,gt})

s.t. Dσ(s, t) +
σ
LD

∗
1/σ(s, t) ≥ 0, s, t ∈ {0, . . . , T, ⋆}

w⋆ = g⋆ = 0, f⋆ = 0

wt = w0 −
t∑

s=1

ht,sgs−1, t ∈ {1, . . . , T}

∥w0∥2 ≤ R.

We note that by the transformation

f ← 1
R2 f(R·), wt ← wt/R, gt ← gt/R and change P accordingly,

we may assume R = 1. Moreover, using the next transformation

f ← f/L, H ← LH, κ← σ ← σ/L and change P accordingly,

we may also assume L = 1. We have thus arrived at a further simplification:

p1(κ,P, T,H) = sup
{wt,ft,gt}

P({wt, ft,gt})

s.t. Dκ(s, t) + κD∗
1/κ(s, t) ≥ 0, s, t ∈ {0, . . . , T, ⋆}

w⋆ = g⋆ = 0, f⋆ = 0

wt = w0 −
t∑

s=1

ht,sgs−1, t ∈ {1, . . . , T}

∥w0∥2 ≤ 1,

which is almost convex (assuming P is concave), except the bilinear terms ⟨w,g⟩ in Dκ and D∗
1/κ!

Yaoliang Yu 173 –Version 0.1–October 18, 2021–

CO673/CS794–working §18 LOWER BOUND I University of Waterloo �

Definition 18.12: PEP final formulation

We now substitute wt out using (18.5) and introduce the matrices

P = [w0,g0, . . . ,gT] ∈ Rd×(T+2), Q = P⊤P ∈ ST+2
+ .

We note that the algorithm constraint can be written as a linear constraint on f and Q (we omit the tedious
formula), leading to a final rank constrained semidefinite program:

p1(κ,P, T,H) = sup
f∈RT+1,Q∈ST+2

+

P(f , Q) (18.6)

s.t. L(f , Q;κ,H) ≤ 0, (18.7)
Q11 ≤ 1,

rank(Q) ≤ d.

Dropping the last rank constraint gives us an upper bound on the worst-case performance of a fixed step-size
first-order algorithm (determined by H). Of course, the upper bound is attained when d ≥ T + 2.

Definition 18.13: Finding the optimal step-size (Drori and Teboulle, 2014)

We note that the linear constraint (18.7) is also convex quadratic in H, hence we may try to find the optimal
step-size by minimizing the worst-case complexity:

inf
H∈RT×T

p1(κ,P, T,H), H is lower triangular,

which is a tractable convex problem! This idea has led to some shocking analyses and algorithms.
Drori, Y. and M. Teboulle (2014). “Performance of first-order methods for smooth convex minimization: a novel

approach”. Mathematical Programming, vol. 145, pp. 451–482.

Remark 18.14: Extensions

The PEP formulation (18.6) has been extended to line search (De Klerk et al., 2017), composite problems
(Taylor et al., 2017, 2018), Newton’s algorithm (De Klerk et al., 2020) and more (Drori and Taylor, 2020).
De Klerk, E., F. Glineur, and A. B. Taylor (2017). “On the worst-case complexity of the gradient method with exact

line search for smooth strongly convex functions”. Optimization Letters, vol. 11, pp. 1185–1199.
Taylor, A. B., J. M. Hendrickx, and F. Glineur (2017). “Exact Worst-Case Performance of First-Order Methods for

Composite Convex Optimization”. SIAM Journal on Optimization, vol. 27, no. 3, pp. 1283–1313.
— (2018). “Exact Worst-Case Convergence Rates of the Proximal Gradient Method for Composite Convex Mini-

mization”. Journal of Optimization Theory and Applications, vol. 178, pp. 455–476.
De Klerk, E., F. Glineur, and A. B. Taylor (2020). “Worst-Case Convergence Analysis of Inexact Gradient and Newton

Methods Through Semidefinite Programming Performance Estimation”. SIAM Journal on Optimization, vol. 30,
no. 3, pp. 2053–2082.

Drori, Y. and A. B. Taylor (2020). “Efficient first-order methods for convex minimization: A constructive approach”.
Mathematical Programming, vol. 184, pp. 183–220.

Alert 18.15: Algorithms live in the linear span

We will make the following simplifying assumption (Nesterov, 2018):

∀t, wt+1 ∈ span{w0,∇f(w0), . . . ,∇f(wt)}. (18.8)

This assumption is not necessary but it greatly simplifies our proof and most algorithms satisfy it anyway.
Nesterov, Y. (2018). “Lectures on Convex Optimization”. 2nd. Springer.

Yaoliang Yu 174 –Version 0.1–October 18, 2021–

https://doi.org/10.1007/s10107-013-0653-0
https://doi.org/10.1007/s10107-013-0653-0
https://doi.org/10.1007/s11590-016-1087-4
https://doi.org/10.1007/s11590-016-1087-4
https://doi.org/10.1137/16M108104X
https://doi.org/10.1137/16M108104X
https://doi.org/10.1007/s10957-018-1298-1
https://doi.org/10.1007/s10957-018-1298-1
https://doi.org/10.1137/19M1281368
https://doi.org/10.1137/19M1281368
https://doi.org/10.1007/s10107-019-01410-2
https://link.springer.com/book/10.1007/978-3-319-91578-4

CO673/CS794–working §18 LOWER BOUND I University of Waterloo �

Theorem 18.16: Lower bound for nonsmooth minimization (Drori and Teboulle, 2016)

For any L > 0, T ≤ d− 1, initializer w0 ∈ Rd, and any first-order algorithm A that satisfies the linear span
assumption (18.8), there exists an L = L[0]-Lipschitz continuous (w.r.t. ∥ · ∥2) and convex function f , a
first-order oracle Of and minimizer w⋆, such that the sequence {wt} generated by algorithm A suffers:

f(wT) ≥ f⋆ +
L · ∥w⋆ −w0∥2√

T + 1
.

Proof: Let us consider the following functions on our universe Rd, with T + 1 ≤ d:

ℓ1(w) = max
j=1,...,T+1

wj

ℓ0(w) = ∥w∥2 − 1− 1√
T+1

fT+1(w) = max{ℓ1(w), ℓ0(w)}.

We verify that fT+1 is convex and 1-Lipschitz continuous w.r.t. the ℓ2 norm.
To minimize fT+1, we find that ℓ1 only depends on the indices j such that wj = ℓ1(w), while ℓ0 motivates

us to set any other wj to 0. Thus, at minimum fT+1(w⋆) = max{α, |α|
√
t − 1 − 1√

T+1
}, where α is the

maximum value in w⋆ and t ≤ T + 1 is the number of ties. It is obvious then that we should set t = T + 1
and α = − 1√

T+1
, i.e.

w⋆ = − 1√
T+1

(1, . . . , 1︸ ︷︷ ︸
T+1

, 0, . . . , 0), f⋆ = − 1√
T+1

.

Consider now starting with w0 = 0 and run algorithm A to minimize fT+1. Clearly, we have

∥w⋆ −w0∥2 = 1 ≤ 1.

At each w, a “resisting oracle” Of supplies the subgradient g ∈ ∂f(w):

g =

{
ek, where k = min{1 ≤ j ≤ T + 1 : wj = ℓ1(wt)}, if ℓ1(w) ≥ ℓ0(w)

w/∥w∥, if ℓ1(w) < ℓ0(w)
,

which has the following consequence:

∀j ≥ t+ 1, wj = 0 =⇒ ∀j ≥ t+ 2, gj = 0.

It then follows from our linear span assumption (18.8) that after t iterations, only the first t entries in wt

can be nonzero. Therefore,

fT+1(wT)− f⋆ ≥ ℓ1(wT) +
1√
T+1
≥ 1√

T+1
,

since the last entry in wT is 0.
Lastly, applying the transformation

fT+1(w)← (LfT+1R)(w −w0) := LRfT+1(
w−w0

R), where R = ∥w0 −w⋆∥2,

completes our proof.

Drori, Y. and M. Teboulle (2016). “An optimal variant of Kelley’s cutting-plane method”. Mathematical Programming,
vol. 160, pp. 321–351.

Yaoliang Yu 175 –Version 0.1–October 18, 2021–

https://doi.org/10.1007/s10107-016-0985-7

CO673/CS794–working §18 LOWER BOUND I University of Waterloo �

Remark 18.17: Immediate consequences

A few immediate remarks with regard to Theorem 18.16:

• Quite remarkably, the subgradient Algorithm 4.14, along with some other variants (e.g. Drori and
Teboulle, 2016), achieves the above lower bound even with matching constants! (Simply choose ηt ≡
L∥w0−w⋆∥2√

T+1
in Theorem 4.17.)

• The condition T ≤ d − 1 is applicable when the dimension is huge or when we are interested in the
initial phase of our algorithm. When T ≥ d−1, dimension-dependent lower bounds can also be proved
in a similar way.

• Not surprisingly, the worst-case function fT+1 depends on T , which needs to be fixed beforehand.

• The proof leaves open the possibility when an algorithm chooses its subgradient from the subdifferential
carefully, i.e. with a “friendly” oracle instead of a resisting one. Note however that choosing the
minimum-norm subgradient does not help. On the other hand, choosing a subgradient that is “maximal”
in some sense can also be problematic, since these subgradients are troublesome even when we are at
the minimizer!

Drori, Y. and M. Teboulle (2016). “An optimal variant of Kelley’s cutting-plane method”. Mathematical Programming,
vol. 160, pp. 321–351.

Theorem 18.18: Lower complexity bound for smooth minimization (Nesterov, 2018)

For any L > 0, T ≤ d−1
2 , initializer w0 ∈ Rd, and any first-order algorithm A that satisfies the linear span

assumption (18.8), there exists an L = L[1]-smooth (w.r.t. ∥ · ∥2) and convex function f with minimizer w⋆,
such that the sequence {wt} generated by algorithm A suffers:

f(wT) ≥ f⋆ +
3L∥w0 −w⋆∥22
32(T + 1)2

∥wT −w⋆∥22 ≥ 1
8∥w0 −w⋆∥22.

Proof: The proof is similar to that of Theorem 18.16. We consider the quadratic function

ft(w) =
1

8

w2
1 + w2

t +
t−1∑
j=1

(wj − wj+1)
2

− 1

4
w1.

It is easy to verify that

0 ≤ 1

4

z21 + z2t +

t−1∑
j=1

(zj − zj+1)
2

 =
〈
∇2ft(w)z, z

〉
≤ 1

4

z21 + z2t +

t−1∑
j=1

2z2j + 2z2j+1

 ≤ ∥z∥22,
i.e. ft is convex and 1-smooth. We set the derivative to 0 to compute a minimizer and minimum value of ft:

w1 + w1 − w2 − 1 = 0

∀j = 2, . . . , t− 1, wj − wj−1 + wj − wj+1 = 0

wt + wt − wt−1 = 0

 =⇒ (w⋆)j =

{
1− j

t+1 , if j ≤ t

0, otherwise
,

∥w∥22 =

t∑
j=1

(1− j
t+1)

2 = t− t+ t(2t+1)
6(t+1) ≤

t−1/4
3 ,

(ft)⋆ =
1

8

[
t2

(t+ 1)2
+

1

(t+ 1)2
+ (t− 1)

1

(t+ 1)2

]
− 1

4

t

t+ 1
= −1

8

t

t+ 1
.

Yaoliang Yu 176 –Version 0.1–October 18, 2021–

https://doi.org/10.1007/s10107-016-0985-7

CO673/CS794–working §18 LOWER BOUND I University of Waterloo �

Now starting with w0 = 0 and apply algorithm A to minimize f2T+1. Clearly, we have

∥w⋆ −w0∥2 ≤ 2T+1−1/4
3 ≤ 8T+3

12 .

We verify the following consequence:

∀j ≥ t+ 1, wj = 0 =⇒ ∀j ≥ t+ 2, ∇jf2T+1(w) = 0.

It then follows from our linear span assumption (18.8) that after t iterations, only the first t entries in wt

can be nonzero. Therefore,

f2T+1(wT)− (f2T+1)⋆
∥w⋆ −w0∥22

=
fT (wT)− (f2T+1)⋆
∥w⋆ −w0∥22

≥
− T

8(T+1) +
2T+1

8(2T+2)

8T+3
12

≥ 3

4(T + 1)(8T + 3)
≥ 3

32(T + 1)2
.

Lastly, tedious calculation verifies:

∥wT −w⋆∥22 ≥
2T+1∑
j=T+1

(1− j
2T+2)

2 ≥ 1

8

8T + 3

12
≥ 1

8
∥w0 −w⋆∥22,

which completes our proof.

Nesterov, Y. (2018). “Lectures on Convex Optimization”. 2nd. Springer.

Remark 18.19: Immediate consequences

We make the following immediate remarks with regard to Theorem 18.18:

• Drori (2017) improved Theorem 18.18 to: for all T ≤ d− 1, for all algorithm A (w/o (18.8)),

f(wT)− f⋆ ≥
L[1]∥w0 −w⋆∥22

2θ2T
≈ L[1]∥w0 −w⋆∥22

T 2
, where θt =


1, if t = 0
1+
√

1+4θ2
t−1

2 , if 1 ≤ t ≤ T − 1
1+
√

1+8θ2
t−1

2 , if t = T

,

which is tight even with matching constants!

• There is a significant gap between the lower bound and our existing upper bound: recall from The-
orem 2.21 the convergence rate is upper bounded by O(1/T), which is an order of magnitude worse
than what the lower bound indicates! This gap has directly inspired one of the most profound results
in gradient algorithms, as we will see in the next lecture.

Drori, Y. (2017). “The exact information-based complexity of smooth convex minimization”. Journal of Complexity,
vol. 39, pp. 1–16.

Alert 18.20: How to interpret lower bounds?

Lower complexity bounds as above reveal the worst-case behaviour of any algorithm. An algorithm that
achieves the lower bound is optimal in the worst-case sense. However, it does not mean an optimal algorithm
will necessarily converge faster than a suboptimal one on any particular problem instance. In fact, since our
two lower bounds are constructive, they do not tell us anything when the particular function that we aim
to minimize is not the ones constructed in the proof. In contrast, an upper bound on the convergence rate
would always hold regardless of what function we minimize (as long as it falls into the class). In short:

• An upper bound is for a particular algorithm and applicable to all functions (within a class).

Yaoliang Yu 177 –Version 0.1–October 18, 2021–

https://link.springer.com/book/10.1007/978-3-319-91578-4
https://doi.org/10.1016/j.jco.2016.11.001

CO673/CS794–working §18 LOWER BOUND I University of Waterloo �

• A lower bound is for a particular function and applicable to all algorithms (within a class).

We have also assumed an oracle access to the objective function. While this is reasonable in certain
settings (e.g. when the function is private or overly complicated), it is perhaps too strong in most settings.
As such, a natural question arises:

Can we strictly improve the convergence rate if we know more about the function class we aim
to minimize? If so, how?

The answer is surprisingly (or not surprisingly) yes, and we will see examples in later lectures.

Remark 18.21: Lower bound through smoothing

Guzmán and Nemirovski (2015) provided lower bounds for function class of milder smoothness, based on
the idea of smoothing, which we will discuss in a later lecture.

Guzmán, C. and A. Nemirovski (2015). “On lower complexity bounds for large-scale smooth convex optimization”.
Journal of Complexity, vol. 31, pp. 1–14.

Yaoliang Yu 178 –Version 0.1–October 18, 2021–

https://doi.org/10.1016/j.jco.2014.08.003

