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3 Conditional Gradient

Linear optimization, conditional gradient, matrix completion, totally corrective, linear convergence.

Alert 3.1: Convention

Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.

Definition 3.2: Problem

We revisit the constrained smooth minimization problem in Lecture 19:

wig 1), (31)

where C' C R? is a closed and bounded convex set. If the objective function f : R — R is L-smooth (see
Definition 1.11), we may apply projected gradient Algorithm 19.15. However, our main assumption in this
lecture is that the projection operator

P! (w) = Po(w) := argmin ||w — 2|3
zeC

is expensive or even hard to compute.

Example 3.3: Matrix completion (e.g. Jaggi and Sulovsky, 2010; Zhang et al., 2012)

Suppose we can only observe a few entries in a matrix A, and want to recover the remaining entries, under
the assumption that A is low-rank. Naturally, we can formulate this problem as

min Z (A” — XZ")Q,

X:rank(X)<k
RIS (i,7)€0

where & (small, fixed) is our guess of the rank of A. Since the rank function is not convex, a lot of work has
turned to its convex relaxation:

i Alag = 2G5
XXl <A Z (Ay )
(7'7])60

where the trace norm || X ||t := >, 03(X) is the sum of singular values o; of X, and XA > 0 is some fixed
hyperparameter. The projection operator onto the norm ball By := {X : || X |t < A} turns out to have a

“closed-form” solution. Let X = ULV T be its singular value decomposition (SVD), then
Pg, (X) = U diag(7)V'",

where - is the projection of o onto the ¢; norm ball {w : ||w||; < A}. However, this projection step requires
computing the full SVD of X, a cubic time operation!

Jaggi, M. and M. Sulovsky (2010). “A Simple Algorithm for Nuclear Norm Regularized Problems”. In: Proceedings
of the 27th International Conference on Machine Learning, pp. 471-478.

Zhang, X., Y. Yu, and D. Schuurmans (2012). “Accelerated Training for Matrix-Norm Regularization: A Boosting
Approach”. In: Advances in Neural Information Processing Systems.
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Example 3.4: Structural SVM (e.g. Lacoste-Julien et al., 2013)

Structural SVM is an extension of SVM to the case where the label space can be exponentially large:

n

LA 1
min §Ilw||% + =) max [A(y,yi) + (W, o(x5,¥) — (x5, ¥4)) | (3:2)
w n =1 YEYi

where )); is the label space for the i-th training sample (x;,y;), and ¢(x,y) is the feature transform. In many
applications |);| can be exceedingly large. For our purpose to solve (3.2), it suffices to have the following
oracle (a.k.a. loss augmented inference):

al;gergljéx [A(y’yz) aln <W7 (p(xia y) - So(xﬂyl»:l

The objective function of structural SVM is not differentiable, but it is a convex problem. We can of course
apply the subgradient algorithm (later), if the above oracle is available (for computing a subgradient).
Note that the structural SVM objective is A-strongly convex, hence the dual problem is %—smooth:

o1 2
min o lldafz — (b, e},
s.t. Vi, Z a;(y) =1,

YEY;

where o € R™ with m = 3, |, the columns of A are {1p(x;,y) — ¢(x;,y:) 1 i =1,...,n,y € Vi}, and
the entries of b are {1A(y;,y) : i =1,...,n,y € V;}. In other words, & € S := S; x S3 X --- X Sy, a
product of n simplexes. Note that dim(S;) = |V;| can be exponentially large, so projecting onto S; can be
very expensive.

Further follow-up work on this include Shah et al. (2015), Beck et al. (2015), Wang et al. (2016), and
Osokin et al. (2016).

Lacoste-Julien, S., M. Jaggi, M. Schmidt, and P. Pletscher (2013). “Block-Coordinate Frank-Wolfe Optimization for
Structured SVMs”. In: Proceedings of the 30th International Conference on Machine Learning, pp. 53—61.

Shah, N., V. Kolmogorov, and C. H. Lampert (2015). “A multi-plane block-coordinate Frank-Wolfe algorithm for
training structural SVMs with a costly max-oracle”. In: 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2737-2745.

Beck, A., E. Pauwels, and S. Sabach (2015). “The Cyclic Block Conditional Gradient Method for Convex Optimization
Problems”. SIAM Journal on Optimization, vol. 25, no. 4, pp. 2024-2049.

Wang, Y.-X., V. Sadhanala, W. Dai, W. Neiswanger, S. Sra, and E. Xing (2016). “Parallel and Distributed Block-
Coordinate Frank-Wolfe Algorithms”. In: Proceedings of The 33rd International Conference on Machine Learning,
pp. 1548-1557.

Osokin, A., J.-B. Alayrac, I. Lukasewitz, P. Dokania, and S. Lacoste-Julien (2016). “Minding the Gaps for Block
Frank-Wolfe Optimization of Structured SVMs”. In: Proceedings of The 33rd International Conference on Machine
Learning, pp. 593-602.

\

Definition 3.5: Support function

Recall the indicator function of a set C:

0, wedC
to(w) = 00, wel'

We now define the support function o¢ which is the dual of the indicator function:

o(w*) = sup (w;w").
weC
The support function is always (closed) convex (even for nonconvex set C'). The maximizers in the above
definition, collectively denoted as do(w*), will be called the subdifferential of o at w*. The meaning of
subdifferential will become clear in the next lecture.
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Remark 3.6: Motivation from optimality condition

Let us motivate the conditional gradient algorithm using the optimality condition (19.8) for (3.1):

Yw e C,(w—w,; Vf(w,)) >0 < Vw e C,(w,; =V f(w.)) > (w; =V f(wy))
— w, € (1 —n)w, +n-argmax (w; =V f(w,))
weC

— w,€(1l—nw.+n-00(=Vf(wy)),
leading to the fixed point iteration
Wil < (L= n)wy +m - 0o (=V f(wy)).

Clearly, if w; € C and n; € [0, 1], we automatically have w;; € C!

Algorithm 3.7: Conditional gradient (Frank and Wolfe, 1956; Dem’yanov and Rubinov, 1967)

Algorithm: Conditional gradient (condgrad)

Input: wy e C
1 fort=0,1,... do

2 z; < argmax (z; —V f(w;)) // polar operator
zcC

3 choose step size 1, € [0, 1]

4 | Wi — (L—n)w + 2y // convex combination

Unlike the quadratic proximal step in proximal gradient Algorithm 2.17, the only nontrivial step in line
2 is a linear minimization problem, hence we know z; can be chosen as one of the extreme points of C'
(see Exercise 3.8 below)! Essentially, the algorithm iteratively selects extreme points of C' and takes convex
combinations of them.

Since —V f(wy) is the gradient direction for reducing f, we can also interpret line 2 as finding a direction
in C that correlates the most with —V f(wy).

how about Dem’yanov and Rubinov, 19657

Frank, M. and P. Wolfe (1956). “An Algorithm for Quadratic Programming”. Naval Research Logistics Quarterly,
vol. 3, no. 1-2, pp. 95-110.

Dem’yanov, V. F. and A. M. Rubinov (1967). “The Minimization of a Smooth Convex Functional on a Convex Set”.
SIAM Journal on Control, vol. 5, no. 2, pp. 280-294. [English translation of paper in Vestnik Leningradskogo
Universitera, Seriya Matematiki, Mekhaniki i Astronomii vol. 19, pp. 7-17, 1964].

— (1965). “On the Problem of Minimization of a Smooth Functional with Convex Constraints”. Soviet Mathematics
Doklady, vol. 6, no. 1, pp. 9-11.

Convex maximization

Recall that w € C is an extreme point (of C) if it does not lie on the line segment of any two points in C.
In other words, if w € [wy, wa], w1, W € C then w = w; = wa. For a convex set C, w € C is an extreme
point iff C'\ {w} remains convex.

Prove that for any convex function, an exterme point of the maximizer set

argmax f(w),
weC

if exists, is necessarily an extreme point of the constraint set C' (not necessarily convex). [Hint: recall the
definition of a convex function.|

Thus, when the maximizer set has an extreme point, e.g., when f is (upper semi)continuous and C' is
compact, we may always restrict the maximization problem into the extreme points of C.
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Find out the extreme points of the £,-norm ball B, := {w € R? : |w|, < 1}, for p € {1,2,00}, as well as
the simplex A := {w € R?: w > 0, Zj w; = 1}. The following pictures in R? may help you:

[Hint: read the first paragraph in Exercise 3.8.]

Remark 3.10: Step size selection

There are a few ways to choose the step size:

e Open-loop rule: ny = or more generally n; = ©(1/t).

_2_
t+2°

e Cauchy’s rule: n; € argmin f((1 — n)wy + nz¢).

0<n<1
1
e Quadratic rule: n; = argmin f(w;) + 7; (z — w; V.f (W) + LQntZ”WQt_zt”z = [<W|_f2_”f;;i’zc(ﬁv;)>} .
0<n<1 t—Zt 0

Example 3.11: Does it work?

Consider the following simple problem:

glen(} f(w), where f(w)=w?+ (wz+1)> and C:={w:w; €[-1,1],ws € [0,2]}.

The global minimizer is clearly at w, = (0,0), as indicated in the following plots:
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Let us see how the conditional gradient Algorithm 3.7 works on this toy problem:

e We first identify the four extreme points of C' as
VAR (—1,0), Zy = (1,0), Z3 = (].,2), Z4 = (—1,2).

e Start with say wy = (1, 1), we compute the gradient V f(wy) = (2,4).

e Then, we pick the extreme point z that maximizes (z; —V f(wy)). Clearly, z; wins.
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e Next, we find 7 > 0 to minimize f((1 —n)wy + nz1) by setting its derivative w.r.t. 7 to 0 :

(w+(0,1),w—2z) 4

e [

o Lastly, we compute wo = (1 —n1)wy +mz1 = (—%, %), and the process repeats.

2
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The convergence rate closely follows ©(1/t), while projected gradient Algorithm 19.15 converges in 2
iterations for this example!

> ‘ ‘ ‘ " [—conditional gradient|
4.5 —1/(k+2

o
o
-
o
-
o
8
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Remark 3.12: Greedy algorithm for submodular functions

If C is the base polyhedron of a submodular function, then the linear subproblem is exactly Edmonds’ greedy
algorithm.
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History 3.13: Frank and Wolfe’s motivation

The original motivation behind Algorithm 3.7 is to solve quadratic programs (see also Wolfe (1959)), using
the then-newly-minted simplex algorithm for linear programming (LP) as a subroutine. Indeed, when C' is
a polytope, the linear subproblem in line 2 is an LP.

We note that George Dantzig’s PhD thesis was on solving an open problem that he mistakenly thought
to be an assignment (since he was late for class)...

Wolfe, P. (1959). “The Simplex Method for Quadratic Programming”. Econometrica, vol. 27, no. 3, pp. 382-398.

Example 3.14: Sparsity! (e.g. Shalev-Shwartz et al., 2010; Clarkson, 2010; Hazan, 2008)

Let C := {w : |[w|1 < A} be the scaled ¢; norm ball. Then, the polar operator in line 2 of Algorithm 3.7,
with the help of Exercise 3.9, reduces to

z; = argmax (z; —V f(w;)) 3 —)Xe;, where (e;;V,f(wy)) = max |V, f(wy)].
[lz[l1 <X J

In particular, we may choose e; to be the i-th standard basis (i.e. 1 at the i-th entry and 0 elsewhere). It
follows that after ¢ steps, the iterate w; has (added) at most ¢ nonzeros! In comparison, after even a single
iteration, projected gradient can result in a fully dense iterate! On the downside, the resulting coordinate-
wise update is a bit wasteful though: we compute the entire gradient V f only to find its minimum index
and throw out everything else...

The picture changes dramatically once we move to the matrix setting; recall Example 3.3. With C' =
{W : ||W]|tz < A} being the trace norm ball, the polar operator reduces to computing the spectral norm:

Z; = argmax (Z; -V f(W)) = —duv', where u'Vf(Wy)v = ||[VFW)|lsp-
HZ”trS)\

Thus, after t steps, the iterate W; has (added) rank at most t. Moreover, computing the spectral norm,
i.e. the largest singular value, costs quadratic time, which is one magnitude cheaper than the projection
operator (which costs cubic time due to computing all singular values).

Shalev-Shwartz, S., N. Srebro, and T. Zhang (2010). “Trading Accuracy for Sparsity in Optimization Problems with
Sparsity Constraints”. SIAM Journal on Optimization, vol. 20, no. 6, pp. 2807-2832.

Clarkson, K. L. (2010). “Coresets, Sparse Greedy Approximation, and the Frank-Wolfe Algorithm”. ACM Transac-
tions on Algorithms, vol. 6, no. 4, pp. 1-30.

Hazan, E. (2008). “Sparse Approximate Solutions to Semidefinite Programs”. In: Latin American Conference on
Theoretical Informatics, pp. 306-316.

Remark 3.15: Algorithmic equivalence between projection and polar

Despite the drastic difference in complexity, the projection operator and the polar operator are in some sense
algorithmically equivalent: Given a polar operator, we can simply apply the conditional gradient algorithm
to numerically compute the projection. The converse is also true using a simple bisection search, see e.g.
Zhang et al. (2013, Proposition 2).

Zhang, X., Y. Yu, and D. Schuurmans (2013). “Polar Operators for Structured Sparse Estimation”. In: Advances in
Neural Information Processing Systems 27 (NIPS).

Theorem 3.16: Convergence in terms of function values

Suppose f is convex and L = LM-smooth, and C' is compact convex with bounded diameter p. Then, the
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iterates generated by Algorithm 3.7 satisfy: for allw € C,

Lp? = 7
F(wi11) < F(w) + w1 = m0) (f(wo) = F(w)) + == D oo, (3:3)
s=0 "%
where m; 1= HZ=1(1 —ns) with mp := 1. In particular, setting n; = :&-%2’ we have ng = 1, my = m and
2L p?
— <
f(wt) f(w)—t+3a
where the initializer wq, surprisingly, does not play any role.
Proof: Indeed, for any w € C:
fwira) = f(w) = f((1 = me)we +meze) — f(w)
2
(LM-smoothness) < f(wy) — f(w) + ne (20 — wi; V. (wi)) + un [wi — 2
2 —
<p?
02
(optimality of z;) < f(wy) — f(W) +ne (W —wy; V(wy)) + ?tLp2
2
(convexity of f) < (1—ne)(f(we) = f(w)) + "Ly
Telescoping and collecting the terms we arrive at the claim (3.3). [ ]
In fact, with the same step size choice, we can prove the same convergence rate for the duality gap:
2L p?
fwi) = f(w) < (W = w; Vf(wy)) < (wy — 243 Vf(wy)) < (34)

t+3’

where the highlighted term is computable hence can be monitored as a convergence criteria.
Inspecting the proof we see that all we need about f, aside from convexity and l.s.c., is that there exists
some constant K so that for all w,z € C and n € [0, 1],

F(( = mw +nz) < f(W) +1(z — w; Vf(w)) + Kn?,

which continues to make sense even in a TVS, as already being pointed out in e.g. Auslender (1968).

Auslender, A. (1968). “Algorithme de recherche des points stationnaires d’une fonctionnelle dans un espace vectoriel
topologique application a un probleme de controle a evolution non lineaire”. Comptes rendus mathématiques de
[’Académie des Sciences, Paris, vol. 266, pp. 226—229.

Example 3.17: Lower bound in high dimension

We mention the simple lower bound from Jaggi (2013). Consider the trivial minimization problem (that
vacuously projects a point él to the simplex where it resides):

H 1 1112
min gflw - 31]2.

Let us apply Algorithm 3.7 with initialization wy = e;. Due to the sparse property (see Example 3.14),
after ¢ iterations, w; has at most ¢ + 1 nonzeros. However, using symmetry we know that

O() =3~ 1) = 3t — 1+ (@~ (3] = 1

: 1902 _ 1 2 1, 1

min sw =315 =5|lw|l2 — 5 + 55-
womin Hlw = 13 = HiwlE — 4 + &
In other words, the conditional gradient algorithm converges exactly at the rate @(%) for this simple problem
(when the dimension d is large).
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Jaggi, M. (2013). “Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization”. In: Proceedings of the 30th
International Conference on Machine Learning, pp. 427-435.

Example 3.18: Exact O(1/t) rate in low dimension (Canon and Cullum, 1968)

Consider the simple 2-d minimization problem:

mibn a>+(1+b)?, st. |a| <1, 1>b>0.

The following observations are easy to verify:

e The minimum value f, =1 is attained at a unique minimizer w, = (0, 0), which lies on the boundary
of the constraint.

e Line 2 yields z; = (—sign(a¢),0), since the gradient is (2a, 2(1 + b)).

e Line 4 chooses 7 optimally: 7; = argmin [(1 — n)|as| — n]® + [1 + (1 — n)b)? = %j AL

n€(0,1]

For ¢ large, n: < 1 (since a4, by — 0 according to Theorem 3.16) and

(af 4 |as| + 07 + by)?
(lag| +1)2 + b?

fry1 = fi —

It can be proved that f; = Q(1/t), while from Theorem 3.16 we already know f; = O(1/t) hence in
fact fr = ©(1/t).

We have thus created a simple low dimensional example where Algorithm 3.7 converges exactly at ©(1/t).
Put differently, the rate proved in Theorem 3.16 cannot be improved without further assumption or modifi-
cation! We note that a more substantial lower bound that also holds for other algorithms is given in Guzman
and Nemirovski (2015).

Canon, M. D. and C. D. Cullum (1968). “Tight Upper Bound on the Rate of Convergence of Frank-Wolfe Algorithm”.
SIAM Journal on Control, vol. 6, no. 4, pp. 509-516.

Guzman, C. and A. Nemirovski (2015). “On lower complexity bounds for large-scale smooth convex optimization”.
Journal of Complexity, vol. 31, pp. 1-14.

Remark 3.19: Multiplicative approximate guarantee

Recall from Example 3.14 that when we lift from vectors to matrices, conditional gradient saved us an order of
magnitude per-step complexity. Things get even more weary if we lift the domain further to tensors (e.g. high
dimensional matrices): the tensor spectral or trace norm is known to be NP-hard to evaluate. Nevertheless,
there is a straightforward multiplicative algorithm for approximating the tensor spectral norm, and Cheng
et al. (2016) showed that the conditional gradient algorithm pleasantly inherits the same multiplicative factor
(which unfortunately is dimension dependent).

Cheng, H., Y. Yu, X. Zhang, E. Xing, and D. Schuurmans (2016). “Scalable and Sound Low-Rank Tensor Learning”.
In: International Conference on Artificial Intelligence and Statistics (AISTATS).

Algorithm 3.20: Extension to the composite setting

For the composite minimization problem

min Uw) +r(w),

Bonesky et al. (2007) and Bredies et al. (2009) proposed the generalized conditional gradient algorithm,
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which amounts to changing Line 2 in Algorithm 3.7 naturally to

z; = argmin (z; V{(wy)) + r(z).

When r is homogeneous (e.g. a norm), the above subroutine may not admit any minimizer (diverging
possibly to —oo), which was addressed by Yu et al. (2017) through a simple line search.

Bonesky, T., K. Bredies, D. A. Lorenz, and P. Maass (2007). “A Generalized Conditional Gradient Method for
Nonlinear Operator Equations with Sparsity Constraints”. Inverse Problems, vol. 23, no. 5, pp. 2041-2058.

Bredies, K., D. A. Lorenz, and P. Maass (2009). “A Generalized Conditional Gradient Method and its Connection to
an Iterative Shrinkage Method”. Computational Optimization and Applications, vol. 42, pp. 173-193.

Yu, Y., X. Zhang, and D. Schuurmans (2017). “Generalized Conditional Gradient for Structured Sparse Estimation”.
Journal of Machine Learning Research, vol. 18, pp. 1-46.

Definition 3.21: Weakly and strongly convex functions

We call a function f : R — R o-weakly convex (w.r.t. some norm | - ||) if there exists some o € R such
that for all w,z € R and \ € [0, 1]:

AL =N

FOz+ (1= Nw)+o- =

Iw — 2] < Af(2) + (1 = A) f(w).

The largest such o = o(f) is called the modulus of convexity of f.
Some authors call f o-strongly convex when o > 0.

Proposition 3.22: Characterization of weak and strong convexity

A smooth function f : R? — R is o-weakly convex iff
(1). vw, ¥z, f(z) > f(w) +(z — w; Vf(w)) + [lw — z||*.
(). Yw,Vz, (z —w;Vf(z) - Vf(w)) > o|w—z|>

(IT). Yw,Vz, (z;V2f(w)z) > o|z|2.
For strongly convex functions (i.e. o(f) > 0) we further have the following equivalence:
(IV). ¥w,¥z, f(z) < f(w) +(z — w; Vf(W)) + 5[V f(w) = VF(2)|3-
(V). Yw,Vz, (z—w;Vf(z) = Vf(w)) < JIVf(w) = V(2|3
(VD). Yw,Vz, |V f(z) = Vf(w)|o > ofw —z]|.

Proof: The proofs for (I) <= (II) <= (III) are completely similar to Proposition 1.12, while the
implications (II) = (VI) = (V) and (IV) = (V) are clear.

Let us first prove (V) = (III). Indeed, dividing ||z — w|? on both sides of (V) and letting Toow] U
we have

(u; V2 f(w)u) < 2|V f(w)ulf2.

Since f is strongly convex, we know from (IIT) that V?f is non-degenerate. Conjugating on both sides above
we obtain:

(W [V2f(w)]"u) > o[V f(w)] " a2,

which, upon change of variable, is exactly (III).
Lastly, we prove (I) = (IV) when o > 0. Fixing w, it is clear that

Dy(v;w) := f(v) = f(W) = (v = w; Vf(w))
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is also o-weakly convex as a function of v, i.e.
Dy (viw) > Dy(z;w) + (v — 2V f(2) = Vf(w)) + §llv — 2|,

which can also be directly verified from (I) by straightforward simplification. Minimizing w.r.t. v on both
sides and using the fact that Dy > 0 with 0 achievable (at say v = w):

0> minDy(z w) + (v — 2 V(z) ~ Vf(w)) + §[lv -z
= minDy(z;w) + |V (z) ~ VF(w)ot + §1*
— Dj(ziw) — £VF(2) - VIW)IZ,
which is exactly (IV). |

In particular, when the underlying norm is Euclidean, condition (IIT) means that the smallest eigenvalue
of the Hessian is bounded from below by o, or equivalently iff f — || - ||2 is convex. However, we emphasize
that this neat observation only holds for the Euclidean norm! Sun and Yu (2019) and the references therein
documented many nice properties of weakly convex functions.

We point out that (IV) and (V) trivially hold for any constant function (with any o), which is why we
have to restrict to strongly convex functions in establishing the equivalence (V) = (III). On the other
hand, (VI) automatically implies the function is strongly convex.

Rockafellar (1976, Prop 6) established the equivalence to (I) and (II), even when f may be nonsmooth.

Sun, S. and Y. Yu (2019). “Least Squares Estimation of Weakly Convex Functions”. In: International Conference on
Artificial Intelligence and Statistics (AISTATS).

Rockafellar, R. T. (1976). “Monotone Operators and the Proximal Point Algorithm”. SIAM Journal on Control and
Optimization, vol. 14, no. 5, pp. 877-898.

Exercise 3.23: Spectrum equality

Prove the following equality for any positive definite matrix A:

min (u; Au) = min ||Aull.
luf=1 flufj=1

(The similar equality relating the maximum was already established in the proof of Theorem 1.13). This
result is easy for the Euclidean norm. However, we are asking for a proof that works for any norm.

[Hint: consider the strongly convex function  (u; Au). Can you find a direct proof?]

Example 3.24: o-strong convexity and L'-smoothness

Consider the univariate function
f(w) = sin(w) + w?.
It is easy to verify that
f(w) = cos(w) + 2w, " (w) = —sin(w) + 2 € [1, 3].

Thus, we have
o= [inf f”(w)] =1, L=LM= [sup f”(w)} =5
@ w
Fix any z, for definiteness say z = 1. Since f is convex, we have the lower bound (see Theorem 0.29):

fw) > f(2) + f(z)(w—2) =sin(1) + 1 + [cos(1) + 2](w — 1).
=L(w)
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In fact, we can strengthen the bound using o-convexity and L-smoothness:

O(w) + Z(w — 2)? < f(w) < 6(w) + 5(w — 2)2

) -1 0 1 2

The black curve above depicts our function f while the blue straight line is the linear lower bound /(w). On

the right panel, the red curve, with L = 3, gives the tightest upper quadratic bound ¢(w) + %(w — 2)? while

the green curve, with o = 1, gives the tightest lower quadratic bound /(w) + % (w — z)2. Note that all curves

2
coincide at z, the point we choose to derive the bounds.

T T
4l 14 )
2, .
2, |
0, .
0, |
—2 .
_9l 1 _4l |
| | | | | |

=2 =l 0 1 2 =2 -1 0 1 2

Of course, any L > 3 is also a valid L[!-smoothness parameter (just not the tightest). On the left panel
above, with a bigger L, e.g. L = 6, the quadratic upper bound /(w) + %(w — 2)? becomes steeper (the pink
curve) when compared to L = 3 (the red curve). It is apparent that with a bigger L the quadratic bound
is looser and steeper, hence the range where it approximates f well becomes smaller. This explains why in
gradient algorithms we usually have n o %, i.e., the bigger L is, the smaller the step size needs to be in order
to avoid moving too fast (hence stepping outside of the reasonable range of approximation). On the right
panel, we show the two quadratic lower bounds (o = 0.2 vs. o = 1). It is clear that any o <1 is also a valide
convexity parameter (just not the tightest). As o — 0, the quadratic lower bound (in cyan) becomes looser
and looser, and eventually approaches the linear lower bound (in blue, o = 0).

Alert 3.25: Duality between smoothness and strong convexity

The equivalent conditions (I) and (IV) in Proposition 3.22 actually reveal something fundamental: A convex
function f is o-strongly convex iff its Fenchel conjugate function f* (see Definition 0.28) is %—smooth!
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To see this equivalence, let us recall the Fenchel-Young equality:

fw)+ 7(Vf(w)) = (w; Vf(w)), and z =V [f*(Vf(2)).

Thus, condition (IV) can be rewritten as

—f*(Vf(2)) < =1 (VW) + (5 V(w) = V(2)) + V(W) - VI(@)]3,

which is exactly the %—smoothless of f*!

It is instructive to simplify the conditions in Proposition 3.22, Theorem 1.13, Proposition 1.12 and
Exercise 3.26 (below) for the quadratic function q4(u) = % (u; Au). Inspecting the proofs we realize that
the duality between smoothness and strong convexity is largely a property of positive definite matrices (that
induce quadratic functions (u; Au)), along with the simple conjugation result: [$]| - [|2]* = 3| - ||2.

A convex function f is L = LM-smooth iff for all w and z:
o f(2) > f(W)+ (z = w; V(W) + 5 [VF(z) = V(w2
o (z—w;Vf(z) - Vf(w)) > {|VF(w) - Vf(z)|2.

Definition 3.27: Matching loss

Let us record the simple equality:
Ds(w;z) = Dy« (Vf(2); Vf(w)), note the swapping of arguments.
L-smoothness and o-weak convexity simply correspond to the left and right side of the sandwiching;:

5llw —2|* > Dy(wiz) > §llw — 2%,

which, using duality and the above equality, is equivalent to

s IV f(2) = VF(W)|I* = Dy(w;2) = Dy« (Vf(2); V(W) 2 5[V f(2) = V(W)
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Theorem 3.28: Linear convergence (Guélat and Marcotte, 1986; Beck and Teboulle, 2004)

Suppose f is o-strongly convex and L = LM-smooth, C is closed convex with diameter p, and the unique
minimizer w, is in the interior, i.e. By, (r) C C. Then, the iterates generated by Algorithm 3.7, with either
Cauchy’s or quadratic step size, satisfy:

VE>T =4y =3, f(wi)— f(w.) < (1= (f(wr) — f(w.),

i.e., the algorithm converges linearly, where the “condition number” ~ := g;; .

Proof: We bound the progress of the algorithm similarly as in Theorem 3.16:
Jwig1) = f(wi) = f((1 = n))we + meze) — f(wi)

2
(L-smoothness) < f(w¢) — (W) + 1t (2 — Wi V.F(wy)) + %ant —z?

2
(optimality of z; vs. By, (r)) < f(wi) — f(Wy) + ne (Wi — Wy V(W) — et ||V f (We)]|o + Wt_;-p2
2
(convexity of f) < f(wy) — f(wy) — ner||[Vf(we)|lo + n;Lpz

2
< Flwi) = f(w) = mry/207(we) — Fw)) + 52,

where the last inequality follows from condition (IV) in Proposition 3.22 (recall that V f(w,) = 0 since w,
is an interior point). Choosing n; € [0, 1] to minimize the last term:

V2T =7 | |

Lp2 ’

N =
which yields the estimate

Fwesa) = fo < (1= E2) (Fwe) = £2),
as long as n; < 1, i.e., t > T using the sublinear rate (3.4) in Theorem 3.16. |

The linear convergence rate here was first proved by Guélat and Marcotte (1986) and then rediscovered
by Beck and Teboulle (2004). Garber and Hazan (2015) also proved a faster rate when the constraint is
“strongly convex,” while Ahipasaoglu et al. (2008) and Beck and Shtern (2017) contain further refinements.

See also Dvurechensky et al. (2020) for an analysis based on self-concordance.

Guélat, J. and P. Marcotte (1986). “Some comments on Wolfe’s ‘away step”. Mathematical Programming, vol. 35,
pp. 110-119.

Beck, A. and M. Teboulle (2004). “A Conditional Gradient Method with Linear Rate of Convergence for Solving
Convex Linear Systems”. Mathematical Methods of Operations Research, vol. 59, pp. 235-247.

Garber, D. and E. Hazan (2015). “Faster Rates for the Frank-Wolfe Method over Strongly-Convex Sets”. In: Pro-
ceedings of the 32nd International Conference on Machine Learning, pp. 541-549.

Ahipasaoglu, S. D.; P. Sun, and M. J. Todd (2008). “Linear convergence of a modified Frank-Wolfe algorithm for
computing minimum-volume enclosing ellipsoids”. Optimization Methods and Software, vol. 23, no. 1, pp. 5-19.

Beck, A. and S. Shtern (2017). “Linearly convergent away-step conditional gradient for non-strongly convex functions”.
Mathematical Programming, vol. 164, pp. 1-27.

Dvurechensky, P., P. Ostroukhov, K. Safin, S. Shtern, and M. Staudigl (2020). “Self-Concordant Analysis of Frank-
Wolfe Algorithms”. In: Proceedings of the 37th International Conference on Machine Learning.
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Algorithm 3.29: Totally corrective (Meyer, 1974; Holloway, 1974)

Inspecting Algorithm 3.7 we realize that
Wil € conv{wo, z1,. .., %},

where the extreme points zj; are repeatedly identified and averaged. One immediate, natural idea is to
replace the next iterate w;;1 as the best approximation in the entire convex hull:

Wiyl = argmin f(w). (3.5)

weconv{wo,z1,...,2¢ }

Such a scheme is termed totally corrective (where we correct all “weak” classifiers), and was due to Meyer
(1974) and Holloway (1974). Needless to say, the totally corrective variant can potentially converge much
faster (see Example 3.17 though). However, the price to pay is that solving (3.5) is itself non-trivial, even
when f is quadratic. In fact, the latter problem has been attacked using the original conditional gradient
Algorithm 3.7 in Mitchell et al. (1974) and Wolfe (1976)!

Meyer, G. (1974). “Accelerated Frank-Wolfe Algorithms”. SIAM Journal on Control, vol. 12, no. 4, pp. 655-655.

Holloway, C. A. (1974). “An extension of the Frank and Wolfe method of feasible directions”’. Mathematical Program-
ming, vol. 6, pp. 14-27.

Mitchell, B. F., V. F. Dem’yanov, and V. N. Malozemov (1974). “Finding the Point of a Polyhedron Closest to the
Origin”. SIAM Journal on Control, vol. 12, no. 1, pp. 19-26.

Wolfe, P. (1976). “Finding the nearest point in A polytope”. Vol. 11, pp. 128-149.
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