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7 Acceleration

Goal

Heavy-ball, momentum, accelerated proximal gradient, FISTA, optimal rate of convergence

Alert 7.1: Convention

Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.

Definition 7.2: Problem

We revisit the following problem:

min
w∈Rd

ℓ(w) + r(w), (7.1)

where ℓ is an L = L[1]-smooth function (w.r.t. ∥ · ∥2) and r is any function whose proximal map is well-
defined and easily computable. We solved (7.1) in Lecture 2 using the proximal gradient Algorithm 2.17,
and obtained the O(1/t) rate of convergence (in terms of function value) when both ℓ and r are convex. In
this lecture we improve the convergence rate to O(1/t2), which is optimal.

Algorithm 7.3: Heavy ball (Polyak, 1964)

To motivate our development, let us first consider the simpler unconstrained minimization problem:

min
w∈Rd

f(w),

where f is L[1]-smooth. We have seen the gradient Algorithm 1.4 may zigzag when f is ill-conditioned (i.e.
the ratio between the largest and smallest eigenvalues of ∇2f is large). To address this issue, Polyak (1964)
proposed the following heavy-ball method:

wt+1 = wt − ηt∇f(wt)︸ ︷︷ ︸
gradient step

+βt(wt −wt−1)︸ ︷︷ ︸
momentum

= (1 + βt)wt − βtwt−1︸ ︷︷ ︸
extrapolation

−ηt∇f(wt), (7.2)

where typically w1 = w0 (so that at t = 1 we start with the usual gradient step).
To see the physical meaning of (7.2), let us derive the underlying continuous analogue:

0 = [(wt+1 −wt)− (wt −wt−1)] + (1− βt)(wt −wt−1) + ηt∇f(wt)

≈ ẅ(t) + (1− βt)ẇ(t) + ηt∇f(w(t)),

which follows from the usual finite-difference approximation of the time derivative ẇ. We may now interpret
w(t) as the position of a heavy ball, whose velocity is ẇ(t) and acceleration is ẅ(t) whereas the function f
acts as its potential energy. From the last equation in (7.2) we also see the extrapolation effect if βt > 0 (as
opposed to interpolation when βt < 0, which amounts to a convex combination of the previous two positions
wt−1 and wt).

With suitable choices of ηt and βt, heavy-ball was shown to converge optimally on strongly convex
quadratic functions. However, proving its convergence rate for even L[1]-smooth functions has remained
challenging.
Polyak, B. T. (1964). “Some methods of speeding up the convergence of iteration methods”. USSR Computational

Mathematics and Mathematical Physics, vol. 4, no. 5, pp. 791–803.
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Remark 7.4: Convergence of heavy ball

Danilova et al. (2020) proved the convergence of the heavy ball algorithm when ℓ is L[1]-smooth, by con-
structing an interesting Lyapunov function. See also Ghadimi et al. (2015).
Danilova, M., A. Kulakova, and B. Polyak (2020). “Non-monotone Behavior of the Heavy Ball Method”. In: Difference

Equations and Discrete Dynamical Systems with Applications. Ed. by M. Bohner, S. Siegmund, R. Šimon Hilscher,
and P. Stehlík, pp. 213–230.

Ghadimi, E., H. R. Feyzmahdavian, and M. Johansson (2015). “Global convergence of the Heavy-ball method for
convex optimization”. In: European Control Conference (ECC), pp. 310–315.

Algorithm 7.5: Nesterov’s momentum

In heavy ball, we perform an extrapolation step and then a gradient step. However, the gradient is not
computed at the extrapolated position but at the current position wt. This motivates us to consider the
following ingenious variation due to Nesterov (1983):

zt+1 = wt + βt(wt −wt−1)

wt+1 = zt+1 − ηt∇f(zt+1),

where the only difference from heavy ball (7.2) is that the gradient is now evaluated at the extrapolated
position zt+1. This modification may seem minor in retrospective, but quite remarkably it leads to an optimal
convergence rate O(1/t2).

A similar continuous analogue was derived by Su et al. (2016). Indeed, with a constant step size ηt ≡ η
and set w(t) = wt/

√
η we obtain as before:

0 =
(wt/

√
η+1 −wt/

√
η)− (wt/

√
η −wt/

√
η−1)√

η
+ (1− βt/

√
η)
wt/

√
η −wt/

√
η−1√

η
+
√
η∇f(zt/√η+1)

=
(w(t+

√
η)−w(t))− (w(t)−w(t−√η))

√
η

+ (1− β(t))
w(t)−w(t−√η)

√
η

+
√
η∇f(z(t+√η))

= ẅ(t)
√
η + (1− β(t))[ẇ(t)− 1

2ẅ(t)
√
η] +

√
η∇f

(
w(t) + β(t)(w(t)−w(t−√η))

)
+ o(
√
η)

=
√
η
[β(t) + 1

2
ẅ(t) +

1− β(t)
√
η

ẇ(t) +∇f
(
w(t)

)
+ o(1) +O(

√
ηβ(t))

]
.

Letting

β(t) = βt/
√
η =

t−√η a−1
2

t+
√
η a+1

2

, a ≥ 3

and letting η → 0 we have

β(t) + 1

2
= 1 + o(1),

1− β(t)
√
η

=
a

t
+ o(1),

√
ηβ(t) = o(1).

Dropping the lower order term o(1) we finally arrive at:

ẅ(t) +
a

t
ẇ(t) +∇f

(
w(t)

)
= 0,

which has been heavily studied since.
Nesterov, Y. E. (1983). “A Method for Solving a Convex Programming Problem with Convergence Rate O(1/k2)”.

Soviet Mathematics Doklady, vol. 27, no. 2, pp. 372–376.
Su, W., S. Boyd, and E. J. Candès (2016). “A Differential Equation for Modeling Nesterov’s Accelerated Gradient

Method: Theory and Insights”. Journal of Machine Learning Research, vol. 17, no. 153, pp. 1–43.
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Algorithm 7.6: FISTA (Beck and Teboulle, 2009; Nesterov, 2013)

We now extend Nesterov’s momentum to the composite problem (7.1). We simply keep the extrapolation
step but augment the gradient step, which amounts to minimizing the familiar quadratic upper bound:

wt = argmin
w

ℓ(zt) + ⟨w − zt,∇ℓ(zt)⟩+ 1
2ηt
∥w − zt∥22 + r(w)

= Pηt
r (zt − ηt∇ℓ(zt)).

Algorithm: Accelerated Proximal Gradient, a.k.a. FISTA
Input: w0 = z1, γ1 = 1, η0

1 for t = 1, 2, . . . do
2 choose step size ηt ≤ ηt−1 // step size can only decrease
3 ut = zt − ηt∇ℓ(zt) // gradient step w.r.t. ℓ

4 wt = Pηt
r (ut) = argminu

1
2ηt
∥ut − u∥22 + r(u) // proximal step w.r.t. r

5 γt+1 =
1+
√

1+4γ2
t

2

6 βt =
γt−1
γt+1

// momentum size
7 zt+1 = wt + βt(wt −wt−1) // extrapolation

Beck, A. and M. Teboulle (2009). “A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems”.
SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–202.

Nesterov, Y. E. (2013). “Gradient Methods for Minimizing Composite Functions”. Mathematical Programming, Series
B, vol. 140, pp. 125–161.

Remark 7.7: Observations on FISTA

A few comments on FISTA are in order:

• Needless to say, when r ≡ 0 in Algorithm 7.6, FISTA reduces to the original algorithm of Nesterov.

• With the choice γ1 = 1, w0 does not really play any role: the first step of the algorithm (i.e. t = 1) is
simply a proximal gradient step.

• FISTA in Algorithm 7.6 requires the smooth function ℓ to be defined over the entire space Rd, since
the extrapolated sequence zt may jump outside of dom r. On the other hand, the proximal sequence
wt remains in dom r by construction. Variants that make sure zt remains in dom r include Nesterov
(2005) and Auslender and Teboulle (2006).

• We note that the momentum choice βt = γt−1
γt+1

is w.l.o.g. Indeed, given any sequence βt, we may
recover γt = 1 ⇐⇒ βt = 0 (which corresponds to a standard gradient step), and given γj such that
βj−1 = 0 and for all t ∈ [j, i], βt ̸= 0, we have

∀t ∈ [j, i], γt+1 =
γt − 1

βt
=

γj − 1−
∑t−1

m=j

∏m
k=j βk∏t

k=j βk

.

In particular, the choice

γt =
t+ a− 2

a− 1
, or equivalently βt =

t− 1

t+ a− 1
, a ≥ 3, (7.3)

works equally well. In fact, for a > 3, Chambolle and Dossal (2015) and Attouch and Peypouquet
(2016) proved that both the function value and the proximal iterate wt converges at o(1/t2).

Nesterov, Y. E. (2005). “Smooth Minimization of Non-Smooth Functions”. Mathematical Programming, Series A,
vol. 103, pp. 127–152.
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Auslender, A. and M. Teboulle (2006). “Interior Gradient and Proximal Methods for Convex and Conic Optimization”.
SIAM Journal on Optimization, vol. 16, no. 3, pp. 697–725.

Chambolle, A. and C. Dossal (2015). “On the Convergence of the Iterates of the “Fast Iterative Shrinkage/Thresholding
Algorithm””. Journal of Optimization Theory and Application, vol. 166, pp. 968–982.

Attouch, H. and J. Peypouquet (2016). “The Rate of Convergence of Nesterov’s Accelerated Forward-Backward
Method is Actually Faster Than 1/k2”. SIAM Journal on Optimization, vol. 26, no. 3, pp. 1824–1834.

Theorem 7.8: Accelerated Proximal Gradient (Beck and Teboulle, 2009; Nesterov, 2013)

Suppose ℓ : Rd → R is L[1]-smooth and convex, r : Rd → R∪{∞} is closed and convex, and ηt ≡ η ≤ 1/L[1].
Then, the proximal sequence {wt} generated by Algorithm 7.6 satisfies: for all w and t ≥ 1,

f(wt) ≤ f(w) +
∥w − z1∥22

2ηtγ2
t

≤ f(w) +
2 ∥w − z1∥22
ηt(t+ 1)2

. (7.4)

Proof: We learned the following inspiring proof from Tseng (2010). It follows from the step size choice,
L[1]-smoothness, and composite optimality Proposition 2.20 that for any v,

f(wt) ≤ r(wt) + ℓ(zt) + ⟨wt − zt,∇ℓ(zt)⟩+ 1
2ηt
∥wt − zt∥22

≤ r(v) + ℓ(zt) + ⟨v − zt,∇ℓ(zt)⟩+ 1
2ηt
∥v − zt∥22 −

1
2ηt
∥v −wt∥22

≤ r(v) + ℓ(v) + 1
2ηt
∥v − zt∥22 −

1
2ηt
∥v −wt∥22 , (7.5)

where the last inequality is due to the convexity of ℓ. Thus far, everything is the same as in the proof of
Theorem 2.21.

Now to get a faster convergence, we need to somehow make the quadratic terms above diminish faster,
which is achieved by choosing the convex combination vt := (1− 1

γt
)wt−1+

1
γt
w for some arbitrary w ∈ dom f .

Plugging into (7.5) we obtain

f(wt) ≤ f(vt) +
1

2ηt
∥vt − zt∥22 −

1
2ηt
∥vt −wt∥22

≤ (1− 1
γt
)f(wt−1) +

1
γt
f(w) + 1

2ηtγ2
t

[
∥w −wt−1 + γt(wt−1 − zt)∥22 − ∥w −wt−1 + γt(wt−1 −wt)∥22

]
.

Define qt = γt+1(zt+1 −wt) = (γt − 1)(wt −wt−1), since βt =
γt−1
γt+1

. We verify

w −wt−1 + γt(wt−1 − zt) = w −wt−1 − qt−1, w −wt−1 + γt(wt−1 −wt) = w −wt − qt,

and thus

f(wt)− f(w) ≤ (1− 1
γt
)[f(wt−1)− f(w)] + 1

2ηtγ2
t

[
∥w −wt−1 − qt−1∥22 − ∥w − qt −wt∥22

]
.

Using the relation γ2
t−1 = γ2

t − γt, we obtain the recursion

ηtγ
2
t [f(wt)− f(w)] + 1

2 ∥w −wt − qt∥22 ≤ ηtγ
2
t−1[f(wt−1)− f(w)] + 1

2 ∥w −wt−1 − qt−1∥22 ,

≤ ηt−1γ
2
t−1[f(wt−1)− f(w)] + 1

2 ∥w −wt−1 − qt−1∥22 ,

using the assumption ηt = ηt−1. Telescoping yields

1
2 ∥w −wt − qt∥22 +ηtγ

2
t [f(wt)− f(w)] ≤ η1γ

2
1 [f(w1)− f(w)] + 1

2∥w −w1 − q1∥22

Since γ1 = 1, q1 = 0 and w1 is simply a proximal gradient step from z1. Setting v = w and t = 1 in (7.5)
we further have

ηtγ
2
t [f(wt)− f(w)] ≤ η1[f(w1)− f(w) + 1

2η1
∥w −w1∥22] ≤ 1

2 ∥w − z1∥22 .
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Finally, we examine the sequence γt. By definition:

1

2
+ γt ≤

1 + 2γt
2

≤ γt+1 ≤
1 +

√
1 + 4γ2

t

2
≤ 1 + 1 + 2γt

2
= 1 + γt,

implying t− 1 + γ1 ≥ γt ≥ t−1
2 + γ1. Applying the lower bound on γt with γ1 = 1 completes the proof.

Beck, A. and M. Teboulle (2009). “A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems”.
SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–202.

Nesterov, Y. E. (2013). “Gradient Methods for Minimizing Composite Functions”. Mathematical Programming, Series
B, vol. 140, pp. 125–161.

Tseng, P. (2010). “Approximation Accuracy, Gradient Methods, and Error Bound for Structured Convex Optimiza-
tion”. Mathematical Programming, Series B, vol. 125, pp. 263–295.

Exercise 7.9: Some refinements

If we choose w ∈ argmin f , then we can make the following refinements:

• The extrapolation constants need only satisfy

γ2
t−1 ≥ γ2

t − γt.

In particular, the choice for γt in (7.3) works and enjoys the same bound in Theorem 7.8 (with slightly
worse constants).

• We can use Amijo’s rule to adaptively choose ηt. However, the condition ηt ≤ ηt−1 needs to be
respected, meaning that each Amijo step should start with the step size from the previous iteration.

Algorithm 7.10: Enforcing monotonicity (Beck and Teboulle, 2009)

Algorithm: Monotonic FISTA
Input: w0 = z1, γ1 = 1, η0

1 for t = 1, 2, . . . do
2 choose step size ηt ≤ ηt−1 // step size can only decrease
3 ut = zt − ηt∇ℓ(zt) // gradient step w.r.t. ℓ

4 w̃t = Pηt
r (ut) = argminu

1
2ηt
∥ut − u∥22 + r(u) // proximal step w.r.t. r

5 choose wt such that f(wt) ≤ f(w̃t) // local improvment

6 γt+1 =
1+
√

1+4γ2
t

2

7 zt+1 = wt +
γt−1
γt+1

(wt −wt−1) +
γt

γt+1
(w̃t −wt) // extrapolation

Unlike the proximal gradient Algorithm 2.17, the objective value f(wt) of the accelerated Algorithm 7.6
may not be monotonically decreasing. However, as noted by Beck and Teboulle (2009), this can be fixed
through roll back, i.e., setting wt = wt−1 in Algorithm 7.10 whenever jumps happen, i.e. f(w̃t) > f(wt−1).
However, we also need to make some adjustment to the extrapolation step, as indicated in the last term on
line 7. Indeed, this slight modification allows us to prove the same complexity bound as in Theorem 7.8:
Recall,

f(w̃t) ≤ (1− 1
γt
)f(wt−1) +

1
γt
f(w) + 1

2ηtγ2
t

[
∥w −wt−1 + γt(wt−1 − zt)∥22 − ∥w −wt−1 + γt(wt−1 − w̃t)∥22

]
,

Define qt = γt+1(zt+1 − wt) = (γt − 1)(wt − wt−1) + γt(w̃t − wt) = wt−1 − γt(wt−1 − w̃t) − wt and we
verify:

w −wt−1 + γt(wt−1 − zt) = w −wt−1 − qt−1, w −wt−1 + γt(wt−1 − w̃t) = w −wt − qt.
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Since f(wt) ≤ f(w̃t) we may continue the rest of the proof as in Theorem 7.8.
Beck, A. and M. Teboulle (2009). “Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising

and Deblurring Problems”. IEEE Transactions on Image Processing, vol. 18, no. 11, pp. 2419–2434.

Remark 7.11: Adaptive restarting

When jumps happen, i.e. f(wt) ≥ f(wt−1) in Algorithm 7.6, one may simply reset wt to wt−1. Without
any amendment in the extrapolation step (such as the one in Algorithm 7.10), the next iteration amounts
to a standard proximal gradient step which we know from Theorem 2.21 will decrease the objective value.
This heuristic has two issues:

• It is not clear how we can recover the same convergence rate as in Theorem 7.8 (cf. Algorithm 7.10,
where we amend the extrapolation step);

• With γ1 = 1 the first iteration of Algorithm 7.6 amounts to a standard proximal gradient step. When
jumps happen, the reset also performs a standard proximal gradient step. However, the momentum
parameter γt continues to grow.

Thus, a natural alternative is to completely restart the algorithm by setting wt ← wt−1 and also γt+1 ← 1,
which appears to accelerate convergence (O’Donoghue and Candès, 2015). Kim and Fessler (2018) also
studied the restarting trick for the optimized variant in Algorithm 7.12.
O’Donoghue, B. and E. Candès (2015). “Adaptive Restart for Accelerated Gradient Schemes”. Foundations of Com-

putational Mathematics, vol. 15, pp. 715–732.
Kim, D. and J. A. Fessler (2018). “Adaptive Restart of the Optimized Gradient Method for Convex Optimization”.

Journal of Optimization Theory and Applications, vol. 178, pp. 240–263.

Algorithm 7.12: Optimized gradient descent

Algorithm: Optimized gradient descent
Input: w0 = z1, γ1 = 1, η0

1 for t = 1, 2, . . . , T do
2 choose step size ηt ≤ ηt−1 // step size can only decrease
3 wt = zt − ηt∇ℓ(zt) // gradient step w.r.t. ℓ

4 γt+1 =
1+
√

1+4γ2
t

2
5 if t = T then

6 γt+1 =
1+
√

1+8γ2
t

2

7 zt+1 = wt +
γt−1
γt+1

(wt −wt−1) +
γt

γt+1
(wt − zt) // extrapolation

By refining the performance estimation problem, Kim and Fessler (2016) proposed the optimized variant
above (with r ≡ 0) and proved the same convergence rate for the extrapolated sequence but with improved
constants:

f(zT+1)− f⋆ ≤
∥z1 −w⋆∥22
2ηγ2

T+1

≤ ∥z1 −w⋆∥22
η(T + 1)(T + 1 +

√
2)

, ηt ≡ η ≤ 1/L[1],

which amounts to a factor of 2 improvement compared to Theorem 7.8 and is known to be tight (Drori, 2017).
Moreover, Kim and Fessler (2016) also proved the convergence rate (7.4) for the extrapolated sequence zt of
FISTA in Algorithm 7.6.

Later, Kim and Fessler (2017) proved the proximal sequence wt of the optimized gradient Algorithm 7.12
also converges at a similar rate:

f(wt)− f⋆ ≤
∥z1 −w⋆∥22

4ηγ2
t

≤ ∥z1 −w⋆∥22
η(t+ 1)2

.
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Kim and Fessler (2018a), also Taylor et al. (2017, 2018), extended the optimized variant to the composite
setting (i.e. r ̸= 0), while Kim and Fessler (2018b) optimized the gradient norm instead of the objective
values.
Kim, D. and J. A. Fessler (2016). “Optimized first-order methods for smooth convex minimization”. Mathematical

Programming, vol. 159, pp. 81–107.
Drori, Y. (2017). “The exact information-based complexity of smooth convex minimization”. Journal of Complexity,

vol. 39, pp. 1–16.
Kim, D. and J. A. Fessler (2017). “On the Convergence Analysis of the Optimized Gradient Method”. Journal of

Optimization Theory and Applications, vol. 172, pp. 187–205.
— (2018a). “Another Look at the Fast Iterative Shrinkage/Thresholding Algorithm (FISTA)”. SIAM Journal on

Optimization, vol. 28, no. 1, pp. 223–250.
Taylor, A. B., J. M. Hendrickx, and F. Glineur (2017). “Exact Worst-Case Performance of First-Order Methods for

Composite Convex Optimization”. SIAM Journal on Optimization, vol. 27, no. 3, pp. 1283–1313.
— (2018). “Exact Worst-Case Convergence Rates of the Proximal Gradient Method for Composite Convex Mini-

mization”. Journal of Optimization Theory and Applications, vol. 178, pp. 455–476.
Kim, D. and J. A. Fessler (2018b). “Generalizing the Optimized Gradient Method for Smooth Convex Minimization”.

SIAM Journal on Optimization, vol. 28, no. 2, pp. 1920–1950.

Remark 7.13: What if no minimizer?

Bauschke et al. (2019) studied the intriguing setting where FISTA is applied to a minimization problem that
does not admit any minimizer.
Bauschke, H. H., M. N. Bui, and X. Wang (2019). “Applying FISTA to optimization problems (with or) without

minimizers”. Mathematical Programming.
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