Optimization for Data Science

Lec 12: Stochastic Gradient

Yaoliang Yu

Problem

Minimization problem:

$$\min_{\mathbf{w} \in C} f(\mathbf{w})$$

- f smooth or subdifferentiable
- ullet $C\subseteq \mathbb{R}^d$ a convex set
- Can only afford a noisy gradient

L12 1/16

Where Is the Noise From?

- Measurement error
- Numerical error
- Scale constraint: most ML problems minimize an averaged loss

$$f(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell_i(\mathbf{w}), \quad \partial f(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \partial \ell_i(\mathbf{w})$$

Convenience: objective can be reformulated as an expectation

$$f(\mathbf{w}) := \mathbb{E}_{\boldsymbol{\xi}}[f(\mathbf{w}, \boldsymbol{\xi})], \ \partial f(\mathbf{w}) = \mathbb{E}_{\boldsymbol{\xi}}[\partial_{\mathbf{w}} f(\mathbf{w}, \boldsymbol{\xi})]$$

- Regularization: adding noise during training is common in ML
- Privacy: corrupt gradient with noise so that no one can infer user data

.12

Algorithm 1: Stochastic Gradient

Input: $\mathbf{w}_0 \in \mathrm{dom}\, f$

 $\mathbf{1} \ \ \mathbf{for} \ t = 0, 1, 2, \dots \ \mathbf{do}$

choose step size η_t

compute stochastic gradient $\mathbf{g}_t \leftarrow \nabla f(\mathbf{w}_t, \boldsymbol{\xi}_t)$ $\mathbf{w}_{t+1} \leftarrow \mathrm{P}_C(\mathbf{w}_t - \eta_t \mathbf{g}_t)$

$$\mathbf{4} \quad \mathbf{w}_{t+1} \leftarrow \mathbf{P}_C(\mathbf{w}_t - \eta_t \mathbf{g}_t)$$

$$\mathbf{z}_t \leftarrow \sum_{k=0}^t \bar{\eta}_{t,k} \mathbf{w}_k$$

- $\eta_t \mathbf{g}_t)$ $_k$ // ergodic averaging, $ar{\eta}_{t,k} := \eta_k/H_t, \ H_t := \sum_{k=0}^t \eta_k$

• For simplicity, assume stochastic gradient is unbiased, i.e.

$$\mathbb{E}_{\boldsymbol{\xi}_t}[\nabla f(\mathbf{w}_t, \boldsymbol{\xi}_t)] = \nabla f(\mathbf{w}_t)$$

- In general, step size $\eta_t \to 0$ (or $\sum_t \eta_t^2 < \infty$) and $\sum_t \eta_t = \infty$
- Surprisingly similar to the subgradient algorithm (including the analysis)

H. Robbins and S. Monro. "A Stochastic Approximation Method". Annals of Mathematical Statistics, vol. 22, no. 3 (1951), pp. 400-407.

Necessity of Diminishing Step Size

• Suppose we are at the minimizer \mathbf{w}_{\star}

• Gradient vanishes at $\nabla f(\mathbf{w}_{\star})$

• But stochastic gradient $\nabla f(\mathbf{w}_{\star}, \boldsymbol{\xi})$ need not be zero

ullet With a non-vanishing step size, we will wander around ${f w}_{\star}$

L12 4/16

Example

Algorithm 2: Perceptron

- Stochastic gradient applied to $\ell_i(\mathbf{w}, b) = [\delta \mathsf{y}_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b)]_+$
- Can now also employ a step size η_t in each step

 $\mathsf{L}12$

Computing the Mean

$$f(\mathbf{w}) = \frac{1}{2} \mathbb{E}_{\mathbf{x}} \|\mathbf{w} - \mathbf{x}\|_2^2, \quad \ell_{\mathbf{x}} := \frac{1}{2} \|\mathbf{w} - \mathbf{x}\|_2^2$$

- ullet Obviously, ${f w}_\star=\mathbb{E}[{f x}]$ is the mean, with $f_\star=rac12\mathbb{E}_{f x}\|{f x}-\mathbb{E}({f x})\|_2^2$
- With stochastic gradient:
 - sample \mathbf{x}_t
 - compute $\mathbf{w}_{t+1} = \mathbf{w}_t \eta_t(\mathbf{w}_t \mathbf{x}_t) = (1 \eta_t)\mathbf{w}_t + \eta_t\mathbf{x}_t$
 - if $\mathbf{w}_0 = \mathbf{0}$ and $\eta_t = \frac{1}{t+1}$, then $\mathbf{w}_{t+1} = \frac{1}{t+1} \sum_{s=0}^t \mathbf{x}_s$
 - clearly, $\mathbf{w}_t \to \mathbb{E}[\mathbf{x}]$ and $\mathbb{E}f(\mathbf{w}_t) = (1 + \frac{1}{t})f_\star$
 - known to be statistically optimal for $d \leq 2$

 $\mathsf{L}12$

Randomized Kaczmarz

$$f(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} (\langle \mathbf{x}_i, \mathbf{w} \rangle - y_i)^2, \quad \ell_i := \frac{1}{2} (\langle \mathbf{x}_i, \mathbf{w} \rangle - y_i)^2$$

- For each i, $||\mathbf{x}_i||_2 = 1$ (w.l.o.g.)
- Assume there exists some \mathbf{w}_{\star} so that $f(\mathbf{w}_{\star}) = 0$
- Can use constant step size $\eta_t \equiv 1$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - (\langle \mathbf{x}_{i_t}, \mathbf{w} \rangle - y_{i_t}) \mathbf{x}_{i_t} = \mathbf{w}_t - \mathbf{x}_{i_t} \mathbf{x}_{i_t}^{\top} (\mathbf{w}_t - \mathbf{w}_{\star})$$

$$\mathbf{w}_{t+1} - \mathbf{w}_{\star} = \prod_{s=0}^{t} (I - \mathbf{x}_{i_s} \mathbf{x}_{i_s}^{\top}) (\mathbf{w}_s - \mathbf{w}_{\star})$$

12 7,

T. Strohmer and R. Vershynin. "A Randomized Kaczmarz Algorithm with Exponential Convergence". Journal of Fourier Analysis and Applications, vol. 15, no. 2 (2009), pp. 262–278.

Figure 5 1 Kaczmarz method Deterministic, ordered choice (left) leads to slow convergence; randomized Kaczmarz (right) converges faster.

Convergence Analysis

• Key assumption: controlled variance

$$\|\mathbb{E}\|\nabla f(\mathbf{w}, \boldsymbol{\xi})\|_2^2 \leq \mathbb{L}\|\mathbf{w} - \mathbf{w}_{\star}\|_2^2 + \sigma^2$$

• One step progress:

$$\|\mathbf{w}_{t+1} - \mathbf{w}_{\star}\|_{2}^{2} = \|\mathbf{P}_{C}[\mathbf{w}_{t} - \eta_{t}\nabla f(\mathbf{w}_{t}, \boldsymbol{\xi}_{t})] - \mathbf{P}_{C}(\mathbf{w}_{\star})\|_{2}^{2}$$

$$\leq \|\mathbf{w}_{t} - \eta_{t}\nabla f(\mathbf{w}_{t}, \boldsymbol{\xi}_{t}) - \mathbf{w}_{\star}\|_{2}^{2}$$

$$= \|\mathbf{w}_{t} - \mathbf{w}_{\star}\|_{2}^{2} - 2\eta_{t} \langle \mathbf{w}_{t} - \mathbf{w}_{\star}, \nabla f(\mathbf{w}_{t}, \boldsymbol{\xi}_{t}) \rangle + \eta_{t}^{2} \|\nabla f(\mathbf{w}_{t}, \boldsymbol{\xi}_{t})\|_{2}^{2}$$

• Conditioned on \mathbf{w}_t and taking expectation w.r.t. $\boldsymbol{\xi}_t$:

$$\mathbb{E}_{t}[\|\mathbf{w}_{t+1} - \mathbf{w}_{\star}\|_{2}^{2}] = \|\mathbf{w}_{t} - \mathbf{w}_{\star}\|_{2}^{2} - 2\eta_{t} \langle \mathbf{w}_{t} - \mathbf{w}_{\star}, \nabla f(\mathbf{w}_{t}) \rangle + \eta_{t}^{2} \mathbb{E}_{t}[\|\nabla f(\mathbf{w}_{t}, \boldsymbol{\xi}_{t})\|_{2}^{2}]$$

$$\leq \|\mathbf{w}_{t} - \mathbf{w}_{\star}\|_{2}^{2} - 2\eta_{t}[f(\mathbf{w}_{t}) - f_{\star}] + \eta_{t}^{2}[\mathbf{L}\|\mathbf{w}_{t} - \mathbf{w}_{\star}\|_{2}^{2} + \sigma^{2}]$$

$$= (1 + \eta_{t}^{2}\mathbf{L})\|\mathbf{w}_{t} - \mathbf{w}_{\star}\|_{2}^{2} - 2\eta_{t}[f(\mathbf{w}_{t}) - f_{\star}] + \eta_{t}^{2}\sigma^{2}$$

.12 9/16

L=0

$$\mathbb{E}[\|\mathbf{w}_{t+1} - \mathbf{w}_{\star}\|_{2}^{2}] \leq \mathbb{E}[\|\mathbf{w}_{t} - \mathbf{w}_{\star}\|_{2}^{2}] - 2\eta_{t}\mathbb{E}[f(\mathbf{w}_{t}) - f_{\star}] + \eta_{t}^{2}\sigma^{2}$$

Telescoping:

$$\sum_{s=0}^{t} 2\eta_s \mathbb{E}[f(\mathbf{w}_s) - f_{\star}] \leq \mathbb{E}[\|\mathbf{w}_0 - \mathbf{w}_{\star}\|_2^2] + \sum_{s=0}^{t} \eta_s^2 \sigma^2$$

• Defining $\mathbf{z}_t = \sum_{s=0}^t \eta_s \mathbf{w}_s / \sum_{s=0}^t \eta_s$ we obtain

$$\mathbb{E}[f(\mathbf{z}_t) - f_{\star}] \leq \frac{\mathbb{E}[\|\mathbf{w}_0 - \mathbf{w}_{\star}\|_2^2] + \sum_{s=0}^t \eta_s^2 \sigma^2}{2\sum_{t=0}^t \eta_s}$$

- Converges to 0 iff $\eta_t \to 0$ and $\sum_t \eta_t = \infty$
- With $\eta_t = O(1/\sqrt{t})$ we can obtain expected convergence rate $O(1/\sqrt{t})$

Logistic Regression

$$f(\mathbf{w}) := rac{1}{n} \sum_{i=1}^n \ell_i(\mathbf{w}), \quad ext{where} \quad \ell_i(\mathbf{w}) = \log[1 + \exp(-\mathsf{y}_i \, \langle \mathbf{x}_i, \mathbf{w}
angle)]$$

• We clearly have

$$\nabla \ell_i(\mathbf{w}) = -\frac{\exp(-\mathsf{y}_i \, \langle \mathbf{x}_i, \mathbf{w} \rangle)}{1 + \exp(-\mathsf{y}_i \, \langle \mathbf{x}_i, \mathbf{w} \rangle)} \mathsf{y}_i \mathbf{x}_i$$

Can choose L = 0 and

$$\sigma^2 = \max_i \|\mathbf{x}_i\|_2^2$$

 $^{11/1}$

 $\sigma = 0$

$$\mathbb{E}_{t}[\|\mathbf{w}_{t+1} - \mathbf{w}_{\star}\|_{2}^{2}] \leq (1 + \eta_{t}^{2}\mathsf{L})\|\mathbf{w}_{t} - \mathbf{w}_{\star}\|_{2}^{2} - 2\eta_{t}[f(\mathbf{w}_{t}) - f_{\star}]$$

• Assume further that f is μ -strongly convex:

$$f(\mathbf{w}) - f_{\star} \geq \frac{\mu}{2} \|\mathbf{w} - \mathbf{w}_{\star}\|_{2}^{2}$$

• Thus, we have the recursion:

$$\mathbb{E}[\|\mathbf{w}_{t+1} - \mathbf{w}_{\star}\|_{2}^{2}] \leq (1 - \eta_{t}\mu + \eta_{t}^{2}\mathsf{L})\mathbb{E}[\|\mathbf{w}_{t} - \mathbf{w}_{\star}\|_{2}^{2}]$$

• Linear (expected) convergence if $\eta_t \in (0, \frac{\mu}{\Gamma})$, with optimal $\eta = \frac{\mu}{2\Gamma}$ such that

$$\mathbb{E}[\|\mathbf{w}_{t+1} - \mathbf{w}_{\star}\|_{2}^{2}] \leq (1 - \frac{\mu^{2}}{4\mathsf{L}})\mathbb{E}[\|\mathbf{w}_{t} - \mathbf{w}_{\star}\|_{2}^{2}]$$

2 12/16

Randomized Kaczmarz

$$f(\mathbf{w}) := rac{1}{n} \sum_{i=1}^n \ell_i(\mathbf{w}), \quad ext{where} \quad \ell_i(\mathbf{w}) = rac{1}{2} [y_i - \langle \mathbf{x}_i, \mathbf{w}
angle]^2$$

• Assuming $f(\mathbf{w}_{\star}) = 0$, we have

$$\nabla \ell_i(\mathbf{w}) = (\langle \mathbf{x}_i, \mathbf{w} \rangle - y_i) \mathbf{x}_i = \mathbf{x}_i \mathbf{x}_i^\top (\mathbf{w} - \mathbf{w}_{\star})$$

• Can choose $\sigma = 0$ and

$$\mathbb{E} \|\mathbf{x}_i \mathbf{x}_i^{\top} (\mathbf{w} - \mathbf{w}_{\star})\|_2^2 \leq \underbrace{\mathbb{E} \|\mathbf{x}_i\|_2^4} \cdot \|\mathbf{w} - \mathbf{w}_{\star}\|_2^2$$

• f is indeed strongly convex: $\nabla^2 f(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^{\mathsf{T}}$

L12

General Case

$$\mathbb{E}_{t}[\|\mathbf{w}_{t+1} - \mathbf{w}_{\star}\|_{2}^{2}] \leq (1 + \eta_{t}^{2}\mathsf{L})\|\mathbf{w}_{t} - \mathbf{w}_{\star}\|_{2}^{2} - 2\eta_{t}[f(\mathbf{w}_{t}) - f_{\star}] + \eta_{t}^{2}\sigma^{2}$$

Assume further that f is μ -strongly convex:

$$f(\mathbf{w}) - f_{\star} \geq \frac{\mu}{2} \|\mathbf{w} - \mathbf{w}_{\star}\|_{2}^{2}$$

• Telescoping: $\mathbb{E}[\|\mathbf{w}_{t+1} - \mathbf{w}_{\star}\|_2^2] \leq (1 - \eta_t \mu + \eta_t^2 \mathsf{L}) \mathbb{E}[\|\mathbf{w}_t - \mathbf{w}_{\star}\|_2^2] + \eta_t^2 \sigma^2$

$$\mathbb{E}[\|\mathbf{w}_{t+1} - \mathbf{w}_{\star}\|_{2}^{2}] \leq \prod_{s=0}^{t} (1 - \eta_{s}\mu + \eta_{s}^{2}\mathsf{L}) \cdot [\|\mathbf{w}_{0} - \mathbf{w}_{\star}\|_{2}^{2}] + \sum_{k=0}^{t} \eta_{k}^{2}\sigma^{2} \prod_{s=1}^{t} (1 - \eta_{s}\mu + \eta_{s}^{2}\mathsf{L})$$

• With $\eta_t = \frac{1}{2|\mathbf{1}|^2/\sigma + \sigma t}$ we have $\mathbb{E}[\|\mathbf{w}_{t+1} - \mathbf{w}_{\star}\|_2^2] = O(\eta_t)$

Minibatching

• Some people consider the variance instead:

$$\mathbb{E}\|\nabla f(\mathbf{w}, \boldsymbol{\xi}) - \nabla f(\mathbf{w})\|_2^2 = \mathbb{E}\|\nabla f(\mathbf{w}, \boldsymbol{\xi})\|_2^2 - \|\nabla f(\mathbf{w})\|_2^2$$

If averaging the stochastic gradient over a minibatch of size b:

$$\mathbf{g} = rac{1}{b} \sum_{k=1}^b
abla f(\mathbf{w}, oldsymbol{\xi}_{i_k})$$

- increase computation by a factor of b
- decrease variance by a factor of b too
- suitable for parallel computation

.12

Incremental Gradient

$$f(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell_i(\mathbf{w})$$

Let $\mathbf{w}_i^* \in \operatorname{argmin} \ell_i$, where ℓ_i is L_i -smooth. Then,

$$\mathbb{E}_{I} \|\nabla \ell_{I}(\mathbf{w})\|_{2}^{2} \leq \mathbb{E} \left[\mathsf{L}_{I}^{2} \|\mathbf{w} - \mathbf{w}_{I}^{*}\|_{2}^{2} \right]$$

$$\leq \mathbb{E} \left[2\mathsf{L}_{I}^{2} (\|\mathbf{w} - \mathbf{w}_{\star}\|_{2}^{2} + \|\mathbf{w}_{i}^{*} - \mathbf{w}_{\star}\|_{2}^{2}) \right]$$

$$= \underbrace{\frac{2}{n} \sum_{i=1}^{n} \mathsf{L}_{i}^{2} \cdot \|\mathbf{w} - \mathbf{w}_{\star}\|_{2}^{2} + \frac{2}{n} \sum_{i=1}^{n} \mathsf{L}_{i}^{2} \|\mathbf{w}_{i}^{*} - \mathbf{w}_{\star}\|_{2}^{2}}_{2}$$

L12 16/16

