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Problem

Minimization problem:

® [ smooth or subdifferentiable

e (' C R? a convex set

e Can only afford a noisy gradient



Where |Is the Noise From?

Measurement error

Numerical error

Scale constraint: most ML problems minimize an averaged loss
1 n 1 n
' =—Y li(w), Of =—) O
) = 5 26w, 0f(w) = > 0tiw)

e Convenience: objective can be reformulated as an expectation

f(w) :=Eelf(w,8)], 0f(w) = E¢[0wf(W,8)]

Regularization: adding noise during training is common in ML

Privacy: corrupt gradient with noise so that no one can infer user data



Algorithm 1: Stochastic Gradient
Input: w, € dom f
1 fort=0,1,2,...do
choose step size 7
compute stochastic gradient g; < V f(w,, &,)
Wip1 < Po(we — migt)
Z < ZZ:O Ntk Wk // ergodic averaging, 7 = nx/H:, Hp = Z:‘:o Nk

g A W N

For simplicity, assume stochastic gradient is unbiased, i.e.

Ee, [Vf(w, &) = Vf(wi)

In general, step size 7, — 0 (or >, 77 < 0o0) and >, 7 = o0
Surprisingly similar to the subgradient algorithm (including the analysis)

H. Robbins and S. Monro. . Annals of Mathematical Statistics, vol. 22, no. 3 (1951), pp. 400—407.
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https://projecteuclid.org/euclid.aoms/1177729586

Necessity of Diminishing Step Size

® Suppose we are at the minimizer w,

Gradient vanishes at V f(w,)

But stochastic gradient V f(w,, &) need not be zero

With a non-vanishing step size, we will wander around w,



Example

Algorithm 2: Perceptron

Input: Dataset D = |(x;,y;) € RY x {£1} :i =1,...,nJ, initialization w € R?
and b € IR, threshold 6 > 0
Output: approximate solution w and b

1 fort=1.2 .. .do

a B~ WO

receive index /[, € {1,....,n} // I, can be random
if y;,((x7,,w) +0) <J then
W < W + Yy Xy, // update after a ‘“‘mistake’
b+ b+yy

e Stochastic gradient applied to ¢;(w,b) = [§ — y;({(x;, W) + )]+

e Can now also employ a step size 7); in each step



Computing the Mean

f(w) = 3Bx|lw — x5, & = 3llw —x|I3

e Obviously, w, = [E[x| is the mean, with f, = . ||x — E(x)||3
® With stochastic gradient:

sample x;

compute wyi1 = Wy — (W — x¢) = (1 — )Wy + mexy
if wo =0 and 1, = H% then w1 = H% ZZ:U X
clearly, wy — E[x] and Ef(w;) = (14 1) f«

known to be statistically optimal for d < 2
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Randomized Kaczmarz

L12

n

S (ki w) = 9)?, b= Sl w) — i)

i=1

1
o

f(w)

® For each i, |

® Assume there exists some w, so that f(w,) =0
® (Can use constant step size 7, = 1

Wit1 = Wy — (<Xitvw> i yit)xit = W — XitX;-[(Wt i W*)
t

Wil — W, = H([ —x;, %X, )(Wy — W)
s=0

T. Strohmer and R. Vershynin. “A Randomized Kaczmarz Algorithm with Exponential Convergence”. Journal of Fourier Analysis and
Applications, vol. 15, no. 2 (2009), pp. 262-278.
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https://doi.org/10.1007/s00041-008-9030-4

Figure 5 1 Kaczmarz method Deterministic, ordered choice (left) leads to slow
convergence: randomized Kaczmarz (right) converges faster.

S. J. Wright and B. Recht . Cambridge University Press, 2022.



https://doi.org/10.1017/9781009004282

Convergence Analysis

e Key assumption: controlled variance
E[Vf(w, &)l < LIw — w3+ o
® One step progress:
[Werr = well3 = IPolwe — 0V f(wi, €,)] = Po(w.) 13

< HWt — T]tvf(wtaft) - W*Hg
= HWt — W*Hg — 2n, <Wt — Wy, Vf(wtaft» + "71?||Vf(wta Et)”%

e Conditioned on w, and taking expectation w.r.t. &,:

Ei(werr — well3] = [we = wall3 = 20 (Wi = Wi, V(wWe)) + 0/ Ee[[|[V f (we, &) 3]
< llwe = will3 = 2ne[f (We) = ] + m (L we — wal3 + 0]

=1+ nfL)Hwt - W*||§ —2m[f(we) — fu] + 77t2(72
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Ef[wir — wll3] < Elllwe — wll3] — 2 E[f (we) — £] + nfo”

Telescoping:

22779 ] < Elwo — w8 + 3

s=0

Defining z, — 22:0 NsWs/ Zi:o 7. we obtain
Elllwo — w.|I3] + >_i_q n?o?

2 ZZ:O s

E[f(z) = fi] <

e Converges to 0 iff 77, — 0 and >, 1, = o0
With 7, = O(1/+/t) we can obtain expected convergence rate O(1//1)
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Logistic Regression

n

f(w) = B Zﬁi(w), where  /;(w) = log[1 + exp(—y; (x;, w))]

n <
=1

e We clearly have

exp(—y; (Xi, w)) yiXi
1+exp( y@<z >>11

WA

® Can choose L = 0 and

o? = max ||
3

11/16



Ellwerr — wll3] < (1+niL)lwe — walz — 2n[f (we) — £

® Assume further that [ is j-strongly convex:

Fw) = fo 2 §llw — w3

® Thus, we have the recursion:

B[ w1 — wallz] < (1= nep + ;D E[[[we — wal3]

® Linear (expected) convergence if 7, € (0, {*), with optimal 7 = Ji- such that

2
El[[ w1 — wallz] < (1= p)Ell[we — wall3]
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Randomized Kaczmarz

flw) := 7{LZ:E,(W) where  (;(w) = L[y; — (x;, w)]?

® Assuming [(w,) = 0, we have

Vi (w) = ({x;, W) — 4)x; = xix] (W — w,)

® Can choose 0 = (0 and
Ellxx (w = w.)[13 < Ellx |- lw — w. 3
L
1 7 T

® [ is indeed strongly convex: V7 f(w) = 157" xx
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General Case

Eel[[Wier = will3] < (L+nfL)l[we — w3 — 2ne[f (we) — fi] + m'o?

® Assume further that [ is i-strongly convex:

F(w) = fu > llw — w3

® Telescoping: E[||wi+1 — w.|3] < (1 —mep + 7 L)E[[wy — w.|[5] + n7o

t t
E[|wesr — wil3] < J[@—nen +72L) - [l wo—w.13] +ZTI I =nep+n2L)
s=0

s=k+1

e With 1, = we have E[|w; 1 — w,||3] = O(n;)

1
2L2 /o+ot
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Minibatching

® Some people consider the variance instead:

E|[Vf(w,&) = VW)l = E[Vf(w, &)z — [VF(W)II2

e |f averaging the stochastic gradient over a minibatch of size 0:

b

8= > Vi(wE,)

k=1

— increase computation by a factor of b
— decrease variance by a factor of b too

— suitable for parallel computation
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Incremental Gradient

Let w; € argmin /;, where /; is L;,-smooth. Then,

Ef][Ver(wll; < B [L7[lw — wili]
< E[2L7([[w — w3 + [[w] — w.[2)]
= Z ollw —wals + Z Fllwi — w3
o o
~—

L e
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