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Problem

Nonsmooth minimization:

® /: nonsmooth and possibly nonconvex
® (. constraint, possibly nonconvex

® Minimizer may or may not be attained

Maximization is just negation



Support Vector Machines

n
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min — Z( —yi0i)+ + C|lwll3, where ;= (w,x;) +,

weR4LbeR T 4

|w||3: margin maximization

® (1—y;g;)": i-th training error, 0 if y;7; and 1 — vy,1; otherwise

® (. hyper-parameter to control tradeoff
e Cannot let r(w) = 25" (1 — y;7;), and attempt to compute P/
C. Cortes and V. Vapnik. . Machine Learning, vol. 20, no. 3 (1995), pp. 273-297.
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https://doi.org/10.1007/BF00994018

The Hinge Loss

Ot

zero-one: [—yy > 0]
hinge: (1 —vyy)"
square hinge: (1 —yy)?

— logisticy: log, (1 + exp(—yy))

exponential: exp(—y7)
Perceptron: (—yi)"
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Misclassified

wX+b=+1

Too close *
to boundary wx+b=0

wXx +b=-1




Subgradient and Subdifferential

The of a function at w is the
Of(w):={geR’: vz, f(z)> f(w)+ (z—w;g)}
Any g € Of(w) is called a of fatw

® The subdifferential is always closed and convex

e Nonempty if w € int dom [




Optimality Condition

Theorem: generalizing Fermat's condition

, and the converse holds if / is convex.

® When [ is continuously differentiable, then 0f = V f

® Necessary but not sufficient for nonconvex function

® More generally, define the “derivative” 0f : R — IR? with some nice properties
— reduces to the usual one if f is continuously differentiable
— w is extremal = 0 € Jf(w)

— nice calculus to allow practical computation



Subdifferential Calculus

Definition: Clarke's subdifferential

Locally Lipschitz continuous functions are differentiable almost everywhere, so we can
define subdifferential as limits:

Of(w) =V [f(w)if [ is continuously differentiable at w

I(af) =a-0f (o> 0 for convex functions)

I f+g) 2 df + dg, equality holds if one of [ and ¢ is continuously differentiable
J(fog)=Vg-0f if gis continuously differentiable

[ is L-Lipschitz continuous iff ||0f| < L

F. H. Clarke. . reprinted from the 1983 edition. SIAM, 1990.


https://en.wikipedia.org/wiki/Lipschitz_continuity
https://doi.org/10.1137/1.9781611971309

Example: positive part

d(t). = dmax{t,0

Example: envelope function




The Difficulty of Nonsmoothness

e Consider the nonsmooth (separable) function

f(w) = |wi] + w3

® The global minimizer is at w = (0,0)
® Let w = (0, 1), choose the subgradient g = (1, 1) and run “gradient” descent

W—W-—1-8

e Cauchy's step size rule:

e R R

leading to 77 = 0 and we are stuck!
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The Minimum Point Algorithm

1
2

S

Algorithm 1: The minimum-point subgradient algorithm,

Input: wy € dom f
fort =0,1,... do

df S a‘rgmin HdHZ // choose the minimum subgradient
deof(wi)
choose step size 7, // e.g. Cauchy’s rule: 7 = argmin f(w; — n:dy)
n>0

W[+] <— Wi — 7/[d[

® Reduces to gradient descent if [ is smooth
® Descending: f(w; 1) < f(w,) (provided the step size is chosen suitably)

® But, it does not necessarily converge to the minimum, even under convexity!



Fig. 1. Contours of f and steepest descent path.

P. Wolfe. . Mathematical Programming Study, vol. 3
(1975), pp. 145-173


https://doi.org/10.1007/BFb0120703

Algorithm 2: The subgradient algorithm
Input: w, €

1 fort=20,1,...do

2 choose d; € 0f (w;)

d; + dt/HdtH‘z // normalize

4 choose step size 7, // e.g. m=0(1/t)
5 Wil < Po(wy — n,dy)

® 1 —0,Y,m =00, e.g. = O(1/\/t)

® > =00,y <0, eg n=0(1/t)

* =1

® =1

® When the minimum value [, is known in advance, may also use 7; = %

B. Polyak. . USSR Computational Mathematics and Mathematical Physics, vol. 9, no. 3 (1969),

pp. 14-29.
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https://doi.org/10.1016/0041-5553(69)90061-5

To normalize or not?

Consider minimizing the convex function f(w) = w".

® With normalization: w;;, = w; — 1 sign(w;) = sign(wy)(|we| — 1)
- w; —+0aslongasn, —0and ), 7 = o0
e Without normalization: w;; = w; — 4w} = (1 — dnw?)w;

— if we start with w; = 1 and 7, = 1/¢, then
wy > 1/n, = wi,, = (dnaw; — 1)%w? > (4w — 1)%wi > 9wi > 9t >t + 1= 1/n41,

i.e. |wy| — oo.
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Nonexpansion

A mapping T : is called a nonexpansion iff it is 1-Lipschitz continuous:

[Tw — Tz < [lw — 2|

Almost all algorithms in this course can be written abstractly as
Wil < Wy,

where the mapping T, often is a nonexpansion (and may not depend on 7).

Theorem: Euclidean projection to convex sets is nonexpansion

Let (' be a (closed) convex set. Then iS nonexpansive:

Same is true for the proximal map I’} when | is convex.




Theorem: convergence of subgradient

Let be (closed) convex and be L-Lipschitz continuous convex
(w.r.t. ). For any , subgradient (without normalization) satisfies:

® RHS vanishes iff Zf:(]l 1, = oo and Zf:ol n? < oo iff ny — 0, Zf:ol Ns = 0O.

® Fix accuracy ¢, can set 7, = 1) = {5 and obtain 7" = M iterations suffice
® No explicit dependence on dimension d

® Slower than O(%) of gradient descent: price of nonsmoothness



||Pc(Wt - mdt) - WHS
||Pc(Wt — nedy) — PC(W)Hg

||Wt+1 - WH%

[w e O]

[projections are nonexpansive] < |w, —n:d; — W
= [lwe — w3 + 7 |dell; — 2m (we — w, dy)
[d, is a subgradient, 7, > 0] < [[w, — wl + 1 [ de[2 + 20 F(w) — F(w)
[0f is bounded by L] < [lwy — wlf3 + 17L” + 2m(f (W) — f(wy)).
Telescoping we obtain:
-1 T-1 T-1
Iwr = w3 < llwo = wil} + L2 >~ +2> " —fl—(f(w) = f(w1)- Y m,
t=0 10 250 "ls 5=0

T—1 T-1 9

n Iwo = wlly +L* Sy v
Lo4 0<];§21'1I“1 1f<Wt) f(w> S ; m(f(wt) - f<W)) . 2223 (0] B 0




Extending to Composite

ni\i,n f(w), where f(w)=4{w)+71(W)

Algorithm 3: The proximal subgradient algorithm

Input: wy, functions / and r
fort =0,1,... do

choose d; € 0((wy)

d; + dL/Hd[Hg // normalize
choose step size 7, // e.g. m=O0(1/t)
Ziy1 < Wy — 1 dy // subgradient w.r.t. /
Wip] < P;Zt<zt+1> // proximal w.r.t. r

J. C. Duchi and Y. Singer. . Journal of Machine Learning Research,

vol. 10 (2009), pp. 2899-2934.
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https://www.jmlr.org/papers/v10/duchi09a.html

Example: Elastic net

Now we have 4 choices:

® Set
® Set
® Set

o Set

What are the pros and cons?

H. Zou and T. Hastie . Journal of the Royal Statistical Society, Series B, vol. 67

(2005), pp. 301-320



https://doi.org/10.1111/j.1467-9868.2005.00503.x




