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Problem

Constrained minimization:

min
w∈C⊆Rd

f(w)

• C is closed convex and f is (non)convex
• Can only evaluate the function value f(w) but not the (sub)gradient
• Zero-th order method (a.k.a. gradient-free or derivative-free)
• For most (if not all) functions in practice, computing the function value (a scalar)

costs as much as computing a (sub)gradient (a vector)!
• But only when we have direct access to the inner workings of f
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min
x∈[a,b]

f(x), where f is strictly quasiconvex

Algorithm 1: Golden-section search

Input: a < b, g =
√
5+1
2

, tol
1 x1 = a+ (b− a)/g
2 x2 = b− (b− a)/g
3 while x2 − x1 > tol do
4 if f(x2) > f(x1) then
5 b = x2

6 x2 = a+ (b− a)/g

7 else
8 a = x1

9 x1 = b− (b− a)/g
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Fix the number of evaluations. Is there an “optimal” alg?

inf
A

sup
f

length of returned interval

Key idea: recycle!

min
λ2≤1/2

N∏
i=2

(1− λi), s.t. λn+1 =
λn

1− λn

∧ 1− 2λn

1− λn

Solution: λn = Fn−1

Fn+1

J. Kiefer. “Sequential Minimax Search for a Maximum”. Proceedings of the American Mathematical Society, vol. 4, no. 3 (1953),
pp. 502–506.
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https://doi.org/10.1090/S0002-9939-1953-0055639-3


Uniform Grid Search
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Algorithm 2: Random pursuit
Input: w0 such that Jf ≤ f(w0)K is compact

1 for t = 1, 2, . . . do
2 choose normalized direction dt randomly
3 ηt ← argminη∈R f(wt + ηdt) // line search on chosen direction

4 wt+1 ← wt + ηtdt

S. U. Stich, C. L. Müller, and B. Gärtner. “Optimization of Convex Functions with Random Pursuit”. SIAM Journal on Optimization,
vol. 23, no. 2 (2013), pp. 1284–1309, S. U. Stich, C. L. Müller, and B. Gärtner. “Variable metric random pursuit”. Mathematical Programming,
vol. 156 (2016), pp. 549–579.
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https://doi.org/10.1137/110853613
https://doi.org/10.1007/s10107-015-0908-z


If f is L1-smooth, then

f(wt + ηtdt) ≤ f(wt) + ηt ⟨dt,∇f(wt)⟩+ L1
2
η2t

≤ f(wt) + η(w −wt)
⊤dtd

⊤
t ∇f(wt) +

L1
2
η2(w −wt)

⊤dtd
⊤
t (w −wt)

⊤

• The above inequality is due to setting ηt = η(w −wt)
⊤dt for some η > 0

• Using Edtd
⊤
t = 1

d
I and assuming f is convex:

Ef(wt + ηtdt) ≤ f(wt) +
η
d
⟨w −wt,∇f(wt)⟩+ η2L1

2d
∥w −wt∥22

≤ f(wt) +
η
d
[f(w)− f(wt)] + (η

d
)2 dL1

2
∥w −wt∥22

• A simple induction (as in conditional gradient) yields:

E[f(wt)− f(w)] ≤ O
(
dL1
t+1

)
• A factor of dimension d worse
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Finite Difference Approximation

∂jf(w) = lim
t→0

f(w + tej)− f(w)

t

• Choose small t often is enough, barring numerical cares

• Need to avoid doing this for every dimension

• Randomization may help!
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Convolution

Definition: Convolution and Fourier transform
The convolution of two functions f and g is defined through integration:

(f ∗ g)(w) :=

∫
z

f(w − z)g(z) dz =

∫
z

f(z)g(w − z) dz =: (g ∗ f)(w).

Recall the Fourier transform and its inverse:

(Ff)(w∗) = Ff(w∗) =

∫
w

exp(−2πi ⟨w,w∗⟩)f(w) dw

(F−1g)(w) =

∫
w∗

exp(2πi ⟨w,w∗⟩)g(w∗) dw∗
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https://en.wikipedia.org/wiki/Fourier_transform


F (f ∗ g) = Ff ·Fg, FF−1 = F−1F = Id, Ff (k) = (−2πiw∗)kFf

• Applying Fourier transform to the derivative of convolution:

F (f ∗ g)(k) = (−2πiw∗)k ·F (f ∗ g) = [(−2πiw∗)kFf ]Fg = F (f (k) ∗ g)
= F (f ∗ g(k))

• Applying the inverse transform we obtain the formula of differentiating under the
integral:

(f ∗ g)(k) = f (k) ∗ g = f ∗ g(k)

• This can in fact be the definition of the derivative (distribution) of f , using the
derivative of some super smooth functions g!
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Randomized Smoothing

Definition:
For a (vector-valued) function f : Rd → Rc we define its randomized smoothing as

fγ(w) = Ef(w + γε) = Ef(w − γε),

where ε is some symmetric random noise with zero mean and identity covariance.

• Let p be the probability density function (pdf) of ε
• Dilated density: pγ(z) =

1
γdp(

1
γ
z)

• We have point-wise convergence:

fγ = Ef(w − γε) = f ∗ pγ, hence fγ → f as γ → 0

• Intuitively expected, as the noise shrinks to 0, i.e. pγ → δ′0
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https://en.wikipedia.org/wiki/Probability_density_function


Calculus for Randomized Smoothing

• The map f 7→ fγ is linear
• If f is convex/concave, so is fγ
• If f is convex, then fγ ≥ f

• If f is L0-Lipschitz continuous (w.r.t. ∥ · ∥2 say), so is fγ. Moreover,

∥fγ − f∥2 ≤γL0E∥ε∥2 ≤ γL0

√
E∥ε∥22 = γL0

√
d

• If f is L1-smooth (w.r.t. ∥ · ∥2 say), so is fγ. Moreover,

fγ − f ≤γ2L1
2
E∥ε∥22 =

γ2L1d
2

,

whereas a two-sided bound holds if both ±f are L1-smooth.
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Gradient approximation

• If ±f is L1-smooth, then ∥∇fγ −∇f∥◦ ≤ γL1
√
d.

– in fact, ∇fγ = (∇f)γ , and ∥∇f∥◦ ≤ ∥∇fγ∥◦ + γL1
√
d

• If ±f is L2-smooth, then ∥∇fγ −∇f∥◦ ≤ γ2L2d/2.

– in fact, ∇fγ = (∇f)γ and ∇2fγ = (∇2f)γ
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Justifying the Name

Differentiating under the integral we obtain

f (k)
γ := [f ∗ pγ](k) = f (k−l) ∗ p(l)γ , ∇kfγ(w) =

∫
∇k−1f(w − z)⊗∇pγ(z) dz.

Therefore, if f is Lk−1-smooth, then fγ is Lk-smooth, where

Lk ≤ Lk−1

∫
∥∇pγ(z)∥2 dz = Lk−1

γ

∫
∥∇p(z)∥2 dz = sLk−1

γ

• s := E∥∇ ln p(ε)∥2, ε ∼ p

• fγ is (at least) 1 degree more smoother than f
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∇fγ(w) =

∫
f(w − z)∇pγ(z) dz = 1

γ
E[f(w − γε)∇ ln p(ε)]

= − 1
γ
E[f(w + γε)∇ ln p(ε)]

= −E
[
f(w + γε)− f(w)

γ
∇ ln p(ε)

]
= −E

[
f(w + γε)− f(w − γε)

2γ
∇ ln p(ε)

]
When f is e.g. convex or an envelope function, we have the limit:

∇f0(w) := −E[f ′(w; ε)∇ ln p(ε)], where f ′(w; ε) := lim
γ↓0

[f(w + γε)− f(w)]/γ

= −E[σ∂f(w)(ε)∇ ln p(ε)]

Needless to say, when f is actually differentiable, we have ∇f0 = ∇f .
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Gaussian Smoothing

ε ∼ N (0, I), i.e. p(ε) = (2π)d/2 exp(−∥ε∥22/2)

• −∇ ln p(ε) = ε and s = E∥∇ ln p(ε)∥2 ≤
√
d

• Conveniently, fγ is in fact infinitely many times differentiable, e.g.

∇fγ(w) = 1
γ
E[f(w + γε)ε] = E

[
f(w+γε)−f(w)

γ
ε
]
= E

[
f(w+γε)−f(w−γε)

2γ
ε
]

• Requires f to be defined on entire Rd

Y. Nesterov and V. Spokoiny. “Random Gradient-Free Minimization of Convex Functions”. Foundations of Computational Mathematics,
vol. 17 (2017), pp. 527–566.
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https://doi.org/10.1007/s10208-015-9296-2


Uniform Smoothing

ε ∼ Uniform(K), i.e. p(ε) =

{
1/vd, if ε ∈ K

0, otherwise

• vd is the volume of the (symmetric, isotropic, i.e. Eεε⊤ = I) compact set K
• Applying Stokes’ theorem, ∇p(ε) = 1∂K · n(ε)/vd, where n(ε) is the normal vector
• s = ud−1/vd where ud−1 is the surface area of ∂K; choose δ ∼ Uniform(∂K):

∇fγ(w) = − s
γ
E[f(w + γδ)n(δ)] = −sE

[
f(w+γδ)−f(w)

γ
n(δ)

]
= −sE

[
f(w+γδ)−f(w−γδ)

2γ
n(δ)

]
• Requires f to be defined (and bounded) over C + γK.
• Let K = B2(0,

√
d) we have n(δ) = −

√
dδ/∥δ∥2 and s =

√
d

A. S. Nemirovski and D. B. Yudin. “Problem complexity and method efficiency in optimization”. Wiley, 1983, A. D. Flaxman, A. T. Kalai,
and H. B. McMahan. “Online convex optimization in the bandit setting: gradient descent without a gradient”. In: Proceedings of the sixteenth
annual ACM-SIAM symposium on Discrete algorithms. 2005, pp. 385–394.L14 18/24

https://en.wikipedia.org/wiki/Stokes_theorem
https://dl.acm.org/doi/10.5555/1070432.1070486


Put Everything Together

• We optimize fγ as a smoothed approximation of f
• We compute an unbiased, stochastic (sub)gradient of fγ by

1. ∂̂1fγ(w) = − 1
γ f(w + γϵ) · ∇ ln p(ϵ)

2. ∂̂1,0fγ(w) = − f(w+γε)−f(w)
γ · ∇ ln p(ε)

3. ∂̂1,1fγ(w) = − f(w+γε)−f(w−γε)
2γ · ∇ ln p(ε)

4. ∂̂f0(w) = −f ′(w; ε) · ∇ ln p(ε)

• Eexcept the last choice, only require 1 or 2 evaluations of the function
• Except the last choice, these stochastic (sub)gradients in general are biased for f
• We bound the second moment of the stochastic (sub)gradient
• We apply the stochastic GDA algorithm and obtain convergence towards fγ
• We set γ appropriately so that we obtain convergence towards f
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L0-Lipschitz Continuous and Convex
• If f is convex, then fγ ≥ f
• If f is L0-Lipschitz continuous (w.r.t. ∥ · ∥2 say), so is fγ. Moreover,

∥fγ − f∥2 ≤γL0E∥ε∥2 ≤ γL0

√
E∥ε∥22 = γL0

√
d

• Thus, we obtain the approximation bound:

E[f(w̄t)− f(w)]− γL0
√
d ≤ E[fγ(w̄t)− fγ(w)]

• Using ∂̂1,0fγ we obtain

E[fγ(w̄t)− fγ(w)] ≤ ∥w0 −w∥22 +
∑t

k=0 η
2
k · E∥∂̂1,0fγ(w)∥22

2Ht
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• If f is L0-Lipschitz continuous, then using Gaussian smoothing:

E∥∂̂1,0fγ(w)∥22 = E
∥∥∥−f(w+γε)−f(w)

γ
· ∇ ln p(ε)

∥∥∥2

2

≤ L20 · E∥ε∥42
≤ L20 · d(d+ 2) ≤ L20(d+ 1)2

• Setting γ = ϵ
2L0

√
d
, ηt =

diam(C)

(d+1)L0
√
t+1

we have

E[f(w̄t)− f(w)] ≤ ϵ, if t > 4(d+1)2

ϵ2
[diam(C)L0]

2,

which is d2 times slower than running subgradient directly on f .
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L1-smooth and convex

• If f is convex, then fγ ≥ f
• If f is L1-smooth (w.r.t. ∥ · ∥2 say), so is fγ. Moreover,

fγ − f ≤γ2L1
2
E∥ε∥22 =

γ2L1d
2

• Thus, we obtain the approximation bound:

E[f(w̄t)− f(w)]− γ2L1d
2
≤ E[fγ(w̄t)− fγ(w)]

• Using again ∂̂1,0fγ we obtain similarly

E[fγ(w̄t)− fγ(w)] ≤ ∥w0 −w∥22 +
∑t

k=0 η
2
k · E∥∂̂1,0fγ(wk)∥22

2Ht
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• If ∇f is L1-Lipschitz continuous:

E∥∂̂1,0fγ(w)∥22 = E
∥∥∥−f(w+γε)−f(w)

γ
· ∇ ln p(ε)

∥∥∥2

2

≤ E
[
⟨∇f(w), ε⟩+ L1γ∥ε∥22

2

]2
∥ε∥22

≤ γ2L21
2

d(d+ 2)(d+ 4) + 2(d+ 2)∥∇f(w)∥22

• With γ = O
(
1
d

√
ϵ
L1

)
and ηt ≡ O

(
1

dL1

)
, need O

(
d
ϵ
L1 diam2(C)

)
many steps to

obtain an ϵ-minimizer of f

• d times slower than running (projected) gradient directly on f
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More Moment Bounds for Gaussian Smoothing
• If f is differentiable:

E∥∂̂f0(w)∥22 = E∥ε∥42
〈

ε
∥ε∥2 ,∇f(w)

〉2

= E∥ε∥42 · E
〈

ε
∥ε∥2 ,∇f(w)

〉2

= (d+ 2)∥∇f(w)∥22

• If ±f is L±1 -smooth:

E∥∂̂1,1fγ(w)∥22 ≤
γ2(L+1 +L−1 )2

8
d(d+ 2)(d+ 4) + 2(d+ 2)∥∇f(w)∥22

• If ∇2f is L2-Lipschitz continuous

E∥∂̂1,1fγ(w)∥22 ≤
γ4L22
18

d(d+ 2)(d+ 4)(d+ 6) + 2(d+ 2)∥∇f(w)∥22
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