Optimization for Data Science

Lec 02': Projection

Yaoliang Yu

Problem

Constrained smooth minimization:

$$f_{\star} = \inf_{\mathbf{w} \in C} f(\mathbf{w}).$$

- Constraint on the domain: closed set $C \subseteq \mathbb{R}^d$
- ullet $f:\mathbb{R}^d o \mathbb{R}$ is smooth, e.g. continuously differentiable
- ullet f can be convex or nonconvex; C can be convex or nonconvex
- Minimizer may or may not be attained
- Maximization is just negation.

White-box Adversarial Attacks

- Mathematically, a neural network is a function $f(\mathbf{w}; \mathbf{x})$
- Typically, input x is given and network weights w optimized
- Could also freeze weights w and optimize x, adversarially!

$$\min_{\boldsymbol{\delta}} \operatorname{size}(\boldsymbol{\delta}) \quad \text{s.t.} \quad \operatorname{pred}[f(\mathbf{w}; \mathbf{x} + \boldsymbol{\delta})] \neq \mathsf{y}$$

• More generally: $\max_{\delta} \ \ell(\mathbf{w}; \mathbf{x} + \boldsymbol{\delta}, \mathsf{y})$ s.t. $\mathrm{size}(\boldsymbol{\delta}) \leq \epsilon$ and $\mathbf{0} \leq \mathbf{x} + \boldsymbol{\delta} \leq \mathbf{1}$

02'

Convexity

A point set $C \subseteq \mathbb{R}^d$ is convex iff for any $\mathbf{w}, \mathbf{z} \in C$, the line segment $[\mathbf{w}, \mathbf{z}] \subseteq C$.

The epigraph of a function $f: \mathbb{R}^d \to (-\infty, \infty]$ is defined as the set

$$epi f := \{ (\mathbf{w}, t) \in \mathbb{R}^{d+1} : f(\mathbf{w}) \le t \}$$

A function $f: \mathbb{R}^d \to (-\infty, \infty]$ is convex iff its epigraph is a convex set, or equivalently

$$\forall \mathbf{w}, \forall \mathbf{z}, \forall \lambda \in [0, 1], \quad f(\lambda \mathbf{w} + (1 - \lambda)\mathbf{z}) \le \lambda f(\mathbf{w}) + (1 - \lambda)f(\mathbf{z})$$

Theorem: second-order test for convexity

f is convex iff $\nabla^2 f$ is positive semidefinite.

Calculus of Convexity

- f, g convex $\implies \alpha \cdot f + \beta \cdot g$ is convex for any $\alpha, \beta \ge 0$
- f convex $\implies f(A\mathbf{w})$ is convex
- ullet f convex increasing and g convex $\Longrightarrow f\circ g$ is convex
- f convex \implies $(\mathbf{w}, t > 0) \mapsto tf(\mathbf{w}/t)$ is convex
- f_t convex $\implies f = \sup_t f_t$ is convex
- $f(\mathbf{w}, \mathbf{z})$ convex $\implies g = \min_{\mathbf{z}} f(\mathbf{w}, \mathbf{z})$ is convex
- Is $\log(\sum_{j} \exp(w_j))$ convex?

A Nice Univariate Result

Theorem: constrained univariate convex minimization

For any univariate convex function f and convex interval $C=\left[a,b\right]$, we have

$$P_C \left(\underset{w \in \mathbb{R}}{\operatorname{argmin}} f(w) \right) \subseteq \underset{w \in C}{\operatorname{argmin}} f(w),$$

where $P_C(w) = P_{[a,b]}(w) = (a \vee w) \wedge b$ is the closest point in C to w.

- Not true if C is not an interval (i.e. not convex)
- Not true if *f* is not convex
- Not true when dimension $d \geq 2$, even when both f and C are convex
- Except when $\operatorname{argmin}_{\mathbf{w} \in \mathbb{R}^d} f(\mathbf{w}) \subseteq C$

An Algorithm that does NOT work

$$\eta \leftarrow \underset{\eta \ge 0}{\operatorname{argmin}} f(\mathbf{w}_{\eta}), \quad \text{s.t.} \quad \mathbf{w}_{\eta} := \mathbf{w} - \eta \cdot \nabla f(\mathbf{w}) \in C$$

$$\mathbf{w} \leftarrow \mathbf{w}_{\eta}$$

Does NOT work

$$- f(\mathbf{w}) := \frac{1}{2}(w_1^2 + w_2^2)$$

$$- C = \{ \mathbf{w} \ge \mathbf{0} : w_1 + w_2 = 1 \}$$

$$- \text{ stuck at } \mathbf{w} = (1,0) \text{ while minimum is at } \mathbf{w}_{\star} = (\frac{1}{5}, \frac{1}{5})$$

• Important to leave the constraint set C

(Euclidean) Projection

Let $C \subseteq \mathbb{R}^d$ be a closed set. The Euclidean projection of a point $\mathbf{w} \in \mathbb{R}^d$ to C is:

$$P_C(\mathbf{w}) := \underset{\mathbf{z} \in C}{\operatorname{argmin}} \|\mathbf{z} - \mathbf{w}\|_2,$$

i.e. the point(s) in C that are closest to the given point \mathbf{w} .

- We always have $P_C(\mathbf{w}) \neq \emptyset$ and compact
- $P_C(\mathbf{w}) = \mathbf{w} \text{ iff } \mathbf{w} \in C$
- $P_C(\mathbf{w}) = \operatorname{bd} C \text{ if } \mathbf{w} \notin C$
- In \mathbb{R}^d , \mathbb{P}_C is unique iff C is convex

Geometrically

Theorem:

If C is convex, then $\bar{\mathbf{w}} = P_C(\mathbf{w})$ iff for all $\mathbf{z} \in C$

$$\langle \mathbf{z} - \bar{\mathbf{w}}, \mathbf{w} - \bar{\mathbf{w}} \rangle \le 0,$$

or equivalently, $\frac{1}{2} \|\mathbf{z} - \mathbf{w}\|_2^2 \ge \frac{1}{2} \|\mathbf{z} - \bar{\mathbf{w}}\|_2^2 + \frac{1}{2} \|\bar{\mathbf{w}} - \mathbf{w}\|_2^2$.

Example: Projection to the hypercube

$$\min_{\mathbf{a} \leq \boldsymbol{\delta} \leq \mathbf{b}} \|\boldsymbol{\delta} - \boldsymbol{\gamma}\|_2 = \min_{\mathbf{a} \leq \boldsymbol{\delta} \leq \mathbf{b}} \|\boldsymbol{\delta} - \boldsymbol{\gamma}\|_2^2$$

- Problem is separable: reduce to each dimension separately
- Apply the nice univariate result $\delta_{\star} = (\gamma \vee \mathbf{a}) \wedge \mathbf{b}$

Example: Projection to the ball

$$\min_{\|\mathbf{z}\|_2 \le \lambda} \|\mathbf{w} - \mathbf{z}\|_2 = \min_{\|\mathbf{z}\|_2 \le \lambda} \|\mathbf{w} - \mathbf{z}\|_2^2$$

- Decompose $\mathbf{z} = r \cdot \bar{\mathbf{z}}$, where $r \geq 0$, $\|\bar{\mathbf{z}}\|_2 = 1$
- Apply the nice univariate result $\mathbf{w}_{\star} = \left(\frac{\lambda}{\|\mathbf{w}\|_2} \wedge 1\right) \cdot \mathbf{w}$

_02'

Algorithm 1: Projected gradient descent for constrained smooth minimization

Input: $\mathbf{w}_0 \in \mathbb{R}^d$, constraint $C \subseteq \mathbb{R}^d$, smooth function $f : \mathbb{R}^d \to \mathbb{R}$

1 for t = 0, 1, ... do

4 $\mathbf{w}_{t+1} \leftarrow \mathrm{P}_C(\mathbf{w}_{t+1})$

// project back to the constraint

- $C = \mathbb{R}^d$: reduces to gradient descent
- Motivation from L-smoothness:

$$f(\mathbf{w}) \leq f(\mathbf{w}_t) + \langle \mathbf{w} - \mathbf{w}_t, \nabla f(\mathbf{w}_t) \rangle + \frac{1}{2\eta_t} \|\mathbf{w} - \mathbf{w}_t\|_2^2$$

= $\frac{1}{2\eta_t} \|\mathbf{w} - (\mathbf{w}_t - \eta_t \nabla f(\mathbf{w}_t))\|_2^2 + f(\mathbf{w}_t) - \frac{\eta_t}{2} \|\nabla f(\mathbf{w}_t)\|_2^2$

A. A. Goldstein. "Convex programming in Hilbert space". Bulletin of the American Mathematical Society, vol. 70, no. 5 (1964), pp. 709-710, E. S. Levitin and B. T. Polyak. "Constrained Minimization Methods". USSR Computational Mathematics and Mathematical Physics, vol. 6, no. 5 (1966), pp. 1-50. [English translation in Zh. Vychisl. Mat. mat. Fiz. vol. 6, no. 5, pp. 787-823, 1965].

