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Problem

Constrained smooth minimization:

Constraint on the domain: closed set ' C R

e /12" — IR is smooth, e.g. continuously differentiable

f can be convex or nonconvex; (' can be convex or nonconvex

® Minimizer may or may not be attained

Maximization is just negation



White-box Adversarial Attacks
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e Mathematically, a neural network is a function f(w;x)
e Typically, input x is given and network weights w optimized
e Could also freeze weights w and optimize x, !

méin size(d) s.t. pred[f(w;x+ )] #vy

® More generally: maxs ¢(w;x+d,y) s.t. size(d) <e and 0<x+6<1



dual projection
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Convexity

A point set ' C R% is iff for any w,z € (, the line segment [w,z| C C'.

The of a function [ : R" — (—00, o] is defined as the set

epi f :={(w,t) e R : f(w) <t}

A function [ : R? — (—00, o] is convex iff its epigraph is a convex set, or equivalently

Vw,Vz, VA € [0,1], fOw+ (1 —N)z) < Af(w)+ (1 =N f(z)

Theorem: second-order test for convexity

is convex iff is positive semidefinite.
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Calculus of Convexity

® f gconvex =—> «a- [+ [3-gis convex for any o, 5 > 0

® [ convex — [(Aw) is convex

® [ convex increasing and g convex = [ o ¢ is convex
® fconvex = (w,t>0)+— tf(w/t) is convex
® f, convex —> f = sup, f; is convex

® f(w,z) convex — ¢ = min, f(W,z) is convex

Is log(>_, exp(w;)) convex?
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A Nice Univariate Result

Theorem: constrained univariate convex minimization

For any univariate convex function f and convex interval

is the closest point in

® Not true if C' is not an interval (i.e. not convex)
® Not true if [ is not convex
® Not true when dimension d > 2, even when both / and (' are convex

® Except when argmin, g f(w) C C



An Algorithm that does NOT work

n < argmin f(w,), st. w,:=w-—n-Vf(w)eCl

n>0

?

W(*Wn

® Does NOT work
- flw) = b(wd +ud)
- C={w>0:w +wy =1}
— stuck at w = (1,0) while minimum is at w, = (

11
§~§)

® Important to leave the constraint set ('
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(Euclidean) Projection

Let ' C R be a closed set. The Euclidean projection of a point w € R to (' is:

Po(w) := argmin ||z — w||s,
zeC

i.e. the point(s) in C' that are closest to the given point w.
e We always have P (w) # () and compact
e Po(w)=wiffweC
® Po(w)=bdCifw¢gC

® In RY, Pc is unique iff C' is convex
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Geometrically

Theorem:
If C'is convex, then iff for all

or equivalently,




Example: Projection to the hypercube

® Problem is separable: reduce to each dimension separately
® Apply the nice univariate result , = (v a) A b

Example: Projection to the ball

® Decompose z = 1 - z, where r > 0, ||z|]> = 1

® Apply the nice univariate result w, = <HW¥ A 'l> -W
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Algorithm 1: Projected gradient descent for constrained smooth minimization

Input: w, € RY, constraint C' C R?, smooth function f : R — R
fort =0,1,... do
gt < Vf(wy)

Wit < Wy — )18y

// compute the gradient
// m; is the step size
Wit <& PC‘(Wt+1) // project back to the constraint

e (' — IR’ reduces to gradient descent
® Motivation from L-smoothness:

fw) < f(Wt> (W — Wi, V(W) + 5 [w — w3
= 5 llw — (we =V f(W) 15 + f(we) = BNV (w3
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