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Problem

Constrained minimization problem:

® Each (', € R% is closed, eenvex and

® Projector P; = P, can be easily computed
® However, C
® Function f: R? — R U {cc} is convex



Perceptron and SVM revisited

Recall the perceptron problem:

nin f(w) =0
i T
st. we mC,;, where C; = {w: (y;x;,w) > 1}
i=1

Similarly, we may rewrite the hard-margin SVM problem as:

n
S| D)
min =||wl|l5 st. wé& ﬂC’
weRd ZH HZ - g

We note that the projector P is available in closed-form:

IR i Kiy
Pc.(2) == {argmin |lw — z|2] =z+ ( y x2/ Z>)+yixi.
WeC; 13|35
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A nonconvex example
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Theorem: Fejér's characterization of the closed convex hull

iff there exists such that for all (hence

L. Fejér. . Mathematische Annalen,
vol. 85, no. 1 (1922), pp. 41-48.



https://doi.org/10.1007/BF01449600

Algorithmic Significance of Fejér's Result

Can be used to solve the convex feasibility problem:
find we (|

where the closed (and convex) set (" C IR? represents the solutions set of any problem.

Indeed, starting from an arbitrary point wy, if it is in (' then we are done; if not then

according to Fejér's Theorem there exists some w; such that |[w; — w| < ||w, — w]|
w e C.

We need to be able to certify if w, € ', which may be trivial when the set (' is
defined by explicit inequalities, such as ' = {w : g(w) < 0}.

If wo & (', we need to be able to explicitly and efficiently find w.

We also need sufficient decrease so that dist(w,;, C') — 0.

We may also want to prove the convergence (rate) of the whole sequence w;,.



Let C' = M;;C; # (). Suppose w ¢ C' (otherwise we are done). Then there exists
some C; # wq. Apply the constructive part of Fejér's Theorem by letting

wi = Pg, (Wo)-,
we immediately have
Yw € 0, 2 (/V, HW — W]HZ < HW — W()HQ.

lterating the above idea leads to the method of alternating projections:

Algorithm 1: Method of alternating projections

Input: w
1 fort=20,1,...do
2 choose set 07’/’ // cyclic, random or greedy
3 L Wit — (1 —n)we + flz,Pc:,, (We) // ns €10,2]
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Half Justification

Clearly, we have for any w € ("
W1 — W||§ = [[wy —w —ni(w; — PC,:t (Wt))H%
= [lwe — w3 + (07 — 2n,)[|w: — Pe, (W) 5+
2n, <w - Pg, (W), wy — Pg, (WL)>
( optimality of projection ) < ||w; — w||3 + (97 — 2n,)||w¢ — Pc, (wo)ll3
(m€[0,2]) < |[lwe—wls3.
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Theorem: Convergence of alternating projections

where each is closed and convex and Cf
for some , then with the cyclic update order we have

L. M. Bregman . Soviet Mathematics Doklady, vol. 6,
no. 3 (1965), pp. 688-692, L. G. Gubin, B. T. Polyak, and E. V. Raik.

. USSR Computational Mathematics and Mathematical Physics, vol. 7, no. 6 (1967), pp. 1-24. [English translation of paper in Zh. Vychisl.
Mat. mat. Fiz. vol. 7, no. 6, pp. 1211-1228, 1967]


https://archive.org/details/sim_doklady-mathematics_may-june-1965_6_3/page/688
https://doi.org/10.1016/0041-5553(67)90113-9
https://doi.org/10.1016/0041-5553(67)90113-9

Alternating Bregman Projection

Instead of the Euclidean projection, can also consider the Bregman projection

Po(z) = Pop(z) = argngin Dn(w,z),
wel

where /1 : RY — R U {cc} is a Legendre function.

Algorithm 2: Alternating Bregman projection
Input: wgy, domh O C
1 fort=20,1,...do

p choose set Ciﬁ // cyclic, random or greedy
K] Wit <— (l — ’f]t)Wt -+ T]t]P)C” (Wf) // M € [() }
L. M. Bregman. . Soviet

Mathematics Doklady, vol. 7, no. 6 (1966), pp. 1578—1581.
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https://archive.org/details/sim_doklady-mathematics_november-december-1966_7_6/page/n197

Dykstra’s algorithm

w N =

(S, 1

We now present a beautifu

| algorithm for solving:

min f(w) st. weC =N

where |

&

Algorithm 3: Dykstra's algorithm

Input: W() = argmin f, a;
for t =0, i [o)
choose set O,-,

Wy < argmin f(w) —

WECH
a[:l, — a’[/, + vf(wf) _
bi, < (A, 141, Wip1)

—0,b;,=Oforallic ]

// cyclic, random or greedy
<VV?‘7f(VVO +,a”> // Bregman projection

V(W)
// needed only for proof

R. L. Dykstra.
(1983), pp. 837-842

. Journal of the American Statistical Association, vol. 78, no. 384
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https://www.jstor.org/stable/2288193

Dykstra = AltMin in the Dual

Apply Fenchel-Rockafellar duality we obtain the dual problem:
inf f*(— w;) + oi(w;),
inf f1(= 20 W) + 2 oi(w))
where the (unique) primal solution w and dual solution {w; } are connected by:
> wi +Vf(w)=0.
® [is Legendre — [* is smooth and convex so AltMin applies
Wi, = argmin f*< — W — Z W;t) + oi(w})
i i#i
or Wy = argmin f(w) + <w; szt>

weC; j#i

S.-P. Han. “A successive projection method”. Mathematical Programming (1988), pp. 1-14, N. Gaffke and R. Mathar. “A cyclic projection
L1oalgorithm via duality”. Metrika, vol. 36 (1989), pp. 29-54. 12/14


https://en.wikipedia.org/wiki/Fenchel's_duality_theorem
https://doi.org/10.1007/BF01580719
https://doi.org/10.1007/BF02614077
https://doi.org/10.1007/BF02614077

The primal solution w;; and dual solution w, , are now both unique due to the
strict convexity in Legendre functions and they are connected by:

V(W) + Wi T+ Zj;éi wi,=0= V(W) + Z} Wit (1)

: : . P .,
since at time ¢ we update w;,,, and keep w, , = w;, forall j # 7.

Let us define (and maintain)

(1) o
Vi=1,... .||, a+Vf(w)+ ,,wW;=0=a,—w,

where the last inequality follows from (1). Then,
Aji+1 = W;it+1 : *Vf Wf+1 ZW : *Vf Wf_l'_l) a4 W + Vf<wf>

J#i
=a;; + Vf(wy) = V(W)

while for all [ # i, a;441 = w,, = aj; since w;, was held fixed.
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Entropy-regularized optimal transport

Let p € A,, and g € A, be two probability vectors, and we seek a joint distribution
II € R with p and q as marginals such that the transportation cost is minimized:

min (C,TI) st. Hl=p, I'1=q.

IIER"NL Xn
Add a small entropy regularization:

min (C,II) + )\ij logm; st. Ml=p, I'1=aq.

mXn
TERY Iy

W.lo.g. let [Ty o< exp(—C'/\) > 0 and 1'11;1 = 1 to obtain the equivalent problem:

min KL(IT||TLy)

mXmn
MERY

st. M1=p, II'1=q.
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