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Problem

Constrained minimization problem:

inf
w∈Rd

f(w)

s.t. w ∈
⋂
i∈I

Ci,

• Each Ci ⊆ Rd is closed, convex and simple
• Projector Pi = PCi

can be easily computed
• However, projecting to the intersection C is usually much harder
• Function f : Rd → R ∪ {∞} is convex

L10 1/14



Perceptron and SVM revisited

Recall the perceptron problem:

min
w∈Rd

f(w) ≡ 0

s.t. w ∈
n⋂

i=1

Ci, where Ci := {w : ⟨yixi,w⟩ ≥ 1}

Similarly, we may rewrite the hard-margin SVM problem as:

min
w∈Rd

1
2
∥w∥22 s.t. w ∈

n⋂
i=1

Ci.

We note that the projector PCi
is available in closed-form:

PCi
(z) :=

[
argmin
w∈Ci

∥w − z∥2
]
= z+

(1− ⟨yixi, z⟩)+
∥xi∥22

yixi.
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A nonconvex example
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Theorem: Fejér’s characterization of the closed convex hull

Let A ⊆ Rd. Then, w ̸∈ convA iff there exists z ∈ Rd such that for all a ∈ A (hence
all a ∈ convA) we have ∥w − a∥2 > ∥z− a∥2.

L. Fejér. “Über die Lage der Nullstellen von Polynomen, die aus Minimumforderungen gewisser Art entspringen”. Mathematische Annalen,
vol. 85, no. 1 (1922), pp. 41–48.
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https://doi.org/10.1007/BF01449600


Algorithmic Significance of Fejér’s Result

Can be used to solve the convex feasibility problem:

find w ∈ C,

where the closed (and convex) set C ⊆ Rd represents the solutions set of any problem.
Indeed, starting from an arbitrary point w0, if it is in C then we are done; if not then
according to Fejér’s Theorem there exists some w1 such that ∥w1 −w∥ < ∥w0 −w∥
for all w ∈ C.
• We need to be able to certify if w0 ∈ C, which may be trivial when the set C is

defined by explicit inequalities, such as C = {w : g(w) ≤ 0}.
• If w0 ̸∈ C, we need to be able to explicitly and efficiently find w1.
• We also need sufficient decrease so that dist(wt, C)→ 0.
• We may also want to prove the convergence (rate) of the whole sequence wt.
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Let C = ∩i∈ICi ̸= ∅. Suppose w0 ̸∈ C (otherwise we are done). Then there exists
some Ci ̸∋ w0. Apply the constructive part of Fejér’s Theorem by letting

w1 = PCi
(w0),

we immediately have

∀w ∈ Ci ⊇ C, ∥w −w1∥2 < ∥w −w0∥2.

Iterating the above idea leads to the method of alternating projections:

Algorithm 1: Method of alternating projections
Input: w0

1 for t = 0, 1, . . . do
2 choose set Cit // cyclic, random or greedy
3 wt+1 ← (1− ηt)wt + ηtPCit

(wt) // ηt ∈ [0, 2]
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Half Justification

Clearly, we have for any w ∈ C:

∥wt+1 −w∥22 = ∥wt −w − ηt(wt − PCit
(wt))∥22

= ∥wt −w∥22 + (η2t − 2ηt)∥wt − PCit
(wt)∥22+

2ηt
〈
w − PCit

(wt),wt − PCit
(wt)

〉
( optimality of projection ) ≤ ∥wt −w∥22 + (η2t − 2ηt)∥wt − PCit

(wt)∥22
( ηt ∈ [0, 2] ) ≤ ∥wt −w∥22.
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Theorem: Convergence of alternating projections

Let C = ∩i∈ICi ̸= ∅ where each Ci is closed and convex and |I| < ∞. If 0 < α ≤
ηt ≤ 2− β < 2 for some α, β > 0, then with the cyclic update order we have

wt → w⋆ ∈ C.

L. M. Bregman. “The method of successive projection for finding a common point of convex sets”. Soviet Mathematics Doklady, vol. 6,
no. 3 (1965), pp. 688–692, L. G. Gubin, B. T. Polyak, and E. V. Raik. “The Method of Projections for Finding the Common Point of Convex
Sets”. USSR Computational Mathematics and Mathematical Physics, vol. 7, no. 6 (1967), pp. 1–24. [English translation of paper in Zh. Vȳchisl.
Mat. mat. Fiz. vol. 7, no. 6, pp. 1211–1228, 1967].
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https://archive.org/details/sim_doklady-mathematics_may-june-1965_6_3/page/688
https://doi.org/10.1016/0041-5553(67)90113-9
https://doi.org/10.1016/0041-5553(67)90113-9


Alternating Bregman Projection

Instead of the Euclidean projection, can also consider the Bregman projection

PC(z) = PC,h(z) = argmin
w∈C

Dh(w, z),

where h : Rd → R ∪ {∞} is a Legendre function.

Algorithm 2: Alternating Bregman projection
Input: w0, domh ⊇ C

1 for t = 0, 1, . . . do
2 choose set Cit // cyclic, random or greedy
3 wt+1 ← (1− ηt)wt + ηtPCit

(wt) // ηt ∈ [0, 2]

L. M. Bregman. “A relaxation method of finding a common point of convex sets and its application to problems of optimization”. Soviet
Mathematics Doklady, vol. 7, no. 6 (1966), pp. 1578–1581.
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https://archive.org/details/sim_doklady-mathematics_november-december-1966_7_6/page/n197


Dykstra’s algorithm

We now present a beautiful algorithm for solving:

min
w

f(w) s.t. w ∈ C := ∩i∈ICi,

where f is Legendre and each Ci is closed and convex.
Algorithm 3: Dykstra’s algorithm
Input: w0 = argmin f , ai = 0, bi = 0 for all i ∈ I

1 for t = 0, 1, . . . do
2 choose set Cit // cyclic, random or greedy
3 wt+1 ← argmin

w∈Cit

f(w)− ⟨w,∇f(wt) + ait⟩ // Bregman projection

4 ait ← ait +∇f(wt)−∇f(wt+1)
5 bit ← ⟨ait,t+1,wt+1⟩ // needed only for proof

R. L. Dykstra. “An Algorithm for Restricted Least Squares Regression”. Journal of the American Statistical Association, vol. 78, no. 384
(1983), pp. 837–842.
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https://www.jstor.org/stable/2288193


Dykstra = AltMin in the Dual

Apply Fenchel-Rockafellar duality we obtain the dual problem:

inf
{w∗

i }
f ∗(−∑

i
w∗

i

)
+
∑

i
σi(w

∗
i ),

where the (unique) primal solution w and dual solution {w∗
i } are connected by:∑

iw
∗
i +∇f(w) = 0.

• f is Legendre =⇒ f ∗ is smooth and convex so AltMin applies

w∗
i,t+1 = argmin

w∗
i

f ∗
(
−w∗

i −
∑
j ̸=i

w∗
j,t

)
+ σi(w

∗
i )

or wt+1 = argmin
w∈Ci

f(w) +
〈
w;

∑
j ̸=i

w∗
j,t

〉
S.-P. Han. “A successive projection method”. Mathematical Programming (1988), pp. 1–14, N. Gaffke and R. Mathar. “A cyclic projection

algorithm via duality”. Metrika, vol. 36 (1989), pp. 29–54.L10 12/14

https://en.wikipedia.org/wiki/Fenchel's_duality_theorem
https://doi.org/10.1007/BF01580719
https://doi.org/10.1007/BF02614077
https://doi.org/10.1007/BF02614077


The primal solution wt+1 and dual solution w∗
i,t+1 are now both unique due to the

strict convexity in Legendre functions and they are connected by:

∇f(wt+1) +w∗
i,t+1 +

∑
j ̸=iw

∗
j,t = 0 = ∇f(wt+1) +

∑
j w

∗
j,t+1, (1)

since at time t we update w∗
i,t+1 and keep w∗

j,t+1 = w∗
j,t for all j ̸= i.

Let us define (and maintain)

∀l = 1, . . . , |I|, al,t +∇f(wt) +
∑

j ̸=l w
∗
j,t = 0

(1)
= al,t −w∗

l,t,

where the last inequality follows from (1). Then,

ai,t+1 = w∗
i,t+1

(1)
= −∇f(wt+1)−

∑
j ̸=i

w∗
j,t

(1)
= −∇f(wt+1) +w∗

j,t +∇f(wt)

= ai,t +∇f(wt)−∇f(wt+1)

while for all l ̸= i, al,t+1 = w∗
l,t = al,t since w∗

l,t was held fixed.
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Entropy-regularized optimal transport

Let p ∈ ∆m and q ∈ ∆n be two probability vectors, and we seek a joint distribution
Π ∈ Rm×n

+ with p and q as marginals such that the transportation cost is minimized:

min
Π∈Rm×n

+

⟨C,Π⟩ s.t. Π1 = p, Π⊤1 = q.

Add a small entropy regularization:

min
Π∈Rm×n

+

⟨C,Π⟩+ λ
∑
ij

πij log πij s.t. Π1 = p, Π⊤1 = q.

W.l.o.g. let Π0 ∝ exp(−C/λ) ≥ 0 and 1⊤Π01 = 1 to obtain the equivalent problem:

min
Π∈Rm×n

+

KL(Π∥Π0)

s.t. Π1 = p, Π⊤1 = q.
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