Optimization for Data Science

Lec 02: Proximal Gradient

Yaoliang Yu

Problem

Composite smooth minimization:

$$f_\star = \inf_{\mathbf{w} \in \mathbb{R}^d} f(\mathbf{w}), \quad \text{where} \quad f(\mathbf{w}) = \ell(\mathbf{w}) + r(\mathbf{w})$$

- *ℓ*: smooth and possibly nonconvex
- \bullet r: nonsmooth and possibly nonconvex
- ullet The sum $f=\ell+r$ may not be smooth or convex
- Minimizer may or may not be attained
- Maximization is just negation

L02 1/12

https://www.ams.org/journals/notices/202208/noti2534/

02 2/12

Sparsity

$$\min_{\mathbf{w}} \ \underbrace{\frac{1}{n} \|\mathbf{w}\mathbf{X} - \mathbf{y}\|_2^2}_{\ell} + \underbrace{\lambda \cdot \|\mathbf{w}\|_0}_{r}$$

- Balancing square error with sparsity
- \bullet ℓ is convex and L-smooth, r is nonsmooth and nonconvex

$$\min_{\mathbf{w}} \ \underbrace{\frac{1}{n} \|\mathbf{w}\mathbf{X} - \mathbf{y}\|_{2}^{2}}_{\ell} + \underbrace{\lambda \cdot \|\mathbf{w}\|_{1}}_{r}$$

• Convex relaxation: r is now convex but remains nonsmooth (crucial)

02 3/12

R. Tibshirani. "Regression Shrinkage and Selection via the Lasso". Journal of the Royal Statistical Society: Series B, vol. 58, no. 1 (1996), pp. 267–288.

Proximal Map and Moreau Envelope

$$P_f^{\eta}(\mathbf{w}) := \underset{\mathbf{z}}{\operatorname{argmin}} \ \frac{1}{2\eta} \|\mathbf{w} - \mathbf{z}\|_2^2 + f(\mathbf{z})$$
$$M_f^{\eta}(\mathbf{w}) := \underset{\mathbf{z}}{\min} \ \frac{1}{2\eta} \|\mathbf{w} - \mathbf{z}\|_2^2 + f(\mathbf{z})$$

- $\mathbf{P}^{\eta}_f: \mathbb{R}^d \to \mathbb{R}^d$ while $\mathbf{M}^{\eta}_f: \mathbb{R}^d \to \mathbb{R}$
- ullet Under mild conditions, P^{η}_f is always nonempty and compact
- ullet P^{η}_f is unique if f is convex while M^{η}_f is always unique
- M_f^{η} is a nicer version of f:
 - $-\operatorname{M}_f^{\eta} \leq f$, $\inf \operatorname{M}_f^{\eta} = \inf f$, $\operatorname{argmin} \operatorname{M}_f^{\eta} = \operatorname{argmin} f$
 - $-\operatorname{M}_f^{\eta} o f$ if $\eta o 0$, and $\operatorname{M}_f^{\eta}$ is "smoother" than f

4/12

J. J. Moreau. "Proximité et Dualtité dans un Espace Hilbertien". Bulletin de la Société Mathématique de France, vol. 93 (1965), pp. 273–299.

Notation

- We allow functions to take value ∞ (but not $-\infty$ since we are minimizing).
- dom $f := \{ \mathbf{w} : f(\mathbf{w}) < \infty \}$
- Identify a set $C \subseteq \mathbb{R}^d$ with an indicator function

$$\iota_C(\mathbf{w}) = \begin{cases} 0, & \text{if } \mathbf{w} \in C \\ \infty, & \text{if } \mathbf{w} \notin C \end{cases}$$

Can rewrite constrained problem as a "seemingly" unconstrained one:

$$\inf_{\mathbf{w} \in C} \ \ell(\mathbf{w}) = \inf_{\mathbf{w} \in \mathbb{R}^d} \ \ell(\mathbf{w}) + \iota_C(\mathbf{w})$$

Hence the generality of our composite minimization problem

.02

Example: Euclidean projection is a proximal map

$$P_C(\mathbf{w}) = P_{\iota_C}^{\eta}(\mathbf{w})$$
 for any $\eta > 0$.

Example: Soft-shrinkage

Let $r(\mathbf{w}) = \|\mathbf{w}\|_1$, i.e. the sum of absolute values in \mathbf{w} . We have

$$P_r^{\eta}(\mathbf{w}) = \operatorname{sign}(\mathbf{w}) \odot (|\mathbf{w}| - \eta)_+$$

L02

Algorithm 1: Proximal point algorithm for minimization

Input: $\mathbf{w}_0 \in \mathbb{R}^d$, function $f: \mathbb{R}^d \to \mathbb{R}$ 1 for $t = 0, 1, \dots$ do

 $\begin{array}{c|c} \mathbf{1} & \mathbf{10} & t = 0, 1, \dots \mathbf{d0} \\ \mathbf{2} & \mathbf{w}_{t+1} \leftarrow \mathrm{P}_f^{\eta_t}(\mathbf{w}_t) \end{array}$

// η_t is the step size

- $\mathbf{w}_{t+1} = \mathbf{w}_t \eta_t \cdot \nabla f(\mathbf{w}_{t+1})$, i.e. $\mathbf{w}_t = \mathbf{w}_{t+1} + \eta_t \cdot \nabla f(\mathbf{w}_{t+1})$
- Gradient descent descends from \mathbf{w}_t to \mathbf{w}_{t+1}
- Time flows backwards in PPA: it ascends from \mathbf{w}_{t+1} to \mathbf{w}_t
- Not easy to find \mathbf{w}_{t+1} with such property; but nice theoretical guarantees

L02 7/12

Algorithm 2: Proximal gradient algorithm for composite minimization

Input: $\mathbf{w}_0 \in \mathbb{R}^d$, smooth function $\ell : \mathbb{R}^d \to \mathbb{R}$, $r : \mathbb{R}^d \to \mathbb{R}$

1 for t = 0, 1, ... do

- $r \equiv 0$: reduces to gradient descent
- $\ell \equiv 0$: reduces to proximal point
- $r = \iota_C$: reduces to projected gradient
- Motivation from L-smoothness of ℓ :

$$\ell(\mathbf{w}) + r(\mathbf{w}) \le \ell(\mathbf{w}_t) + \langle \mathbf{w} - \mathbf{w}_t, \nabla \ell(\mathbf{w}_t) \rangle + \frac{1}{2\eta_t} \|\mathbf{w} - \mathbf{w}_t\|_2^2 + r(\mathbf{w})$$

$$= \frac{1}{2\eta_t} \|\mathbf{w} - (\mathbf{w}_t - \eta_t \cdot \nabla \ell(\mathbf{w}_t))\|_2^2 + r(\mathbf{w}) + \ell(\mathbf{w}_t) - \frac{\eta_t}{2} \|\nabla \ell(\mathbf{w}_t)\|_2^2$$

R. E. Bruck. "On the weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert space". Journal of Mathematical Analysis and Applications, vol. 61, no. 1 (1977), pp. 159–164, M. Fukushima and H. Mine. "A Generalized Proximal Point Algorithm for Certain Non-Convex Minimization Problems". International Journal of Systems Science, vol. 12, no. 8 (1981), pp. 989–1000.

A Technical Result

The Bregman divergence induced by a (differentiable) convex function f is

$$D_f(\mathbf{z}; \mathbf{w}) := f(\mathbf{z}) - f(\mathbf{w}) - \langle \mathbf{z} - \mathbf{w}, \nabla f(\mathbf{w}) \rangle \ge 0$$

• $D_f(\mathbf{z}; \mathbf{w}) \equiv D_f(\mathbf{w}, \mathbf{z}) \text{ iff } f = \frac{1}{2} || \cdot ||_2^2$

Theorem: composite optimality

Let ℓ be differentiable convex and r be convex. Then,

$$\mathbf{w}_{\star} \in \operatorname{argmin} \ell + r \iff \forall \mathbf{w}, \ \ell(\mathbf{w}) + r(\mathbf{w}) \ge \ell(\mathbf{w}_{\star}) + r(\mathbf{w}_{\star}) + D_{\ell}(\mathbf{w}; \mathbf{w}_{\star})$$

Corollary: Euclidean projection revisited

Let $\ell(\mathbf{w}) = \frac{1}{2} \|\mathbf{w} - \mathbf{w}_0\|_2^2$ and $r = \iota_C$ for some convex set C.

Theorem: convergence of proximal gradient

Let ℓ be convex and L-smooth and r be convex. Then,

$$f(\mathbf{w}_t) \leq f(\mathbf{w}) + \frac{\|\mathbf{w} - \mathbf{w}_0\|_2^2}{2t\bar{\eta}_t}, \quad \text{where} \quad \bar{\eta}_t := \frac{1}{t}\sum_{s=0}^{t-1}\eta_s.$$

$$f(\mathbf{w}_{t+1}) \leq \ell(\mathbf{w}_{t}) + \langle \mathbf{w}_{t+1} - \mathbf{w}_{t}, \nabla \ell(\mathbf{w}_{t}) \rangle + \frac{1}{2\eta_{t}} \|\mathbf{w}_{t+1} - \mathbf{w}_{t}\|_{2}^{2} + r(\mathbf{w}_{t+1})$$

$$\leq \ell(\mathbf{w}_{t}) + \langle \mathbf{w} - \mathbf{w}_{t}, \nabla \ell(\mathbf{w}_{t}) \rangle + \frac{1}{2\eta_{t}} \|\mathbf{w} - \mathbf{w}_{t}\|_{2}^{2} + r(\mathbf{w}) - \frac{1}{2\eta_{t}} \|\mathbf{w} - \mathbf{w}_{t+1}\|_{2}^{2}$$

$$\leq \ell(\mathbf{w}) + r(\mathbf{w}) + \frac{1}{2\eta_{t}} \|\mathbf{w} - \mathbf{w}_{t}\|_{2}^{2} - \frac{1}{2\eta_{t}} \|\mathbf{w} - \mathbf{w}_{t+1}\|_{2}^{2},$$

- With $\mathbf{w} = \mathbf{w}_t$ we know $f(\mathbf{w}_{t+1}) \leq f(\mathbf{w}_t)$
- Multiply η_t and telescope

10/12

A. Beck and M. Teboulle. "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems". SIAM Journal on Imaging Sciences, vol. 2, no. 1 (2009), pp. 183–202, P. Tseng. "On Accelerated Proximal Gradient Methods for Convex-Concave Optimization". 2008.

Disccussions

- Where is L-smoothness of ℓ used?
- Where is convexity used?
- What is the condition on the step size η_t ?

- open-loop:
$$\sum_t \eta_t \to \infty$$
, $\eta_t \to 0$

• With $\eta_t = \frac{1}{L}$, obtain the nice bound:

$$f(\mathbf{w}_t) - f_{\star} \le \frac{\mathsf{L} \|\mathbf{w}_0 - \mathbf{w}_{\star}\|_2^2}{2t}$$

- $O(\frac{1}{t})$ rate of convergence, no dependence on dimension d
- Amijo's backtracking for the step size?

Example: Elastic net

$$\min_{\mathbf{w}} \tfrac{1}{n} \|\mathbf{w}\mathbf{X} - \mathbf{y}\|_2^2 + \lambda \|\mathbf{w}\|_1 + \tfrac{\gamma}{2} \|\mathbf{w}\|_2^2$$

Here we have two choices:

- Set $\ell = \frac{1}{n} \|\mathbf{w}\mathbf{X} \mathbf{y}\|_2^2 + \frac{\gamma}{2} \|\mathbf{w}\|_2^2$ and $r(\mathbf{w}) = \lambda \|\mathbf{w}\|_1$.
- Set $\ell = \frac{1}{n} \|\mathbf{w}\mathbf{X} \mathbf{y}\|_2^2$ and $r(\mathbf{w}) = \lambda \|\mathbf{w}\|_1 + \frac{\gamma}{2} \|\mathbf{w}\|_2^2$.

What are the pros and cons?

$$P^{\eta}_{\lambda\|\cdot\|_1 + \frac{\gamma}{2}\|\cdot\|_2^2}(\mathbf{w}) = P^{\eta}_{\frac{\gamma}{2}\|\cdot\|_2^2} \left(P^{\eta}_{\lambda\|\cdot\|_1}(\mathbf{w}) \right)$$

_02 12/12

H. Zou and T. Hastie. "Regularization and variable selection via the elastic net". Journal of the Royal Statistical Society, Series B, vol. 67 (2005), pp. 301–320.

