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Problem

Composite smooth minimization:

/: smooth and possibly nonconvex

® 2 nonsmooth and possibly nonconvex

The sum f = /4 r may not be smooth or convex

® Minimizer may or may not be attained

Maximization is just negation



Wide Field Planetary Camera 1 Wide Field Planetary Camera 2



https://www.ams.org/journals/notices/202208/noti2534/

Sparsity

min LwX —y[3+ ) wl
—_——— —\—

¢ r
® Balancing square error with sparsity
® /[ is convex and L-smooth, 7 is nonsmooth and nonconvex

min LwX —y[3+ ) wl,
—_——— —

14 r

e Convex relaxation: 7 is now convex but remains nonsmooth (crucial)

R. Tibshirani. . Journal of the Royal Statistical Society: Series B, vol. 58, no. 1 (1996),
pp. 267—-288.
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https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

Proximal Map and Moreau Envelope

P;ﬂ(w) o arg;nin %nHW —z|5 + f(2)

MY (w) = min 2in||w — 2|5+ f(2)

P RY — R’ while M7 : R? —

Under mild conditions, P is always nonempty and compact

P’ is unique if f is convex while M7 is always unique

M7 is a nicer version of f:
- M} < f, inf M} = inf f, argmin M} = argmin f

- M} — fifn — 0, and M} is “smoother” than f

J. J. Moreau. “Proximité et Dualtité dans un Espace Hilbertien”. Bulletin de la Société Mathématique de France, vol. 93 (1965),
pp. 273—-299.
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https://doi.org/10.24033/bsmf.1625

Notation

We allow functions to take value oo (but not —oo since we are minimizing).

dom f :={w: f(w) < oo}

Identify a set C' C IR? with an indicator function

(w) 0, ifwe(C
to(w) =
¢ oo, ifweg(C

e Can rewrite constrained problem as a “seemingly” unconstrained one:

welC

inf 4(w) = inf {(w)+ to(w)
we

Hence the generality of our composite minimization problem

5/12



Example: Euclidean projection is a proximal map

for any

Example: Soft-shrinkage

. i.e. the sum of absolute values in w. We have




Algorithm 1: Proximal point algorithm for minimization

Input: w, € RY, function f: R? —+ R
1 fort=20,1,...do
2 L Wiyl < P}/ (Wz> // m; is the step size

® Wi =w,— - Vf( ), i.e. Wy =wpq + 1 - Vf( )

e Gradient descent descends from w; to w;
® Time flows backwards in PPA: it ascends from w,., to w;
[}

Not easy to find w,,; with such property; but nice theoretical guarantees



Algorithm 2: Proximal gradient algorithm for composite minimization
Input: wo € R%, smooth function /: R* - R, r : R > R

1 for i =0, i [o)
2 Zt < Wy — N - Vf(Wt) // gradient step w.r.t. /
k] L Wiy < Pﬁ"(Zf) // proximal step w.r.t. r
® ;= (: reduces to gradient descent
® / = (: reduces to proximal point
® ; — ;o reduces to projected gradient
® Motivation from L-smoothness of /:

((w) +r(w) < lwy) + (w —wy, VI(wy)) + ﬁHW — wy|5 + r(w)
— (wy =1 VW) [[3 + (W) + £(w,) = B[ VE(w) 3

1
ﬂ”w

R. E. Bruck.
. Journal of Mathematical Analysis and Applications, vol. 61, no. 1 (1977), pp. 159-164, M. Fukushima and H. Mine.
. International Journal of Systems Science, vol. 12, no. 8 (1981),
pp. 989-1000.
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https://doi.org/10.1016/0022-247X(77)90152-4
https://doi.org/10.1016/0022-247X(77)90152-4
https://doi.org/10.1080/00207728108963798
https://doi.org/10.1080/00207728108963798

A Technical Result

The induced by a (differentiable) convex function f is
Ds(z;w) := f(z) — f(W) — (z—w,Vf(w)) >0

® Di(z;w) = Dy(w,2) iff f = %H |3

Theorem: composite optimality

Let / be differentiable convex and » be convex. Then,

Corollary: Euclidean projection revisited

Let and for some convex set (.

P. Tseng. . 2008.


https://www.mit.edu/~dimitrib/PTseng/papers/apgm.pdf

Theorem: convergence of proximal gradient

Let / be convex and | .-smooth and » be convex. Then,

f(VV/A1>

VAN

b(wy) + (W — wy, VU(wy)) + *HW W/Hz +r(w thW - W/HHg
4

\ /\

(W) + (W) + 2 [[w — w3 = 2 lw - wMH»

e With w = w, we know [(w; ) < f(w)

® Multiply 7); and telescope

A. Beck and M. Teboulle. . SIAM Journal on Imaging
Sciences, vol. 2, no. 1 (2009), pp. 183-202, P. Tseng. . 2008.


https://doi.org/10.1137/080716542
https://www.mit.edu/~dimitrib/PTseng/papers/apgm.pdf

Disccussions

® \Where is L-smoothness of ¢ used?

® Where is convexity used?

What is the condition on the step size 7),?

— open-loop: >, n — 00, my — 0

With 7, = +, obtain the nice bound:

O(7) rate of convergence, no dependence on dimension d

Amijo's backtracking for the step size?
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Example: Elastic net

Here we have two choices:

® Set

e Set and

What are the pros and cons?

H. Zou and T. Hastie . Journal of the Royal Statistical Society, Series B, vol. 67
(2005), pp. 301-320


https://doi.org/10.1111/j.1467-9868.2005.00503.x




