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Problem

Smooth minimization:

min
w∈Rd

f(w)

• f is a sufficiently smooth and (non)convex function

• Can high-order derivatives improver convergece?
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Gradient Descent Recalled
• First-order approximation:

f(w) ≤ f(wt) + ⟨w −wt, f
′(wt)⟩+ 1

2ηt
∥w −wt∥22

• Minimize the upper bound we obtain the familiar GD:

wt+1 = wt − ηtf
′(wt)

• If interested in maximizing f , use GA instead:

wt+1 = wt + ηtf
′(wt)

• For L-smooth functions, gradient norm converges at rate O(1/
√
t)

• For convex and L-smooth functions, function value converges at rate O(1/t)
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Newton’s Algorithm

• With 2nd order derivative, we have

f(w) ≈ f(wt) + ⟨w −wt, f
′(wt)⟩+ 1

2ηt
⟨w −wt, f

′′(wt)(w −wt)⟩

• Similarly, minimize the approximation we obtain Newton’s algorithm:

wt+1 = wt − ηt[f
′′(wt)]

−1f ′(wt)

– often ηt ≡ 1, at least in later stages

– require the Hessian f ′′ to be nondegenerate

• Backbone of interior-point methods

L16 3/18



Affine Equivariance

wt+1 = wt − ηt[f
′′(wt)]

−1f ′(wt)

• Consider the change-of-variable w = Az for some invertible A:

(f ◦ A)′(z) = A⊤f ′(Az)

(f ◦ A)′′(z) = A⊤f ′′(Az)A

• Newton update is affine equivalent:

zt+1 = zt − ηtA
−1[f ′′(Azt)]

−1 (A⊤)−1A⊤ f ′(Azt)

• How about gradient descent?
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Affine Invariance
• Consider changing the inner product with a positive definite matrix Q:

⟨w, z⟩Q := ⟨w, Qz⟩

• Under the new inner product, we have

∇f → Q−1∇f, ∇2f → Q−1∇2f

• Newton’s update remains again the same

f(w) ≈ f(wt) + ⟨w −wt, f
′(wt)⟩+ 1

2ηt
⟨w −wt, f

′′(wt)(w −wt)⟩
f(w) ≤ f(wt) + ⟨w −wt, f

′(wt)⟩+ 1
2ηt
∥w −wt∥22
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Newton’s Indifference

wt+1 = wt − ηt[f
′′(wt)]

−1f ′(wt)

• Consider scaling f to αf for any α ∈ R \ {0}
• Newton’s update remains the same:

(αf)′ = αf ′, (αf)′′ = αf ′′

• In other words, minimizing f or maximizing f yields the same Newton update!

• Newton only cares to find a root: f ′(w) = 0

L16 6/18



Local Quadratic Convergence

Theorem:
Suppose f is σ-strongly convex and f ′′ is L-Lipschitz continuous (w.r.t. the ℓ2 norm),
and q = L

2σ2∥f ′(w0)∥2 < 1, then for all t:

∥wt −w∗∥2 ≤ 1
σ
∥f ′(wt)∥2 ≤ 2σ

L
q2

t

,

where w∗ is the unique minimizer of f and ηt ≡ 1.

• f is σ-strongly convex if f ′′ ⪰ σ · Id

• f ′′ is L-Lipschitz continuous if ∥f ′′′∥ ≤ L

• q < 1 if initializer w0 is close to w∗, i.e. ∥f ′(w0)∥2 < 2σ2

L
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• L-Lipschitz continuity of f ′′ implies that

∥f ′(wt + z)− f ′(wt)− f ′′(wt)z∥2 ≤ L
2
∥z∥22

• Taking z = −[f ′′(wt)]
−1f ′(wt) =: wt+1 −wt we obtain

∥f ′(wt+1)∥2 ≤ L
2
∥[f ′′(wt)]

−1f ′(wt)∥22 ≤ L
2
∥[f ′′(wt)]

−1∥2sp · ∥f ′(wt)∥22
≤ L

2σ2∥f ′(wt)∥22

• Therefore, telescoping yields for t ≥ 0:

L
2σ2∥f ′(wt+1)∥2 ≤

(
L

2σ2∥f ′(wt)∥2
)2 ≤ · · · ≤ (

L
2σ2∥f ′(w0)∥2

)2t+1

• Lastly, it follows from the strong convexity of f that

∥f ′(wt)∥2 = ∥f ′(wt)− f ′(w∗)∥2 ≥ σ∥wt −w∗∥2
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Example: Newton may NOT converge faster than linearly

Let us consider the simple univariate function

f(w) := |w|5/2.

• Clearly, we have

f ′(w) = 5
2
sign(w)|w|3/2, f ′′(w) = 15

4
|w|1/2

• f ′′ is not Lipschitz continuous and f is not strongly convex
• The Newton update is:

wt+1 = wt − 4
15
|wt|−1/2 · 5

2
sign(wt)|wt|3/2 = wt − 2

3
wt =

1
3
wt

• Converges to 0, the unique minimizer, at a linear rate.
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Example: Newton may cycle

Consider the simple univariate function

f(w) = −1
4
w4 + 5

2
w2, f ′(w) = −w3 + 5w, f ′′(w) = −3w2 + 5

• Around 0, f is locally (strongly) convex and f ′′ is locally Lipschitz continuous
• The Newton update is:

wt+1 = wt −
−w3

t + 5wt

−3w2
t + 5

=
2w3

t

3w2
t − 5

• With w0 = 1 we enter a cycle:

1 −1
t← t+1

• Restricted to the unit ball around the origin, L = 6 and σ = 2, so that
q = L

2σ2∥f ′(w0)∥2 = 6× 4/23 = 3 ̸< 1
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Example: Newton can be chaotic

Consider the simple univariate function

f(w) = 1
3
w3 + w, f ′(w) = w2 + 1, f ′′(w) = 2w

• f , being nonconvex, tends to −∞ as w → −∞ while f ′′ is 2-Lipschitz continuous
and vanishes at w = 0
• The Newton update is:

wt+1 = wt −
w2

t + 1

2wt

= 1
2
(wt − 1

wt
)

• f ′ > 0 hence Newton cannot find any root and goes crazy...
• Fixec point of the Newton update is w2 = −1, i.e. w = ±ı
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Dealing with Degeneracy

f(w) ≈ f(wt) + ⟨w −wt, f
′(wt)⟩+ 1

2ηt
⟨w −wt, f

′′(wt)(w −wt)⟩
f(w) ≤ f(wt) + ⟨w −wt, f

′(wt)⟩+ 1
2ηt
∥w −wt∥22

• Levenberg-Marquardt Regularization:

min
w

f(wt) + ⟨w −wt, f
′(wt)⟩+ 1

2ηt
⟨w −wt, f

′′(wt)(w −wt)⟩+ αt

2ηt
∥w −wt∥22

• Interpolation between ideas:

wt+1 = wt − ηt · [f ′′(wt) + αtId]
−1f ′(wt)

– αt → 0: Newton’s update
– αt →∞: gradietn descent (upon normalization)

K. Levenberg. “A method for the solution of certain non-linear problems in least squares”. Quarterly of Applied Mathematics, vol. 2, no. 2
(1944), pp. 164–168, D. W. Marquardt. “An Algorithm for Least-Squares Estimation of Nonlinear Parameters”. Journal of the Society for
Industrial and Applied Mathematics, vol. 11, no. 2 (1963), pp. 431–441.L16 13/18
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Cubic Regularization

f(wt) + ⟨f ′(wt),w −wt⟩+ 1
2
⟨f ′′(wt)(w −wt),w −wt⟩+ 1

6ηt
∥w −wt∥32︸ ︷︷ ︸

f̄t(w)=f̄ηt (w;wt)

• Setting derivative to zero:

f ′(wt) + f ′′(wt)(wt+1 −wt) +
1
2ηt
∥wt+1 −wt∥2 · (wt+1 −wt) = 0

• Implicit update: wt+1 = wt −
[
f ′′(wt) +

1
2ηt
∥wt+1 −wt∥2 · Id

]−1

f ′(wt)

• Essentially Newton’s update with adaptive Levenberg-Marquardt regularization
• Since ∥wt+1 −wt∥2 → 0 (hopefully), cubic regularization eventually behaves

similarly to Newton’s update

Y. Nesterov and B. T. Polyak. “Cubic regularization of Newton method and its global performance”. Mathematical Programming, vol. 108
(2006), pp. 177–205.
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Convergence Guarantee

Theorem:
Suppose f ′′ is L-Lipschitz continuous (w.r.t. the ℓ2 norm) and f is bounded from
below by f⋆. Let ηt ∈ [0, 3

2L
]. The cubic regularization iterates {wt} satisfy:

∞∑
t=0

( 1
4ηt
− L

6
)( 2ηt

1+ηtL
)3/2∥f ′(wt+1)∥3/22 ≤

∞∑
t=0

( 1
4ηt
− L

6
)∥wt −wt+1∥32 ≤ f(w0)− f⋆.

• If ηt = 1
L
, we have

∑
t ∥

f ′(wt+1)
L
∥3/22 ≤

∑
t ∥wt −wt+1∥32 ≤

12(f0−f⋆)
L

• Gradient norm mint ∥f ′(wt)∥2 converges to 0 at rate O(t−2/3)

• Descending, hence cannot converge to a local maxima or saddle point!
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Theorem:
Suppose f is (star) convex, f ′′ is L-Lipschitz continuous, and the (sub)level set
Jf ≤ f(w0)K is bounded in diameter by ϱ. Then, the cubic regularization iterates
satisfy:

f(wt+1)− f⋆ ≤
f(w1)− f⋆(

1 +
√

f(w1)− f⋆
∑t

τ=1

√
2

9(L+1/ητ )ϱ3

)2 ≤
9ϱ3L

2
(∑t

τ=0

√
ητL

1+ητL

)2 ,

provided that for all t, ηt+1 ≤ 3ηt and ηt ≤ 1
L
.

• For constant step size (say) ηt ≡ 1
L
, f(wt)− f⋆ ≤ 9ϱ3L

t2

• Matches the rate of accelerated gradient; can be further accelerated

• Converges for open loop step size: ηt → 0 and
∑

t

√
ηt =∞
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• Consider σ-strongly convex functions with L-Lipschitz continuous Hessian
• It follows that ϱ := inf{∥w −w⋆∥2 : f(w) ≤ f(w0)} ≤

√
2[f(w0)−f⋆]

σ

• We divide the progress of cubic regularization into three stages
• Stage 1: we have

f(wt)− f⋆ ≤ 9ϱ3L
t2

.

Thus, after t1 ≤ 3
√
ϱL/σ iterations we arrive at:

f(wt1)− f⋆ ≤ σϱ2.

• Stage 2: we have

4
√

f(wt+1)− f⋆ ≤ 4
√

f(wt)− f⋆ −
1

2

(σ
2

)3/4

·
√

1

L
.

Thus, after another t2 ≤ 27/4
√

ϱL/σ ≤ 3.4
√

ϱL/σ iterations we arrive at:

f(wt1+t2)− f⋆ ≤ σ3

8L2
.
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• Stage 3: we have (the transition has happened)

f(wt+1)− f⋆ ≤ L
3

(
2
σ

)3/2
[f(wt)− f⋆]

3/2.

Thus, after another t3 ≤ log 3
2
log9

9σ3

8ϵL2
we finally obtain

f(wt1+t2+t3)− f⋆ ≤ ϵ.

• The total number of iterations is bounded by 6.4
√
ϱL/σ + log 3

2
log9

9σ3

8ϵL2

• In comparison, let L[1] = ∥f ′′(w⋆)∥sp and we estimate

σ · Id ≤ f ′′(w) ≤ (L[1] + ϱL) · Id.

• Thus, the accelerated gradient algorithm needs

O

(√
L[1]+ϱL

σ
log (L[1]+ϱL)ϱ2

ϵ

)
iterations to get an ϵ-approximate minimizer, which is substantially worse
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