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Problem

Minimax problem:

Two players w and z, in W C R” and Z C IRY, respectively

[+ W x 7Z — IR, the payoff function

w-player aims to minimize the payoff |

z-player aims to maximize the payoff [, or equivalently to minimize —



Understanding Minimax

® [ntroducing the

f(w) :=sup f(w,z), f(z) := inf f(w,z)

i weW
® Minimax becomes the familiar minimization problem:
Pyr = inf ?(W>
weW
e “Twin" (or dual)

0" = [sup inf = f(w,z)| =sup f(z)
zcZ WEW 2€Z

® Even for a smooth payoff / the envelopes / and # may still be nonsmooth!
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Example: p. >0

Consider the simple bilinear problem:

Example: p. — 0"

Consider the simple constrained bilinear problem:




Saddle Point

Definition: Saddle point
We call the pair a saddle point of

® Fixing w,, z" € argmax [(w,,z), as can be seen from the left inequality
VASY/

e Fixing z*, w, € argmin f(w,z"), as can be seen from the right inequality
weW

e We will study algorithms that find a saddle point, i.e. solving the primal p, and
dual 0* simultaneously



Weak and Strong Duality

Theorem: Weak duality
Weak duality, i.e. p. > 0", always holds.

® When equality holds we say holds

Definition: Optimal sets

Theorem: Strong duality and saddle points

Assuming and are nonempty. Then, strong duality holds iff there exists a

saddle point, in which case is the set of all saddle points.




Stability

Definition: More optimal sets

we also define the sets

® let (w,,z") be a saddle point of [ over W x 7Z

® Clearly, W, € W(z*), VARSWALN
® The saddle point (w,,z") is if equality holds
e |f both (w,.z") and (u,,v*) are saddle points, then so are (w,,v*) and (u,,z")



Example: p. — 0"

Consider the simple constrained bilinear problem:

° and

® The unique saddle point is not stable




Example: Robust optimization

Learn models that are robust against worst-case perturbations:

e Minimizer as a defender that tries to learn a good model
Maximizer as an attacker that tries to construct a difficult dataset through
perturbations
When the attacker acts first while the defender responds:

May perturbe distribution 70 under metric (distributionally robust opt):

A. Ben-Tal, L. E. Ghaoui, and A. Nemirovski . Princeton University Press, 2009


https://press.princeton.edu/books/hardcover/9780691143682/robust-optimization

Example: Lasso revisited

Let us consider the familiar (square root) linear regression problem:

Now suppose we perturb each feature, i.e., columns in X', independently, arriving at
the robust linear regression problem:

where the perturbation matrix

Prove that robust linear regression is exactly equivalent to (square-root) Lasso (note
the absence of the square on the /, norm):




Theorem: Minimax
be a real-valued function on convex sets \\' and 7. Suppose

is continuous and concave on 7 for each
is continuous and convex on for each
e for some finite , is inf-compact, i.e.

then strong duality holds and the minimum of the primal problem is attained:

A similar statement holds by swapping the role of w and

e V is compact, which is the usual assumption; or
e W is closed and | is strongly convex in w




Example: Lagrangian duality and Slater’s condition

For the generic constrained minimization problem

we may construct the Lagrangian which implicitly removes the functional constraints:

and g convex convex in w and linear (hence concave) in
Slater’s condition: such that < sup-compact in
Applying the minimax theorem (w and z switched) we obtain strong duality:

, Whereas equality holds if (say) /. is strictly convex



https://en.wikipedia.org/wiki/Slater's_condition

Fenchel Conjugate

The Fenchel conjugate of a function f : RY — R U {cc} is defined as:

fr(w*) = sup (w; w*) — f(w),

W

which is (even when [ is not).

® Fenchel-Young inequality follows from the definition:
fw) + f1(w") = (w;w)

with equality iff w* = O f(w).

o = fiff fis (closed) convex
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Example:

® [ is convex in w and concave in z, provided that ¢ and /. are both convex

e Conditions for strong duality include:



https://en.wikipedia.org/wiki/Fenchel's_duality_theorem

Alternating

® The saddle point definition suggests the following natural alternating algorithm:

Algorithm 1: Alternating Minimax

Input: (wg,2z¢) € W x ZNdom f
1 fort=0,1,2,...do

2 Wy < argmin f(w,z;)
weW

3 Ziy1 < argmax f(Wyyq,2) // or ziiq < argmax f(w;,z)
zZ€Z z€Z

® [ is convex in w and concave in z — each step is a convex Problem



Example: Alternating does not work!

It is easy to see that strong duality holds and

so that we have a unique saddle point , which is not stable:

Applying the alternating algorithm with any we obtain

oscillating!




Example: Alternating does not work?

It is easy to see that strong duality holds and

so that we have a unique saddle point which is now stable.

Applying the alternating algorithm with any -, we obtain

which converges to the unique saddle point in two iterations!




P = inf Sy f(w,z) = mf f(w), where f(w):= sy f(w,z)

e Apply the subgradient algorithm to minimize f(w)
® Of(w)=0f(w,z*) where z* € argmax,_, f(w,z)

Algorithm 2: Uzawa's algorithm for minimax
Input: (wy,z9) € W x ZNdom f

1 fort=20,1,...do

2 Z; = argmax, f(Wt, Z) // solve inner maximization exactly
3 compute subgradient g, = (9Wf(wt, Zt) // treating z; as constant
4 choose step size 7, // see 17
5 optional: g; < g/l // normalization
6 w1 = Pw [Wt = ntgt] // subgrad on outer minimization

H. Uzawa. “lterative methods for concave programming”. In: Studies in linear and non-linear programming. Ed. by K. J. Arrow, L. Hurwicz,
and H. Uzawa. Standford University Press, 1958, pp. 154-165, J. M. Danskin. “The theory of max-min and its application to weapons allocation
problems”. Springer, 1967, V. F. Dem’yanov. “On the minimax problem"”. Soviet Mathematics Doklady, vol. 187, no. 2 (1969), pp. 255—258.
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https://cs.uwaterloo.ca/~y328yu/classics/Uzawa58.pdf
https://link.springer.com/book/10.1007/978-3-642-46092-0
https://link.springer.com/book/10.1007/978-3-642-46092-0
http://mi.mathnet.ru/dan34750

® Replace exact inner maximization in with a single gradient ascent step

Algorithm 3: Gradient Descent Ascent (GDA) for Minimax

Input: (wg,zp) € dom f W X Z
1 fort=20,1,...do

p) choose step size 77, > 0
3 Wi = Pw [WZ, — 00w f (W, Zl)] // GD on minimization
4 Zir1 = Pylze — 00y f(Wy, 24)] // GA on maximization
e Use different step sizes on w and z
® Use w,. in the update on z (or vice versa)
® Use stochastic gradients in both steps (more on this later)
e After every update in w, perform & updates in z (or vice versa)

G. W. Brown and J. v. Neumann. . In: Contributions to the Theory of Games I. ed. by
H. W. Kuhn and A. W. Tucker. Princeton University Press, 1950, pp. 73-79, K. J. Arrow and L. Hurwicz.
. In: Studies in linear and non-linear programming. Ed. by K. J. Arrow, L. Hurwicz, and H. Uzawa. Standford
University Press, 1958, pp. 117-126.
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https://en.wikipedia.org/wiki/Hirofumi_Uzawa
https://apps.dtic.mil/dtic/tr/fulltext/u2/603877.pdf
https://cs.uwaterloo.ca/~y328yu/classics/ArrowHurwicz58.pdf
https://cs.uwaterloo.ca/~y328yu/classics/ArrowHurwicz58.pdf

Example: Vanilla GDA never converge for step size

which has a unique (non-stable) saddle-point at

If we run vanilla (projected) GDA with step size , then

Therefore, if we do not initialize at the saddle point




GDA-x, avg with eta=1 GDA-x, avg with eta=1/t

GDA-y, ave with eta=1 GDA-y, avg with eta=1/t




Example: Fenchel conjugate of Jensen-Shannon divergence

We derive its Fenchel conjugate:

Taking derivative w.r.t. / we obtain

and plugging it back we get




Definition: Generative adversarial networks (GAN)

To circumvent the lack of the density of , we expand using duality:

I. Goodfellow et al. . In: Advances in Neural Information Processing Systems. 2014.


https://papers.nips.cc/paper/5423-generative-adversarial-nets




Example: Catch me if you can

Let us consider the game between the generator (the implicit density of
and the discriminator

Fixing the generator g, what is the optimal discriminator 57
Plugging the optimal discriminator S back in, what is the optimal generator?
Fixing the discriminator S, what is the optimal generator ¢7?

Plugging the optimal generator ¢ back in, what is the optimal discriminator?

Does strong duality hold? Stability?




48 MATHEMATICS: J. F. NASH, JR. Proc. N. A. S.

This follows from the arguments used in a forthcoming paper.* Tt is
proved by constructing an “abstract” mapping cylinder of \ and tran-
scribing into algebraic terms the proof of the analogous theorem on CW-
complexes.

* This note arose from consultations during the tenure of a John Simon Guggenheim
1 Fellowship by MacLare.
tehead, J. H. C., “Combinatorial Homotopy I and IL” Bull. A.M.S., S5,
214-245 and 453-496 (1949).  We refer to these papers as CH I and CH I1, respectively.

3 By a complex we shall mean a connected CW complex, as defined in §5 of CH I.

We do not restrict ourselves to finite complexes. A fixed O-cell ¢® ¢ K will be the base
t for all the homotopy groups in K.

¢ MacLane, S., “Cohomology Theory in Abstract Groups IIL” Ann. Math., 50,
736761 (1949), referred to as CT III

¢ An (unpublished) result like Theorem 1 for the homotopy type was obtained prior
to these results by J. A. Zilber.

¢ CT II1 uses in place of equation (2.4) the stronger hypothesis that \B contains the
center of A, but all the relevant developments there apply under the weaker assumption
(24).

* Eilenberg, S., and MacLane, S., “Cohomology Theory in Abstract Groups IL,”
Ann. Math., 48, 326-341 (1947)

® Eilenberg, S., and MacLane, S., “Determination of the Second Homology . . . by
Means of Homotopy Invariants,” these PROCEEDINGS, 32, 2

* Blakers, A. L., “Some Relations Betwcen Homology and Homotopy Groups,”
Ann. Math., 49, 428-461 (1948), §12.

1 The hypothesis of Theorem C, requiring that »~! (1) not be cyclic, can be readily
realized by suitable choice of the free group X, but this hypothesis is not needed here
(cf.9).

11 Eilenberg, S., and MacLane, S., “Homology of Spaces with Operators I1,” Trans.
A.M.S., 65, 49-99 (1949); referred to as HSO IL.

12 C(K) here is the C(K) of CH II. Note that K exists and is a CW complex by
(N) of p. 231 of CH I and that p—*K" = K", where p is the projection p:K — K.

13 Whitehead, J. H. C., “Simple Homotopy Types.” If W Theorem 5 follows
from (17:3) on p. 155 of S. Lefschetz, Algebraic Topolagy, (New York, 1942) and argu
ments in §6 of J. H. C. Whitehead, “On Simply Connected 4-Dimensional Polyhedra”
(Comm. Math. Helo., 22, 48-92 (1949)). However this proof cannot be generalized to
the case W % 1

EQUILIBRIUM POINTS IN N-PERSON GAMES
By Jonx F. Nas, Jr.*
PRINCETON UNIVERSITY
Communicated by S. Lefschetz, November 16, 1949

One may define a concept of an #-person game in which each player has
a finite set of pure strategies and in which a definite set of payments to the
n players corresponds to each n-tuple of pure strategies, one strategy
being taken for each player. For mixed strategies, which are probability

VoL. 36, 1050 MATHEMATICS: G. POLYA 19
distributions over the pure strategies, the pay-off functions are the expecta-
tions of the players, thus becoming polylinear forms in the probabilities
with which the various players play their various pure strategies.

Any n-tuple of strategies, one for each player, may be regarded as a
POInE i the Product Spac@obtained by multiplying the n strategy spaces
of the players. One such n-tuple counters another if the strategy of each
player in the countering n-tuple yields the highest obtainable expectation
for its player against the n — 1 strategies of the other players in the
countered n-tuple. A sel-countering n-tuple is called an equilibrium point.

The correspondence of each n-tuple with its set of countering n-tuples
gives a one-to-many mapping of the product space into itself. From the
definition of countering we see that the set of countering points of a point
isconvex. By using the continuity of the pay-off functions we sce that the
graph of the mapping is closed. The closedness is equivalent to saying:
Py, Py .. and Qs Qs .., Oy, . .. are sequences of points in the product
space where Q, — @, P, — P and Q, counters P, then  counters P.

Since the graph is closed and since the image of cach point under the
mapping is convex, we infer from Kakutani’s theorem' tha (iHCAPPING
TS ‘@ AXeAIPOInD (i.c., point contained in its image). Hence there is an
equilibrium point.

In the two-person zero-sum case the “main theorem”? and the existence
of an equilibrium point are equivalent. In this case any two equilibrium
points lead to the same expectations for the players, butthiS need ot oecur
in general.

* The author is indebted to Dr. David Gale for suggesting the use of Kakutani’s
theorem to simpify the proof and to the A. E. C. for financial support

* Kakutani, S., Duke Math. J., 8, 457-450 (1941

2 Von Neumann, J., and Morgenstern, O., The Theory of (,mm\ and Economic Be-
haviour, Chap. 3, Princeton University Press, Princeton, 1947,

REMARK ON WEYL'S V{)TF “INEQUALITIES BETWEEN THE
TW " EIGENVALUES OF A LINEAR
TRANSFORMATION"*

By GEORGE PoLva
DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY
Communicated by H. Weyl, November 25, 1949
In the note quoted above H. Weyl proved a Theorem involving a func-
tion ¢(\) and concerning the eigenvalues a, of a linear transformation A
and those, x,, of A*4. If the x; and \; = |a|* are arranged in descending
order,




Definition: Equilibrium in game theory

Suppose we have 7 players participating in a game, where the players act simultane-
ously by each choosing a strategy «; and then receiving payoff

Nash considered the product space , and proved the existence of an
equilibrium where

under the assumption that each /; is continuous in w and concave in

® No player has motive to deviate from its strategy in equilibrium w*
e Striking similarity to alternating minimization where [; = — f
® Basically alternating minimax with —f; = [ = /5

F. Nash . Proceedings of the National Academy of Sciences, vol. 36, no. 1 (1950), pp. 48-49



https://en.wikipedia.org/wiki/John_Forbes_Nash_Jr.
https://doi.org/10.1073/pnas.36.1.48

Algorithm 4: Alternating algorithm for Nash equilibrium
Input: wo e W =[], W,

1 fort=20,1,...do

2 fori=1,...,ndo

3 L W; 41 € argmax fi(Wi g, - .., Wi1ty Wi, Wit1 gy -, Wnt) 1/
w; EW;

® Line 3 as a multi-valued mapping T : W = W such that w, ; € T(w,)

® T is compact convex valued and upper semicontinuous

® According to there exists a fixed point w* € T(w")
[

[

w — 2w admits a unique fixed point w* = 0 but will never converge to it

H. W. Kuhn. . Proceedings of the National Academy of Sciences, vol. 61, no. 4 (1968),
pp. 1238-1242, C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. . SIAM Journal on
Computing, vol. 39, no. 1 (2009), pp. 195-259, X. Chen, X. Deng, and S.-H. Teng.
. Journal of the ACM, vol. 56, no. 3 (2009), p. 14, K. Etessami and M. Yannakakis.
. SIAM Journal on Computing, vol. 39, no. 6 (2010), pp. 2531-2597.

27/35


https://en.wikipedia.org/wiki/Kakutani_fixed-point_theorem
https://doi.org/10.1073/pnas.61.4.1238
https://doi.org/10.1137/070699652
https://doi.org/10.1145/1516512.1516516
https://doi.org/10.1145/1516512.1516516
https://doi.org/10.1137/080720826
https://doi.org/10.1137/080720826

Definition: Reducing n-person game to minimax

Quite remarkably, Nikaidé and Isoda proved the existence of a normalized equilibrium

is defined on the product space with

Any normalized equilibrium is an equilibrium while the converse may not hold.

We can now formulate the (normalized) Nash equilibrium in 1.-person non-cooperative
game as the minimax problem:

which is concave in if each /; is concave in in its /-th input.

H. Nikaidé and K. Isoda. . Pacific Journal of Mathematics, vol. 5, no. 1 (1955), pp. 807—815.


https://projecteuclid.org/euclid.pjm/1171984836

Zero-sum: two players (i.e. n = 2) with opposing payoff functions f; + [, = 0
Saddle point is exactly Nash's equilibrium

Payoff of player at equilibrium remains the same (i.e. +[p, = 0*|)
Strong duality implies it does not matter which player moves first

Set of Nash equilibria enjoys the product/interchangeable structure

Example: Saddle point as Nash equilibrium

and consider normalized Nash equilibrium:

Or using the formulation of Nikaidé and Isoda:

which is a convex problem if ¢ is convex-concave!



Definition: Equilibrium in general sum games

® General sum: for any ¢ or with players
® Minimax: we call a minimax equilibrium if

a Pareto equilibrium if for any

i.e., it is not possible to strictly improve any player's payoff without degrading
some other player's.

A. W. Starr and Y.-C. Ho. . Journal of optimization theory and applications, vol. 3, no. 3 (1969),
pp. 184-206



https://doi.org/10.1007/BF00929443

Game 1: Zero-sum game Game 2: Zero-sum game Game 3: Dating game Game 4: Prisoners’ dilemma

Player 2 Player 2 Player 2 Player 2

x x

0,1 2,2

Player 1
1,10

Example: Two-player general sum
® Game 1: (a,x) is a NE; player 2 chooses x to “force” player 1 to choose a

® Game 2: no NE but (a,x) is still a minimax equilibrium

e Game 3: NE (a,x) and (b,y), with different costs due to non-zero sum

in general sum, whoever moves first may gain a significant advantage!

® Game 4: unique NE (b,y) and yet (a,x) gives lower costs to both players!

NE (b,y) is not!




Definition: Stackelberg equilibrium

Another interesting notion of equilibrium of two players, due to Stackelberg:

Player w is the (big market) leader who acts first

Player z is the follower (e.g. small competitor) who responds

By acting first the leader has some advantage while the follower could threaten
the leader to make trouble for both players!

H. von Stackelberg. . Springer, 1934.


https://en.wikipedia.org/wiki/Heinrich_Freiherr_von_Stackelberg
https://link.springer.com/book/10.1007/978-3-642-12586-7

Example: Market price
Leader and follower produce same product with quantity ¢, and ¢, at no cost

The payoff for each player is where
is say the market price for the product

Given ¢, the optimal choice for the follower is , which in turn yields
the optimal choice for the leader hence

By merely acting first the leader gets payoff 2 while the follower gets payoff 1

Had the two players acted simultaneously, the Nash equilibrium is easily seen to
be with payoff -~ for both players

However, the follower can threaten the leader by intentionally deviating from its
optimal response, which will hurt both players!




Data Poisoning

® Follower F (i.e., the defender) aims at minimizing f = L(D;, UD,, w):

w, = w,.(D,) € argmin L(D,, UD,,w)

® |eader L (i.e., the attacker) aims at maximizing a different loss function
(= L(D,,w.) on the validation set D,:

D,, € argmax L(D,, w,)
Dy

e Stackelberg formulation (a.k.a. bilevel optimization):

max L(D,,w,), s.t. w, € argmin L(D;, UD,, w).
P W

34/35



Poisoned
2

Attack

Attack 1 Change

Change 20
30







