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Problem

Constrained minimization:

® /: convex and possibly nonsmooth

® (: convex constraint
oV w , e.g. R? with Euclidean norm || - ||,

LHWU WH)

When [’ is L-Lipschitz, (projected) gradient descent yields

Lilwo—wl||2

When [ is L-Lipschitz, (projected) subgradient yields T



How We Measure Things Matters

d
miy D fi(ws)
1=

® Each univariate function f; : R — R is 1-Lipschitz continuous.
® The sum f: R? — R is v/d-Lipschitz continuous w.r.t. the Euclidean norm:

IF15 =Y _(f)* <d

J
® The diameter ||wo — w|, < V2.
® Applying subgradient we obtain a convergence rate of «/27‘1

® But, we also have || f'||. = max; [f}]| <1
® The diameter |wy — w||; = ||[wo — W||2, < 2
® Possible to achieve the convergence rate % by changing the norm?
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What Makes Incremental Update Possible?

So far, all of our updates are of the following (additive) incremental form:

W—WwW—1-8,

which is so that we often forget what makes it even
® The of the step size 1) to g
® The —
e And of w with —7 - g
These operations are possible because w and g are from the vector space
® From now on f'(w) lives in a V*

® Need a way to pull things back and forth: J:V — V*, J1.:V* -V
e With the Euclidean norm || - ||2, we may simply take J = J* = Id
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Algorithm 1: Winnow

Input: A = [a;,... a,] € RP*" threshold § > 0, step size 7 > 0, initialize

w € Ap—l

Output: approximate solution w

fort =1,2,... do
receive training example index /; € {1.....n} // index I; can be random
if (a;,,w) <0 then
w eg—vv<3>cxp(na1f) // update only when making a mistake
w ég*VV/|VVH1 // normalize
Inw < Inw +n-aj, where J(w)=In(w)
N. Littlestone. . Machine Learning, vol. 2 (1988),
pp. 285-318.
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https://link.springer.com/article/10.1023/A:1022869011914

Online Prediction

n experts, each of whom provides a prediction x;, collectively as x € R”

® Form our own opinion by averaging y = (w,x), w € A

Suffer a loss, say the square loss /(w;x, y) = (y — 1)*

Repeat the game for ¢ = 1,..., 7" rounds

1
Regret := T Z(/f — ) — nun — Z v — (W, x4))°, where g, = (w;,x;).
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Exponentiated Gradient (EG)

Wil = W @ exp(—mn; - fl(il]t )

— Wi
4+l = o=

(1, Wii1)

. . . . 1 X

® Diminishing regret on the order of O(, /"), |x¢]]oo < 1 y: € [0,1]
® No assumption on how the sequence (x;, v;) is generated; can even be adversarial
e Setting w = e;: EG performs no worse than the best expert for big T’
® Can consult a large number of experts: dependence on n is only logarithmic
® Gradient descent achieves O(ﬁ) under the Ix¢]|2 < 1
J. Kivinen and M. K. Warmuth. . Information and Computation,

vol. 132, no. 1 (1997), pp. 1-63.
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https://doi.org/10.1006/inco.1996.2612

Two Choices

® We have a mismatch between w € V and f/'(w) € V*

® We use a duality (mirror) map J: V. — V*, J7'.VF =V

1. Update in the gradient space V* and pull the update back to the input space V:

Wipl = Jfl[J(Wt) — Tt - f/(Wf)]

Wi =W, — 1) 'f"(J*']'wf), where w; = J(wy), w; = J*J'(wf)

2. Pull the gradient back to the input space V and do the update there directly:

Wi =w, — - I (wy)).

7/17



Legendre function

We call a continuous convex function £ if
® |ts domain has nonempty interior, i.e., int(domh) # ()
e /, is differentiable on int(dom /)
e ||h(w)|| = 0o as w — ddom h
® /, is strictly convex on int(dom h)

Theorem: J =}/

is a topological isomorphism, i.e. it is continuous and its inverse is also continuous.

Below, we will choose a norm || - || and a Legendre function / that is 1-strongly convex
w.rt. || -], i.e.

Di(w,z) := h(w) — h(z) — (W — z; Vh(z)) > L||w —z|*.


https://en.wikipedia.org/wiki/Adrien-Marie_Legendre

Example: (Squared) Euclidean distance

Let . Then, /1 is Legendre and its induced Bregman divergence
is the (square) Euclidean distance. We have
and of course

Example: KL and Pinsker

Consider the KL function , Where . It is Legendre
and its induced Bregman divergence is known as the divergence:

which is 1-strongly convex w.r.t. the /; norm (restricted to the simplex):

also known as Pinsker’s inequality in information theory.



https://en.wikipedia.org/wiki/Kullback-Leibler_divergence
https://en.wikipedia.org/wiki/Mark_Semenovich_Pinsker

a & WO =

Algorithm 2: Mirror descent

Input: w, € (', Legendre function

fort =0,1,... do
compute (sub)gradient f'(w,)
choose step size 7, > 0
h’(ztﬂ) = }Z/<Wf) =k © f’(Wt) // update in the gradient space
Wiyl = argmin Dh,(W,ZHl) // projecting back to the constraint
wel

Key insight (note the similarity as before):

w1 = argmin f(wy) + (w — wy; f'(wy)) + iDh(W,WQ
weC
> f(We) + (W —wy; f'(W0)) + 5[ W — Wi

= argmin Dj(w,z;,1), where h'(zi1) = h'(wy) —n; - f/(wy),
wel

A. Nemirovski and D. B. Yudin. . Ekonomika i matematicheskie
metody, vol. 15, no. 1 (1979), pp. 133-152, A. Beck and M. Teboulle.
. Operations Research Letters, vol. 31, no. 3 (2003), pp. 167-175.
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https://cs.uwaterloo.ca/~y328yu/classics/NemirovskiYudin79.pdf
http://www.sciencedirect.com/science/article/pii/S0167637702002316
http://www.sciencedirect.com/science/article/pii/S0167637702002316

EG € MD

Let C'= A and / be KL
We compute the Bregman projection:

argmin KL(w,z) = Z w;j log i wj + 2;
P

weA J

J
W
= wjlog ——2— —log(1,z) — 1+ (1,2)
zj: T2/ (1, 2)

h'(w) = Inw while (7')~!(g) = exp(g), all component-wise
The mirror descent step reduces to:

zip1 = (W) (R (W) — - /(W) = Wi © exp(=if'(Wh)),  Wipa = ( o

1,2¢11)
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choose a Legendre function /& that matches
the “geometry” (i.e. norm) of the constraint
set (', so that projection is trivial



Theorem: convergence of mirror descent for smooth function

Let be convex and L-smooth (w.r.t. some norm |- ||), be closed
convex, and 7); is chosen suitably, then for all and , the mirror descent
iterates satisfy:

for some 1-strongly convex Legendre function

Again, the rate of convergence does not depend on d, the dimension!

Proof is literally the same as that of projected gradient
Choosing 7, = 1/L we obtain f(w;) — f(w) < 2alwwo)

As before, the dependence on L and w, makes intuitive sense.



f(Wt+1)

VAN

< fwe) +(w —wy; f/(wy)) + ,,%Dh,(vaﬁ . %Dh(W:WtH)

S f(W) + iDh(W7wb) _ iDIL(WsW[Jrl)a
where the second inequality follows from w,, | being the Bregman projection to the
convex set (', and the last inequality is due to the convexity of |.

Take w — w; we see that

fwii1) < fwy),
i.e., the algorithm is descending. Summing from ¢t =0 to ¢t =T — 1:

T-1

Tijr - [f(wr) = f(W)] < D il f(Wesr) = F(w)] < Da(w, wo).

t=0

Dividing both sides by 77 completes the proof.
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Theorem: convergence of mirror descent for nonsmooth function

Let be closed convex and be | -Lipschitz continuous convex
(w.r.t. some norm ). Start with , for any , we have:

for some 1-strongly convex Legendre function

® The bound on the right-hand side vanishes iff > . 7, — oo and 7, — 0

® If we fix a tolerance ¢ > 0 beforehand, then setting 7, = ¢/L” - ¢ for some constant
@ EM) 2{ leads to 111111(]§f§7“,1 f(Wf) = f(W) < ¢, as |ong as /[’ > %j‘:)"m . (Lg
T-1 ur

® The same claim holds for w;, == >, | ST W
s=0 "ls




As in the previous proof, since w; . is the Bregman projection, we have

(w; f'(we)) + - Dh(W W) > (Wepr; f1(Wy)) + iDh(WtHth) + iDh(W Wii1)

(W—w;; f'(wi)) + -Du(w, wi) > (Wi —wy; f'(w )>+,,/ Dh(WH-let)+ -Di(w, wiia)
f(w) = f(w) + h(W Wi) > —[[Wipa—wil| - [ (w)lo +2mHWt+1—WtH2+ Dy (w
f(w) = fwe) + 5 Dh(W wi) 2 ell £ (we)[[5/2 + 5. Dn(w, Wiga).

Telescoping we obtain

Di(w, wr) < Dp(w, wo +Z77tHf wy)l[5 /2+27 :
= t=0 Z'; (0] UE s=0

Thus,

) 2D, (w, wy) + L2 n
JJuin T <Z e (g(o) - o) < ) B
- 1={0) 30773 223 0773
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Extending to Composite

min f(w), where f(w)=~{w)+r(w)

w

Algorithm 3: Composite mirror descent

Input: wy, functions ¢ and r, Legendre function £
1 fort=0.1,...do

2 compute (sub)gradient /' (w;,) // can be stochastic
3 choose step size 77, > 0
4 h/(ZH]) = h/(W,,) = ° ﬁ/(WL) // gradient step w.r.t. /
5 W; 1 < argmin %Dh(w, Ziy1) + (W) // proximal step w.r.t. r
w
J. C. Duchi, S. Shalev-Shwartz, Y. Singer, and A. Tewari. . In: Proceedings of the 23rd Annual
Conference on Learning Theory. 2010, J. C. Duchi, A. Agarwal, M. Johansson, and M. |. Jordan. . SIAM Journal on

Optimization, vol. 22, no. 4 (2012), pp. 1549-1578.
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http://www.learningtheory.org/colt2010/papers/057Duchi.pdf
https://doi.org/10.1137/110836043




