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Problem

Constrained minimization:

f⋆ = inf
w∈C⊆V

f(w)

• f : convex and possibly nonsmooth
• C: convex constraint
• V: vector space that w lives in, e.g. Rd with Euclidean norm ∥ · ∥2
• When f ′ is L-Lipschitz, (projected) gradient descent yields L∥w0−w∥22

2t

• When f is L-Lipschitz, (projected) subgradient yields L∥w0−w∥2√
t
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How We Measure Things Matters

min
w∈∆

d∑
j=1

fj(wj),

• Each univariate function fj : R→ R is 1-Lipschitz continuous.
• The sum f : Rd → R is

√
d-Lipschitz continuous w.r.t. the Euclidean norm:

∥f ′∥22 =
∑
j

(f ′
j)

2 ≤ d.

• The diameter ∥w0 −w∥2 ≤
√
2.

• Applying subgradient we obtain a convergence rate of
√

2d
t

• But, we also have ∥f ′∥∞ = maxj |f ′
j| ≤ 1

• The diameter ∥w0 −w∥1 = ∥w0 −w∥◦∞ ≤ 2
• Possible to achieve the convergence rate 2√

t
by changing the norm?
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What Makes Incremental Update Possible?

So far, all of our updates are of the following (additive) incremental form:

w← w − η · g,

which is so natural that we often forget what makes it even mathematically possible:
• The scalar multiplication of the step size η to g

• The negation −
• And the addition of w with −η · g

These operations are possible because w and g are from the same vector space

• From now on f ′(w) lives in a dual space V∗

• Need a way to pull things back and forth: J : V→ V∗, J−1 : V∗ → V

• With the Euclidean norm ∥ · ∥2, we may simply take J = J∗ = Id
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Algorithm 1: Winnow
Input: A = [a1, . . . , an] ∈ Rp×n, threshold δ ≥ 0, step size η > 0, initialize

w ∈ int∆p−1

Output: approximate solution w
1 for t = 1, 2, . . . do
2 receive training example index It ∈ {1, . . . , n} // index It can be random
3 if ⟨aIt ,w⟩ ≤ δ then
4 w← w ⊙ exp(ηaIt) // update only when making a mistake
5 w← w/∥w∥1 // normalize

lnw← lnw + η · aIt , where J(w) = ln(w)

N. Littlestone. “Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm”. Machine Learning, vol. 2 (1988),
pp. 285–318.
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https://link.springer.com/article/10.1023/A:1022869011914


Online Prediction

• n experts, each of whom provides a prediction xi, collectively as x ∈ Rn

• Form our own opinion by averaging ŷ = ⟨w,x⟩, w ∈ ∆

• Suffer a loss, say the square loss ℓ(w;x, y) = (y − ŷ)2

• Repeat the game for t = 1, . . . , T rounds

Regret :=
1

T

T∑
t=1

(yt − ŷt)
2 −min

w∈∆

1

T

T∑
t=1

(yt − ⟨w,xt⟩)2, where ŷt = ⟨wt,xt⟩ .
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Exponentiated Gradient (EG)

w̃t+1 = wt ⊙ exp(−ηt · ℓ′(ŷt − yt)xt)

wt+1 =
w̃t+1

⟨1, w̃t+1⟩

• Diminishing regret on the order of O(
√

lnn
T
), assuming ∥xt∥∞ ≤ 1 and yt ∈ [0, 1]

• No assumption on how the sequence (xt, yt) is generated; can even be adversarial
• Setting w = ei: EG performs no worse than the best expert in hindsight for big T

• Can consult a large number of experts: dependence on n is only logarithmic
• Gradient descent achieves O( 1√

T
) under the assumption ∥xt∥2 ≤ 1

J. Kivinen and M. K. Warmuth. “Exponentiated Gradient versus Gradient Descent for Linear Predictors”. Information and Computation,
vol. 132, no. 1 (1997), pp. 1–63.

L06 6/17

https://doi.org/10.1006/inco.1996.2612


Two Choices

• We have a mismatch between w ∈ V and f ′(w) ∈ V∗

• We use a duality (mirror) map J : V→ V∗, J−1 : V∗ → V

1. Update in the gradient space V∗ and pull the update back to the input space V:

wt+1 = J−1[J(wt)− ηt · f ′(wt)]

w∗
t+1 = w∗

t − ηt · f ′(J−1w∗
t ), where w∗

t := J(wt), wt = J−1(w∗
t )

2. Pull the gradient back to the input space V and do the update there directly:

wt+1 = wt − ηt · J−1(f ′(wt)).
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Legendre function

We call a continuous convex function h Legendre if
• Its domain has nonempty interior, i.e., int(domh) ̸= ∅
• h is differentiable on int(domh)
• ∥h′(w)∥ → ∞ as w→ ∂ domh
• h is strictly convex on int(domh)

Theorem: J = h′

h′ is a topological isomorphism, i.e. it is continuous and its inverse is also continuous.

Below, we will choose a norm ∥ · ∥ and a Legendre function h that is 1-strongly convex
w.r.t. ∥ · ∥, i.e.

Dh(w, z) := h(w)− h(z)− ⟨w − z;∇h(z)⟩ ≥ 1
2
∥w − z∥2.
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https://en.wikipedia.org/wiki/Adrien-Marie_Legendre


Example: (Squared) Euclidean distance

Let h(w) = 1
2
∥w∥22. Then, h is Legendre and its induced Bregman divergence

Dh(w, z) = 1
2
∥w−z∥22 is the (square) Euclidean distance. We have J(w) = h′(w) =

w and of course J−1 = J.

Example: KL and Pinsker

Consider the KL function h(w) =
∑

j wj lnwj−wj, where 0 ln 0 := 0. It is Legendre
and its induced Bregman divergence Dh is known as the KL divergence:

∀w, z ≥ 0, KL(w, z) =
∑

j
wj ln

wj

zj
− wj + zj,

which is 1-strongly convex w.r.t. the ℓ1 norm (restricted to the simplex):

∀w, z ∈ ∆, KL(w, z) ≥ 1
2
∥w − z∥21,

also known as Pinsker’s inequality in information theory.
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https://en.wikipedia.org/wiki/Kullback-Leibler_divergence
https://en.wikipedia.org/wiki/Mark_Semenovich_Pinsker


Algorithm 2: Mirror descent
Input: w0 ∈ C, Legendre function h

1 for t = 0, 1, . . . do
2 compute (sub)gradient f ′(wt)
3 choose step size ηt > 0
4 h′(zt+1) = h′(wt)− ηt · f ′(wt) // update in the gradient space
5 wt+1 ← argmin

w∈C
Dh(w, zt+1) // projecting back to the constraint

Key insight (note the similarity as before):

wt+1 = argmin
w∈C

f(wt) + ⟨w −wt; f
′(wt)⟩+ 1

ηt
Dh(w,wt)

≥ f(wt) + ⟨w −wt; f
′(wt)⟩+ 1

2ηt
∥w −wt∥2

= argmin
w∈C

Dh(w, zt+1), where h′(zt+1) = h′(wt)− ηt · f ′(wt),

A. Nemirovski and D. B. Yudin. “Efficient methods for solving large-scale convex programming problems”. Ekonomika i matematicheskie
metody, vol. 15, no. 1 (1979), pp. 133–152, A. Beck and M. Teboulle. “Mirror descent and nonlinear projected subgradient methods for convex
optimization”. Operations Research Letters, vol. 31, no. 3 (2003), pp. 167–175.
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https://cs.uwaterloo.ca/~y328yu/classics/NemirovskiYudin79.pdf
http://www.sciencedirect.com/science/article/pii/S0167637702002316
http://www.sciencedirect.com/science/article/pii/S0167637702002316


EG ∈ MD
• Let C = ∆ and h be KL
• We compute the Bregman projection:

argmin
w∈∆

KL(w, z) =
∑
j

wj log
wj

zj
− wj + zj

=
∑
j

wj log
wj

zj/ ⟨1, z⟩
− log ⟨1, z⟩ − 1 + ⟨1, z⟩

≡ KL(w, z
⟨1,z⟩)

• h′(w) = lnw while (h′)−1(g) = exp(g), all component-wise
• The mirror descent step reduces to:

zt+1 = (h′)−1(h′(wt)− ηt · f ′(wt)) = wt ⊙ exp(−ηtf ′(wt)), wt+1 =
zt+1

⟨1,zt+1⟩
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choose a Legendre function h that matches
the “geometry” (i.e. norm) of the constraint
set C, so that projection is trivial
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Theorem: convergence of mirror descent for smooth function

Let f : Rd → R be convex and L-smooth (w.r.t. some norm ∥ ·∥), C ⊆ Rd be closed
convex, and ηt is chosen suitably, then for all w ∈ C and t ≥ 1, the mirror descent
iterates {wt} ⊆ C satisfy:

f(wt) ≤ f(w) +
Dh(w,w0)

tη̄t
, where η̄t :=

1

t

t−1∑
s=0

ηs,

Dh(w,w0) ≥ 1
2
∥w −w0∥2 for some 1-strongly convex Legendre function h.

• Again, the rate of convergence does not depend on d, the dimension!
• Proof is literally the same as that of projected gradient
• Choosing ηt ≡ 1/L we obtain f(wt)− f(w) ≤ LDh(w,w0)

t

• As before, the dependence on L and w0 makes intuitive sense.
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Using L-smoothness we have for all w ∈ C:

f(wt+1) ≤ f(wt) + ⟨wt+1 −wt; f
′(wt)⟩+ 1

ηt
Dh(wt+1,wt)

≤ f(wt) + ⟨w −wt; f
′(wt)⟩+ 1

ηt
Dh(w,wt)− 1

ηt
Dh(w,wt+1)

≤ f(w) + 1
ηt
Dh(w,wt)− 1

ηt
Dh(w,wt+1),

where the second inequality follows from wt+1 being the Bregman projection to the
convex set C, and the last inequality is due to the convexity of f .

Take w = wt we see that

f(wt+1) ≤ f(wt),

i.e., the algorithm is descending. Summing from t = 0 to t = T − 1:

T η̄T · [f(wT )− f(w)] ≤
T−1∑
t=0

ηt[f(wt+1)− f(w)] ≤ Dh(w,w0).

Dividing both sides by T η̄T completes the proof.
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Theorem: convergence of mirror descent for nonsmooth function

Let C ⊆ Rd be closed convex and f : C → R be L-Lipschitz continuous convex
(w.r.t. some norm ∥ · ∥). Start with w0 ∈ C, for any w ∈ C, we have:

min
0≤t≤T−1

f(wt)− f(w) ≤
T−1∑
t=0

ηt∑T−1
s=0 ηs

(f(wt)− f(w)) ≤ 2Dh(w,w0) + L2
∑T−1

t=0 η2t

2
∑T−1

s=0 ηs
,

where Dh(w,w0) ≥ 1
2
∥w −w0∥2 for some 1-strongly convex Legendre function h.

• The bound on the right-hand side vanishes iff
∑

t ηt →∞ and ηt → 0

• If we fix a tolerance ϵ > 0 beforehand, then setting ηt = c/L2 · ϵ for some constant
c ∈]0, 2[ leads to min0≤t≤T−1 f(wt)− f(w) ≤ ϵ, as long as T ≥ 2L2Dh(w,w0)

c(2−c)
· 1
ϵ2

• The same claim holds for w̄T :=
∑T−1

t=0
ηt∑T−1

s=0 ηs
wt
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As in the previous proof, since wt+1 is the Bregman projection, we have

⟨w; f ′(wt)⟩+ 1
ηt
Dh(w,wt) ≥ ⟨wt+1; f

′(wt)⟩+ 1
ηt
Dh(wt+1,wt) +

1
ηt
Dh(w,wt+1)

⟨w−wt; f
′(wt)⟩+ 1

ηt
Dh(w,wt) ≥ ⟨wt+1−wt; f

′(wt)⟩+ 1
ηt
Dh(wt+1,wt)+

1
ηt
Dh(w,wt+1)

f(w)−f(wt) +
1
ηt
Dh(w,wt) ≥ −∥wt+1−wt∥ · ∥f ′(wt)∥◦+ 1

2ηt
∥wt+1−wt∥2+ 1

ηt
Dh(w,wt+1)

f(w)− f(wt) +
1
ηt
Dh(w,wt) ≥ ηt∥f ′(wt)∥2◦/2 + 1

ηt
Dh(w,wt+1).

Telescoping we obtain

Dh(w,wT ) ≤ Dh(w,w0) +
T−1∑
t=0

η2t ∥f ′(wt)∥2◦/2 +
T−1∑
t=0

ηt∑T−1
s=0 ηs

(f(w)− f(wt)) ·
T−1∑
s=0

ηs.

Thus,

min
0≤t≤T−1

f(wt)− f(w) ≤
T−1∑
t=0

ηt∑T−1
s=0 ηs

(f(wt)− f(w)) ≤ 2Dh(w,w0) + L2
∑T−1

t=0 η2t

2
∑T−1

s=0 ηs
.

L06 16/17



Extending to Composite

min
w

f(w), where f(w) = ℓ(w) + r(w)

Algorithm 3: Composite mirror descent
Input: w0, functions ℓ and r, Legendre function h

1 for t = 0, 1, . . . do
2 compute (sub)gradient ℓ′(wt) // can be stochastic
3 choose step size ηt > 0
4 h′(zt+1) = h′(wt)− ηt · ℓ′(wt) // gradient step w.r.t. ℓ

5 wt+1 ← argmin
w

1
ηt
Dh(w, zt+1) + r(w) // proximal step w.r.t. r

J. C. Duchi, S. Shalev-Shwartz, Y. Singer, and A. Tewari. “Composite Objective Mirror Descent”. In: Proceedings of the 23rd Annual
Conference on Learning Theory. 2010, J. C. Duchi, A. Agarwal, M. Johansson, and M. I. Jordan. “Ergodic Mirror Descent”. SIAM Journal on
Optimization, vol. 22, no. 4 (2012), pp. 1549–1578.
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http://www.learningtheory.org/colt2010/papers/057Duchi.pdf
https://doi.org/10.1137/110836043



