Optimization for Data Science
Lec 00: Introduction

Yaoliang Yu

W UNIVERSITY OF FACULTY OF MATHEMATICS

DAVID R. CHERITON SCHOOL
@ WATERLOO OF COMPUTER SCIENCE

Course Information

Instructor: Yao-Liang Yu ()

Website:

Prerequisites: Basic linear algebra, calculus, probability, algorithm

Textbooks: required textbook

— if interested, see for some further readings

Notes and slides are posted on the

yaoliang.yu@uwaterloo.ca
http://cs.uwaterloo.ca/~y328yu/teaching/794
http://cs.uwaterloo.ca/~y328yu/teaching/794
http://cs.uwaterloo.ca/~y328yu/teaching/794

Machine Learning is Everywhere

® Everyone uses ML everyday

B NETFLIX

® | ots of cool applications

amanan

® Excellent for job-hunting

And More

John J. Hopfield Geoffrey Hinton David Baker Demis Hassabis John Jumper

The Nobel Prize in Physics 2024 was awarded The Nobel Prize in Chemistry 2024 was divided,
jointly to John J. Hopfield and Geoffrey E. Hinton one half awarded to David Baker "for

"for foundational discoveries and inventions that computational protein design", the other half
enable machine learning with artificial neural jointly to Demis Hassabis and John Jumper "for
networks" protein structure prediction”

At the Core is Optimization

Optimization '

4/36

What You Will Learn

® [earn the basic theory and algorithms
® Gain some implementation experience
® Know when to use which algorithm with what guarantees

e Start to formulate problems with algorithms in mind

Set the @

°%

Stage

ALMON:

5/36

Let the Journey Begin

What a Dataset Looks Like

X1 Xo X3 X4 Xn x'
0] 1 0 1 1 |1 0.9
S 0o 0 1 1 01 1.1
1 0] 1 0 .- 1 |1 —0.1
y + + — _|_ 000 —

® cach column is a data point: 7 in total; each has d features

® bottom vy is the label vector; binary in this case

® x and x’ are test samples whose labels need to be predicted

OR Dataset

7/36

The Early Hype in Al...

NEW NAVY DEVIGE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July. 7 (UPT)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
able to walk, talk, see, write,
reproduce itself and be con-
scious of its existence,

e embryo—the Weather
Bureau’s $2,000,000 “704” com-
puter—learned to_differentiate
between right and left
tifty aitempts in the Navy's
demonstration for newsmen.,

The service said it would use

and write. It is expected to be
finished in about & year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-

ings, wil e mis-
takes at first, but will grow
wiser as it gains experience, he
said.

Dr. Rosenblatt, a research
psychologist at ~ the -Cornel
Aeronautical Laboratory, Buf-
falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers.

‘Without Human Controls

. The Navy said the perceptron
would be the- first non-living
mechanism “capable of receiv-
ing, recognizing and identifying
its surroundings without -any
human training or control.”

The “brain” is designed to
remember images and informa-
tion it has perceived jtself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape. .

Later Perceptrons will be able
to recognize people and call out
‘their names and instantly trans-
late speech in one language to
speech or writing in another
language, it was predicted.

Mr. Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-
duce themselves on an assembly
line and which would be con-
scious of their existence.

In today’s demonstration, the
“704" was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learng by Doing
In the first fifty trials, the
machine made no distinction be-:
tween them. It then started
registering a “Q” for the left
squares and “O” for the right

squares. .
Dr. Rosenblatt said he could‘
explain why the machine

learned only in highly teéchnical
terms. But he said the computer
had undergone a ‘self-induced
change in the wiring diagram."‘

The first Perceptron will
have about 1,000 electronic
“association cells” receiving
electrical impulses from an eye-
like scanning device with 400
photo-cells. The human brain
has 10,000,000,000 responsive
cells, including 100,000,000 con-
nections with the eyes.

http://search.proquest.com.proxy.lib.uwaterloo.ca/historical-newspapers/new-navy-device-learns-doing/docview/114558973/se-2?accountid=14906

...due to Perceptron

FIG. 1 — Organization of a biological brain. (Red areas indicate
active cells, responding to the letter X.)

Association
Projection area System Response

Mosaic of
(In some models) (A-units)

Topographic A3 3
Connections Connections &

> Feedback (. 3

Circuits 5 &

—_—

i Frank Rosenblatt
FIG. 2 — Organization of a perceptron. (1928 — 1971)

Perceptron as an Optimization Problem

® Affine function: f(x) = (x,w) + b, where (x,w) := > . z;w,

find w € R b € R such that Vi, y;((x;, w) + b)

® Perceptron solves the above problem!

— it is iterative: going through the data one by one

® Abstract a bit more:

find w € S C RY.

— we often can only describe S partially

10/36

Geometrically

X2

x1

11/36

a b WO =

Algorithm 1: Perceptron

Input: Dataset D = |(x;,y;) € RY x {£1} : i =1,...,nJ, initialization w € R?
and b € R, threshold 6 > 0
Output: approximate solution w and b

fort =1,2,... do
receive index [, € {1.... . n} // I, can be random
if y,((x;,,w) +b) <0 then
W — W + Y, Xy, // update after a “‘mistake’’
b+ b+ Y1,

® Typically 0 =0 and wo =0, b =0
— yg>0vs. yy<O0vs. yg =0, where g = (x,w) + b

° update: “if it ain't broke, don't fix it"

F. Rosenblatt.

. Psychological Review, vol. 65,
no. 6 (1958), pp. 386—408.

12/36

http://psycnet.apa.org/record/1959-09865-001

Does it work? =

1.5 £
1e °
0.5 |
05 0.5 1 1.5
051

y = sign((x, w) + b),

where sign(0) is undefined (e.g., always counted as a mistake).
13/36

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? =

1.5 £
1e °
0.5 |
05 0.5 1 1.5
_051

w =[0,0], b=0, y=sign((x,w)+b),

where sign(0) is undefined (e.g., always counted as a mistake).
13/36

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work?

N
. :

&

ﬂ/ 1 1.
—0.5

w =[0,0], b=0, y=sign({x,w)+b),

(@)

where sign(0) is undefined (e.g., always counted as a mistake).

13/36

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? =

1.5 £
1e °
0.5 |
05 0.5 1 1.5
_051

w =[0,0], b=—1, y=sign({x,w)+0),

?

where sign(0) is undefined (e.g., always counted as a mistake).
13/36

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? =

f } ///’—;5\\\\ |
05 T 05 .1/ L

—0.5+

(@)

w = [0,0], b=—1, y=sign((x,w)+b),

?

where sign(0) is undefined (e.g., always counted as a mistake).
13/36

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

w = [1,0], b=0, y=sign((x,w)+b),

where sign(0) is undefined (e.g., always counted as a mistake). /
LOO 13/36

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work?

i code

AV A—

LOO

[1,0], b=10, y=sign((x,w)+b),

where sign(0) is undefined (e.g., always counted as a mistake).

13/36

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

—0.5+

w = [1,0], b= —1, y=sign((x,w) +b)

? ?

where sign(0) is undefined (e.g., always counted as a mistake). /
LOO 13/36

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

—-0.5

w = [1,0], b= —1, y=sign((x,w) +b)

? ?

where sign(0) is undefined (e.g., always counted as a mistake). /
LOO 13/36

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

w=[1,1], b=0, y=sign((x,w) +b),

where sign(0) is undefined (e.g., always counted as a mistake). /
LOO 13/36

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

w=[1,1], b=0, y=sign((x,w) +b),

where sign(0) is undefined (e.g., always counted as a mistake). /
LOO 13/36

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

—0.5+
w=[1,1], b=—1, y=sign({x,w)+b)

where sign(0) is undefined (e.g., always counted as a mistake). /
LOO 13/36

?

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

—0.5+

w=[1,1], b= —1, y=sign((x,w) +b)

where sign(0) is undefined (e.g., always counted as a mistake). /
LOO 13/36

?

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

—0.5+
w=[2,1], b=0, y=sign((x,w)+b),

where sign(0) is undefined (e.g., always counted as a mistake). /
LOO 13/36

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

—0.51
w=[2,1], b=0, y=sign((x,w)+b),

where sign(0) is undefined (e.g., always counted as a mistake). /
LOO 13/36

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

w=[2,1], b= —1, y=sign((x,w) +b)

?

where sign(0) is undefined (e.g., always counted as a mistake). /
LOO 13/36

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

w=[2,1], b= —1, y=sign((x,w) +b)

?

where sign(0) is undefined (e.g., always counted as a mistake). /
LOO 13/36

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

—0.51
w=1[2,2], b=0, y=sign((x,w)+b),

where sign(0) is undefined (e.g., always counted as a mistake). /
LOO 13/36

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

—0.51
w=1[2,2], b=0, y=sign((x,w)+b),

where sign(0) is undefined (e.g., always counted as a mistake). /
LOO 13/36

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? i code

w=1[2,2], b=—1, y=sign((x,w)+)

?

where sign(0) is undefined (e.g., always counted as a mistake). /
LOO 13/36

https://github.com/watml/CS794/tree/master/lec-perceptron

OR Dataset

1.5 4
1,,

X1 X9 X3 Xy

0O 1 0 1 05 1

0O 0 1 1

y - + + 01l

—0.5 :
—0.5 0 0.5 1 1L.{5)

® Prove that no line can separate + from
e What happens if we run Perceptron regardless?

14/36

Perceptron and the 15t Al Winter

Marvin Minsky
(1927 - 2016)

M. L. Minsky and S. A. Papert. “Perceptron’”. MIT press, 1969.

>

Seymour Papert
(1928 - 2016)

15/36

https://mitpress.mit.edu/books/perceptrons-reissue-1988-expanded-edition-new-foreword-leon-bottou

Projection Algorithms

find w € R% b € R such that Vi, y;({(x;, W) +b) >0
find w = [w;b] € R™™ such that Vi, (a;,w) < ¢;, a; = —y;[x;; 1]
find w € R? such that A'w < ¢

Algorithm 2: Projection Algorithm for Linear Inequalities

Input: A € RP*" c € R", initialization w € R”, relaxation parameter 7 € (0, 2]
1 fort=1,2,...do

2 select index I; € {1,...,n} // index I; can be random
(<a, .W>7C,[)+ arg
K} w— (I—nw+n|w-— o b . —t
(L=mw+n A PR o
T. S. Motzkin and I. J. Schoenberg. . Canadian Journal of Mathematics, vol. 6 (1954),
pp. 393-404, S. Agmon. . Canadian Journal of Mathematics, vol. 6 (1954), pp. 382—-392.

16/36

https://cms.math.ca/10.4153/CJM-1954-038-x
https://cms.math.ca/10.4153/CJM-1954-037-2

Interpreting Perceptron

Theorem:
3+
cone A := {AX: A > 0} 2
cone*A := {w: A"w > 0}
int cone*A := {w: A'w > 0}
—1 1 2 3
14

Interpreting Perceptron

Theorem:
3+

cone A := {AX: A > 0} az 2 1
cone*A = {w: A'w > 0} N
int cone*A := {w: A'w > 0}

Interpreting Perceptron

Theorem:
3+
cone A := {AX: A > 0} 2
cone*A := {w: A"w > 0}
int cone*A := {w: A'w > 0}
o | > 3
Al

Interpreting Perceptron

Theorem:
3+
cone A := {AX: A > 0} 2
cone*A := {w: A"w > 0}
int cone*A := {w: A'w > 0}
—1 1 2 3
14

Interpreting Perceptron

Theorem:

A2 0)

{AX
A'w > 0}

{w
{w:

cone A :
cone A :=

xf'l =

int cone "

Al =T

e co

Interpreting Perceptron

Theorem:

A2 0)

{AX
A'w > 0}

{w
{w:

cone A :
cone A :=

xf'l =

int cone "

Al =T

e co

|s Perceptron Unique?

1.5

18/36

Support Vector Machines: Primal

1

)

—0.5

max min

' , where ;= (x;,w)+b
w:Vi,7;y; >0 i=1,...,n HwH

19/36

Support Vector Machines: Dual

1.5 5

Frams o 0\1 s
—051

min min H g 5%y = g ViX;
BEA, vEA_ I

By =+ Jiyj=—

20/36

Beyond Separability

0.5/—/ 0.5 \ 1
054

min Be(y() + reg(w), st. §:=

1.5

21/36

Empirical Risk Minimization

ot

min B((yg)
w

(x,w)+b

zero-one
hinge

—— square hinge

logistic,

—— exponential
— Perceptron

22/36

Regularization

min reg(w), s.t. g:=(x,w)+b

4 ‘

to

—_

3) 2

O 1

o0
&

23/36

Regression

min El(y — g) + reg(w), st. g:=(x,w)+b

w
3 square
e-insensitive
— absolute
2+ — Huber
-
1 [
0 |
| | | | | | |

= =2 =l @ 1 2 3

24/36

Day |: Basic

® | ec01: Gradient Descent: smooth /

® Lec02: Proximal Gradient: smooth / + nonsmooth reg

® |ec03: Conditional Gradient: smooth / 4+ nonsmooth reg

Denoising

min gllx —zl; + Azl
& N——

fidelity regularization

®)\ controls the trade-off
® rcgularization encodes prior knowledge
® crucial to not over-smooth

26/36

Adversarial Examples

Hidden
layer 1

Hidden
layer 2

® PUeIdYys

@ 9![|°D

27/36

Robustness as Optimization

® Empirical risk minimization recalled:

min El(w;x,)

w

® Adversarial attack perturbs (x,y) while fixing w:

114 F : 5 ,

® Robustness by anticipating the worst-case:

min B max ((w;x+8,y)

w size(d)<e

® The game continues by anticipating the anticipation:

max {(w;X+6,y) leader
size(d)<e
min B{(w;x + 8,7) follower

28/36

Day II: Slightly Advanced

LecO4: Subgradient: nonsmooth ¢ 4+ nonsmooth reg

Lec05: Acceleration: optimal algorithm under smoothness

Lec06: Mirror Descent: smooth ¢/ + nonsmooth reg

LecO7: Metric Gradient: smooth ¢ + different norm

Day Ill: Game-theoretic

Lec08: Minimax: understanding duality

Lec09: Alternating: divide and conquer

Lec10: Projection algorithms

Lecll: Splitting: exploiting structure

Fictitious Play: playing against oneself

Generative Adversarial Networks

mein max I log Se(x) + Elog(1 — Sy 0Ty(z))

(2]

I. Goodfellow et al. . In: Advances in Neural Information Processing Systems. 2014.

https://papers.nips.cc/paper/5423-generative-adversarial-nets

(0]
o
(7]
O
550
(0]
(e
=

LOO

Day IV: Stochastic

Lec12: Stochastic Gradient: large dataset

Lec13: Variance Reduction

Lecl4: Randomized Smoothing: simulating gradient

Lec15: Sampling

Day V: Advanced

Lec16: Newton: even faster under smoothness

Lecl7: Riemannian Gradient

Lec18: Adaptation

Lec19: Performance Estimation

History Goes A Long Way Back

“Nothing in the world takes place without optimization, and there is no
doubt that all aspects of the world that have a rational basis can be explained

by optimization methods.”
— , 1744

“Every year | meet Ph.D. students of different specializations who ask me
for advice on reasonable numerical schemes for their optimization models. And
very often they seem to have come too late. In my experience, if an optimiza-
tion model is created without taking into account the abilities of numerical
schemes, the chances that it will be possible to find an acceptable numerical
solution are close to zero. In any field of human activity, if we create some-
thing, we know in advance why we are doing so and what we are going to do
with the result.” —

https://en.wikipedia.org/wiki/Leonhard_Euler
https://en.wikipedia.org/wiki/Yurii_Nesterov

No Free Lunch

e On average, no algorithm is better than any other'

® |n general, optimization problems are unsolvable”
® |mplications:

don't try to solve all problems; one (class) at a time!

“efficient optimization methods can be developed only by intelligently employing the
structure of particular instances of problems”

— know your algorithms and their limits
— be

“There are no inferior algorithms, only inferior engineers.”

1D. H. Wolpert and W. G. Macready. “No free lunch theorems for optimization”. IEEE Transactions on Evolutionary Computation, vol. 1,
no. 1 (1997), pp. 67-82

%K. G. Murty and S. N. Kabadi. “Some NP-complete problems in quadratic and nonlinear programming”. Mathematical Programming,
vol. 39, no. 2 (1987), pp. 117-129.

Loo 36/36

https://ieeexplore.ieee.org/document/585893
https://doi.org/10.1007/BF02592948

