Optimization for Data Science

Lec 01: Gradient Descent

Yaoliang Yu

Problem

Unconstrained smooth minimization:

$$f_{\star} = \inf_{\mathbf{w} \in \mathbb{R}^d} f(\mathbf{w}).$$

- No constraint on the domain
- $f: \mathbb{R}^d \to \mathbb{R}$ is smooth, e.g. continuously differentiable
- f can be convex or nonconvex
- Minimizer may or may not be attained
- Maximization is just negation

Linear Regression

L01 2/19

Linear Least Squares Regression

$$\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} (\langle \mathbf{x}_i, \mathbf{w} \rangle - y_i)^2 \equiv \min_{\mathbf{w}} \underbrace{\frac{1}{n} \|\mathbf{w} \mathbf{X} - \mathbf{y}\|_2^2}_{f(\mathbf{w})}$$

- $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{p \times n}$
- \bullet $\mathbf{y} = [y_1, \dots, y_n] \in \mathbb{R}^n$
- $\mathbf{w} \in \mathbb{R}^p$
- ullet Clearly, f is quadratic and hence (continuously) differentiable
- No constraint on w

Logistic Regression

$$\inf_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \log[1 + \exp(-y_i \langle \mathbf{x}_i, \mathbf{w} \rangle)] \equiv \inf_{\mathbf{w}} \underbrace{\left\langle \log[1 + \exp(-\mathbf{w}\mathbf{A})], \frac{1}{n} \cdot \mathbf{1} \right\rangle}_{f(\mathbf{w})}$$

- $\mathbf{A} = [y_1 \mathbf{x}_1, \dots, y_n \mathbf{x}_n] \in \mathbb{R}^{p \times n}$
- \bullet $\mathbf{y} = [y_1, \dots, y_n] \in \{\pm 1\}^n$
- $\mathbf{w} \in \mathbb{R}^p$
- Again, f is (continuously) differentiable
- No constraint on w

Calculus Detour

(Fréchet) Derivative f' of a function f at \mathbf{w} :

$$\lim_{\mathbf{0}\neq\mathbf{z}\to\mathbf{0}}\frac{\|f(\mathbf{w}+\mathbf{z})-f(\mathbf{w})-f'(\mathbf{w})(\mathbf{z})\|}{\|\mathbf{z}\|}\to 0$$

- $f: \mathcal{X} \to \mathcal{Y} \Longrightarrow f'(\mathbf{w}): \mathcal{X} \to \mathcal{Y} \Longrightarrow f': \mathcal{X} \to (\mathcal{X} \to \mathcal{Y})$
- $f'(\mathbf{w})(\mathbf{z})$ is linear in \mathbf{z} but possibly nonlinear in \mathbf{w}

Example: Quadratic function $f(\mathbf{w}) = \langle \mathbf{w}, A\mathbf{w} + \mathbf{b} \rangle + c$

$$f(\mathbf{w} + \mathbf{z}) = \langle \mathbf{w} + \mathbf{z}, A\mathbf{w} + A\mathbf{z} + \mathbf{b} \rangle + c$$

$$f(\mathbf{w} + \mathbf{z}) - f(\mathbf{w}) = \langle \mathbf{w}, A\mathbf{z} \rangle + \langle \mathbf{z}, A\mathbf{w} \rangle + \langle \mathbf{z}, A\mathbf{z} \rangle + \langle \mathbf{z}, \mathbf{b} \rangle$$

$$f'(\mathbf{w})(\mathbf{z}) = \langle (A + A^{\top})\mathbf{w} + \mathbf{b}, \mathbf{z} \rangle$$

$$f'(\mathbf{w}) = (A + A^{\top})\mathbf{w} + \mathbf{b}$$

_01 5/19

- Chain rule: $(f \circ g)'(\mathbf{w})(\mathbf{z}) = f'[g(\mathbf{w})][g'(\mathbf{w})(\mathbf{z})]$
- Often suffices to take: $[f'(\mathbf{w})]_j = \partial_j f(w_1, \dots, w_j, \dots, w_d)$

L01

Example: Logistic Loss

$$\begin{split} f(\mathbf{w}) &= \left\langle \log[1 + \exp(-\mathbf{w}\mathbf{A})], \frac{1}{n} \cdot \mathbf{1} \right\rangle \\ \mathrm{d}f(\mathbf{w}) &= \left\langle \mathrm{d}\log[1 + \exp(-\mathbf{w}\mathbf{A})], \frac{1}{n} \cdot \mathbf{1} \right\rangle + \left\langle \log[1 + \exp(-\mathbf{w}\mathbf{A})], \mathrm{d}\frac{1}{n} \cdot \mathbf{1} \right\rangle \\ &= \left\langle \frac{-\exp(-\mathbf{w}\mathbf{A})}{1 + \exp(-\mathbf{w}\mathbf{A})} \, \mathrm{d}\mathbf{w} \cdot \mathbf{A}, \frac{1}{n} \cdot \mathbf{1} \right\rangle \\ &= \left\langle \mathrm{d}\mathbf{w}, \frac{-\exp(-\mathbf{w}\mathbf{A})}{1 + \exp(-\mathbf{w}\mathbf{A})} \cdot \frac{1}{n} \cdot \mathbf{1} \mathbf{A}^{\top} \right\rangle \\ \nabla f(\mathbf{w}) &= \frac{\mathrm{d}f(\mathbf{w})}{\mathrm{d}\mathbf{w}} = \frac{1}{n} \cdot \frac{-\exp(-\mathbf{w}\mathbf{A})}{1 + \exp(-\mathbf{w}\mathbf{A})} \mathbf{A}^{\top} \end{split}$$

- Recall $\mathbf{w} \in \mathbb{R}^p$, $\mathbf{A} \in \mathbb{R}^{p \times n}$
- What is the dimension of our gradient $\nabla f(\mathbf{w})$?

L01 7/19

Optimality Condition

Theorem: Fermat's necessary condition for extremity

If w is a minimizer (or maximizer) of a differentiable function f over an open set, then $f'(\mathbf{w}) = \mathbf{0}$.

Gradient Descent

Algorithm 1: Richardson's first-order extrapolation for linear systems

```
Input: \mathbf{w}_0 \in \mathbb{R}^d, A \in \mathbb{R}^{d \times d}, \mathbf{b} \in \mathbb{R}^d

1 for t = 0, 1, \dots do

2 \mathbf{g}_t \leftarrow A\mathbf{w}_t - \mathbf{b} // "gradient"

3 \mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \eta_t \mathbf{g}_t // \eta_t is the step size
```

Algorithm 2: Gradient descent for unconstrained smooth minimization

```
Input: \mathbf{w}_0 \in \mathbb{R}^d, smooth function f: \mathbb{R}^d \to \mathbb{R}
```

```
1 for t=0,1,\ldots do

2 \mathbf{g}_t \leftarrow \nabla f(\mathbf{w}_t) // compute the gradient

3 \mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \eta_t \mathbf{g}_t // \eta_t is the step size
```

• Repeatedly subtract a multiple of the gradient

_01

Intuition

$$f(\mathbf{w}_{t+1}) = f(\mathbf{w}_t - \eta_t \nabla f(\mathbf{w}_t))$$

$$= f(\mathbf{w}_t) - \eta_t \langle \nabla f(\mathbf{w}_t), \nabla f(\mathbf{w}_t) \rangle + o(\eta_t)$$

$$= f(\mathbf{w}_t) - \eta_t \underbrace{\|\nabla f(\mathbf{w}_t)\|_2^2}_{\geq 0} + o(\eta_t)$$

- If $\nabla f(\mathbf{w}_t) = 0$, we are done
- ullet Otherwise for small $\eta_t > 0$, we have $f(\mathbf{w}_{t+1}) < f(\mathbf{w}_t)$
- Strict improvement at each iteration; is it enough??

L01 10/1

Lipschitz Continuity = Bounded Derivative

Theorem:

Let $T: \mathbb{R}^d \to \mathbb{R}^m$ be differentiable. Then, T is L-Lipschitz continuous:

$$\|\mathsf{T}(\mathbf{w}) - \mathsf{T}(\mathbf{z})\| \le \mathsf{L} \|\mathbf{w} - \mathbf{z}\|$$

if and only if

$$\sup_{\mathbf{w}} \ \|\mathsf{T}'(\mathbf{w})\| = \sup_{\mathbf{w}} \sup_{\|\mathbf{z}\| \leq 1} \|\mathsf{T}'(\mathbf{w})(\mathbf{z})\| \leq \mathsf{L}.$$

- Lipschitz continuity: output change is bounded by input change
- Equivalently, derivative (i.e. infinitesimal change) is bounded

.01 11/1·

L-smoothness

We call a differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ L-smooth if for all w and z:

$$f(\mathbf{z}) \le f(\mathbf{w}) + \underbrace{f'(\mathbf{w})(\mathbf{z} - \mathbf{w})}_{\langle \mathbf{z} - \mathbf{w}, \nabla f(\mathbf{w}) \rangle} + \frac{\mathsf{L}}{2} \|\mathbf{z} - \mathbf{w}\|^2$$

Theorem: Characterizing L-smoothness

Consider the following statements for a real-valued smooth function:

- (I). Vector-valued derivative $f': \mathbb{R}^d \to \mathbb{R}^d$ is L-Lipschitz continuous
- (II). Matrix-valued second-order derivative $f'': \mathbb{R}^d \to \mathbb{R}^{d \times d}$ is L-bounded
- (III). Real-valued functions $\pm f$ are L-smooth

Then, (I) \iff (II) \implies (III). If f is convex or the norm is Euclidean, then all three are equivalent.

.01

Importance of L-smoothness

$$f(\mathbf{w}) \le f(\mathbf{w}_t) + \langle \mathbf{w} - \mathbf{w}_t, \nabla f(\mathbf{w}_t) \rangle + \frac{1}{2n_t} ||\mathbf{w} - \mathbf{w}_t||_2^2$$

- RHS is a quadratic function of w
- Equality holds if $\eta_t \leq \frac{1}{L}$
- Minimize RHS w.r.t. w:

$$\mathbf{w}_{t+1} \leftarrow \operatorname{argmin} f(\mathbf{w}_t) + \frac{1}{2\eta_t} \|\mathbf{w} - [\mathbf{w}_t - \eta_t \nabla f(\mathbf{w}_t)]\|_2^2 - \frac{\eta_t}{2} \|\nabla f(\mathbf{w}_t)\|_2^2$$

- This is exactly gradient descent
- Moreover, $f(\mathbf{w}_{t+1}) \leq f(\mathbf{w}_t) \frac{\eta_t}{2} \|\nabla f(\mathbf{w}_t)\|_2^2$

.01

Example: Logistic Loss

$$\begin{split} f(\mathbf{w}) &= \left\langle \log[1 + \exp(-\mathbf{w}\mathbf{A})], \frac{1}{n} \cdot \mathbf{1} \right\rangle \\ \nabla f(\mathbf{w}) &= \frac{\mathrm{d} f(\mathbf{w})}{\mathrm{d} \mathbf{w}} = \frac{1}{n} \cdot \frac{-\exp(-\mathbf{w}\mathbf{A})}{1 + \exp(-\mathbf{w}\mathbf{A})} \mathbf{A}^\top = \frac{1}{n} \cdot \left[\frac{1}{1 + \exp(-\mathbf{w}\mathbf{A})} - 1 \right] \mathbf{A}^\top \\ \mathrm{d} \nabla f(\mathbf{w}) &= \frac{1}{n} \, \mathrm{d} \frac{1}{1 + \exp(-\mathbf{w}\mathbf{A})} \cdot \mathbf{A}^\top = \frac{1}{n} \frac{\exp(-\mathbf{w}\mathbf{A})}{[1 + \exp(-\mathbf{w}\mathbf{A})]^2} \, \mathrm{d} \mathbf{w} \mathbf{A} \cdot \mathbf{A}^\top \\ &= \mathrm{d} \mathbf{w} \cdot \frac{1}{n} \mathbf{A} \, \mathrm{diag} \left(\frac{\exp(-\mathbf{w}\mathbf{A})}{[1 + \exp(-\mathbf{w}\mathbf{A})]^2} \right) \mathbf{A}^\top \\ \nabla^2 f(\mathbf{w}) &= \frac{1}{n} \mathbf{A} \, \mathrm{diag} \left(\frac{\exp(-\mathbf{w}\mathbf{A})}{[1 + \exp(-\mathbf{w}\mathbf{A})]^2} \right) \mathbf{A}^\top \preceq \frac{1}{n} \mathbf{A} \mathbf{A}^\top \\ \sup \|\nabla^2 f(\mathbf{w})\|_{\mathrm{sp}} &\leq \|\frac{1}{n} \mathbf{A} \mathbf{A}^\top\|_{\mathrm{sp}} = \frac{1}{n} \|\mathbf{A}\|_{\mathrm{sp}}^2 \leq \frac{1}{n} \|\mathbf{A}\|_{\mathrm{F}}^2 \end{split}$$

L01 15/19

Theorem: Convergence of gradient descent for L-smooth functions

Let $f: \mathbb{R}^d \to \mathbb{R}$ be L-smooth and bounded from below (i.e. $f_\star > -\infty$). If the step size $\eta_t \in [\alpha, \frac{2}{\mathbb{L}} - \beta]$ for some $\alpha, \beta > 0$, then the gradient descent iterate $\{\mathbf{w}_t\}$ satisfies $\nabla f(\mathbf{w}_t) \to \mathbf{0}$. Moreover,

$$\min_{0 \le t \le T-1} \|\nabla f(\mathbf{w}_t)\|_2 \le \sqrt{\frac{2[f(\mathbf{w}_0) - f_{\star}]}{\alpha \beta \mathsf{L} T}}.$$

Can tune α and β to optimize the bound: since $\alpha + \beta \leq \frac{2}{L}$, the minimum is achieved when $\alpha = \beta = \frac{1}{L}$, and the bound reduces to

$$\min_{0 \le t \le T-1} \|\nabla f(\mathbf{w}_t)\|_2 \le \sqrt{\frac{2\mathsf{L}[f(\mathbf{w}_0) - f_{\star}]}{T}},$$

01 16/19

B. T. Polyak. "Gradient methods for the minimization of functionals". USSR Computational Mathematics and Mathematical Physics, vol. 3, no. 4 (1963), pp. 643–653.

Proof

$$f(\mathbf{w}_{t+1}) = f(\mathbf{w}_t - \eta_t \nabla f(\mathbf{w}_t)) \le f(\mathbf{w}_t) - \eta_t \|\nabla f(\mathbf{w}_t)\|_2^2 + \frac{\mathsf{L}\eta_t^2}{2} \|\nabla f(\mathbf{w}_t)\|_2^2$$
$$= f(\mathbf{w}_t) - \eta_t (1 - \frac{\mathsf{L}\eta_t}{2}) \|\nabla f(\mathbf{w}_t)\|_2^2.$$

- If $\eta_t \in]0, \frac{2}{\Gamma}[$ and $\nabla f(\mathbf{w}_t) \neq \mathbf{0},$ strictly decrease function value
- Rearranging:

$$\|\nabla f(\mathbf{w}_t)\|_2^2 \le \frac{f(\mathbf{w}_t) - f(\mathbf{w}_{t+1})}{\eta_t (1 - \mathsf{L}\eta_t/2)} \le \frac{f(\mathbf{w}_t) - f(\mathbf{w}_{t+1})}{\alpha \beta \mathsf{L}/2}.$$

• Telescoping:

$$\sum_{t=0}^{T-1} \|\nabla f(\mathbf{w}_t)\|_2^2 \le \frac{f(\mathbf{w}_0) - f(\mathbf{w}_T)}{\alpha \beta \mathsf{L}/2} \le \frac{f(\mathbf{w}_0) - f_{\star}}{\alpha \beta \mathsf{L}/2}.$$

Remarkable Properties

- Rate of convergence is proportional to the Lipschitz smoothness L: the bigger L is, the smaller the step size $\eta = \frac{1}{L}$ has to be since the function f becomes steeper.
- If we start from some point \mathbf{w}_0 whose function value is closer to the infimum f_{\star} , then the gradient diminishes faster to zero.
- ullet Very importantly, the rate of convergence does not depend on d, the dimension, at all!
- The $1/\sqrt{T}$ rate of convergence for the gradient is essentially tight¹.

01 18/1

¹C. Cartis, N. I. M. Gould, and P. L. Toint. "On the Complexity of Steepest Descent, Newton's and Regularized Newton's Methods for Nonconvex Unconstrained Optimization". SIAM Journal on Optimization, vol. 20, no. 6 (2010), pp. 2833–2852.

Backtracking

- Figuring out L can be tedious; and it can be conservative too
- Where did we use the knowledge of L in the proof?

$$f(\mathbf{w}_{t+1}) = f(\mathbf{w}_t - \eta_t \nabla f(\mathbf{w}_t)) \le f(\mathbf{w}_t) - \eta_t \underbrace{\left(1 - \frac{\mathsf{L}\eta_t}{2}\right)}_{>0} \|\nabla f(\mathbf{w}_t)\|_2^2.$$

• Choose some $\alpha \in]0,1[$, say $\alpha = \frac{1}{2}$, and aim:

$$f(\mathbf{w}_t - \eta_t \nabla f(\mathbf{w}_t)) \le f(\mathbf{w}_t) - \alpha \eta_t \|\nabla f(\mathbf{w}_t)\|_2^2.$$

- The above inequality is testable without knowing L!
 - if the test succeeds, happily proceed to the next iteration
 - if the test fails, halve η_t and repeat
 - $\eta_t \geq \frac{1-\alpha}{\mathsf{L}}$, repeat at most $K := \log_2 \frac{\eta \mathsf{L}}{1-\alpha}$ times

01

L. Armijo. "Minimization of functions having Lipschitz continuous first partial derivatives". *Pacific Journal of Mathematics*, vol. 16, no. 1 (1966), pp. 1-3.

