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Problem

minimization:

Jx= inf f(W)

weRd

® No constraint on the domain

f 11" — R is smooth, e.g. continuously differentiable

/ can be convex or nonconvex

® Minimizer may or may not be attained

Maximization is just negation



Linear Regression
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Linear Least Squares Regression

n

1

min — x;,w) — ;)2 = min i{|lwX —y|?
Z(< W) — Y;) n- 5 Y2
| —

w N <
=1

f(w)
e X =[xq,...,x,] € RP*"
*y=1[y, .y ER"
* we R
e Clearly, / is quadratic and hence (continuously) differentiable

® No constraint on w
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Logistic Regression
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*y=1[y, .., ya] € {£1}"

w € R?

Again, [ is (continuously) differentiable

No constraint on w

inf (log[1 + exp(—wA)],

1.
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f(w)
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Calculus Detour

/" of a function [ at w:

i W +2) = fF(w) — f/(w)(2)]

— 0
0£z—0 ||z||

e f XY= f(w): XY= X=>X=>))
® f'(w)(z) is linear in z but possibly nonlinear in w

Example: Quadratic function




Slxmthx)—- f(x)

. : (fog)(w)(z) = flg(w)][g'(w)(z)]
o Often suffices to take: [f'(w)]; = 0;f(wy, ..., Wy, .- ., wg)


https://en.wikipedia.org/wiki/Chain_rule

Example: Logistic Loss

® Recall w € R?, A € RP*"

e What is the dimension of our gradient V [ (w)?




Optimality Condition

Theorem: 's necessary condition for extremity

If w is a minimizer (or maximizer) of a differentiable function f over an open set,
then

N
global maximum

local maximum

local minimum

N
global minimum



https://en.wikipedia.org/wiki/Pierre_de_Fermat

Gradient Descent

Algorithm 1: Richardson’s first-order extrapolation for linear systems

Input: wo € R¢, A € R¥X4, b e R?

1 for i =0, i [o)
2 g < AW,L ) // ‘‘gradient”’
k] Wil < Wy — 8 // m¢ is the step size

Algorithm 2: Gradient descent for unconstrained smooth minimization

Input: w, € RY, smooth function f: RY — IR
1 fort=20,1,...do
2 gt < Vf(wy) // compute the gradient
3 L Wil < Wy — 8 // m: is the step size

® Repeatedly subtract a multiple of the gradient



Intuition

f(Wi1) = f(Wt - T}tvf(Wt))

fwi) = (Vf(we), V(W) + o(ne)
Fwe) =0 IV f(wi) I3 +o(ne)
A,—/

>0

o If Vf(w;) =0, we are done
® Otherwise for small 7, > 0, we have f(w;. 1) — f(w,)

e Strict improvement at each iteration; is it enough??
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Lipschitz Continuity = Bounded Derivative

Theorem:

be differentiable. Then, T is [ -Lipschitz continuous:

if and only if

® |ipschitz continuity: output change is bounded by input change

® Equivalently, derivative (i.e. infinitesimal change) is bounded



| -smoothness

We call a differentiable function [ : R? — 2 L-smooth if for all w and z:

f(2) < f(w) + f/(w)(z - w) +5]lz - w]]?
~—_———

(z—w,V f(w))

Theorem: Characterizing | .-smoothness
Consider the following statements for a real-valued smooth function:
(1). Vector-valued derivative is L-Lipschitz continuous

(I). Matrix-valued second-order derivative is |.-bounded
(111). Real-valued functions are | -smooth

Then, (1) (11 (H1). If f is convex or the norm is Euclidean, then all three
are equivalent.
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Importance of L-smoothness

® RHS is a quadratic function of w
e Equality holds if 1), < %
® Minimize RHS w.r.t. w:

Wi ¢ argmin f(w;) + ﬁHW — [w; — me(Wt)}H% - %va(wt)ﬂg

® This is exactly gradient descent

® Moreover, f(wyi1) < f(wy) — L]V f(w,)]3
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Example: Logistic Loss




Theorem: Convergence of gradient descent for L-smooth functions

be [ -smooth and bounded from below (i.e. ). If the step
for some , then the gradient descent iterate satisfies
. Moreover,

Can tune o and [J to optimize the bound: since o + 7 < f) the minimum is achieved

when o = 3 = % and the bound reduces to
2L[f(wo) — fi
min ||V f(w)]|: <,\/ ' —
min [[Vf(w)z < 4
B. T. Polyak. . USSR Computational Mathematics and Mathematical Physics, vol. 3,

no. 4 (1963), pp. 643-653.


https://doi.org/10.1016/0041-5553(63)90382-3

Proof

FWein) = f(we — eV f(we) < f(w) — mel| V(W) |2+ 22|V f (w2
= f(wy) —m(1 = )|V f(we)[[3-

e If 1, €]0. 2[ and V f(w,) # 0, strictly decrease function value
® Rearranging:

f(wy) — f(wig1) f(we) — f(WtJrl)_

Vil < S ity < apL2
® Telescoping:
T—1
: f(wo) = f(wr) _ flwo) = fs
2 VIl < == e S g
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Remarkable Properties

Rate of convergence is proportional to the Lipschitz smoothness L: the bigger L
is, the smaller the step size 1) = % has to be since the function / becomes steeper.

If we start from some point w, whose function value is closer to the infimum f,,
then the gradient diminishes faster to zero.

° 1/ﬁ

C. Cartis, N. I. M. Gould, and P. L. Toint.
. SIAM Journal on Optimization, vol. 20, no. 6 (2010), pp. 2833-2852.


https://doi.org/10.1137/090774100
https://doi.org/10.1137/090774100

Backtracking

LO1

® Figuring out L can be tedious; and it can be conservative too
® Where did we use the knowledge of L in the proof?

fWir1) = fwe =V F(we)) < f(wy) — me (1= 52 |V f(we)][3-
\___\,___/

® Choose some o €0, 1], say & = £, and aim:
f(we =0V f(we)) < f(wi) — anel [V f(wy)[3.

® The above inequality is testable without knowing L!

— if the test succeeds, happily proceed to the next iteration
— if the test fails, halve 7; and repeat

(e}

- > 11 , repeat at most K := log, 1%: times

L. Armijo. “Minimization of functions having Lipschitz continuous first partial derivatives’. Pacific Journal of Mathematics, vol. 16, no. 1

(1966), pp. 1-3.
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https://projecteuclid.org/euclid.pjm/1102995080




