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Problem

Constrained smooth minimization:

f⋆ = inf
w∈C

f(w)

• f : smooth and possibly nonconvex

• C: (closed) bounded and convex

• Minimizer may or may not be attained

• Maximization is just negation

• Projection PC is expensive to compute
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Matrix Completion

min
X:rank(X)≤k

∑
(i,j)∈O

(Aij −Xij)
2,

• rank is nonconvex (in fact, discrete valued)

min
X:∥X∥tr≤λ

∑
(i,j)∈O

(Aij −Xij)
2,

• ∥ · ∥tr: trace norm, sum of singular values
• Let X = UΣV ⊤ be its singular value decomposion. Then,

P∥·∥tr(X) = U diag(γ)V ⊤, where γ = P∥·∥1(σ)

• Expensive operation: O(nm2)
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https://en.wikipedia.org/wiki/Singular_value_decomposition


Sparsity

min
w

1
n
∥wX− y∥22︸ ︷︷ ︸

ℓ

+λ · ∥w∥0︸ ︷︷ ︸
r

• Balancing square error with sparsity

• ℓ is convex and L-smooth, r is nonsmooth and nonconvex

min
w

1
n
∥wX− y∥22︸ ︷︷ ︸

ℓ

+λ · ∥w∥1︸ ︷︷ ︸
r

• Convex relaxation: r is now convex but remains nonsmooth (crucial)

R. Tibshirani. “Regression Shrinkage and Selection via the Lasso”. Journal of the Royal Statistical Society: Series B, vol. 58, no. 1 (1996),
pp. 267–288.
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https://doi.org/10.1111/j.2517-6161.1996.tb02080.x


Indicator and Support

Recall that the indicator function of a set C is:

ιC(w) =

{
0, if w ∈ C

∞, otherwise

The support function of a set C is:

σC(w
∗) = max

w∈C
⟨w,w∗⟩ = max

w
⟨w,w∗⟩ − ιC(w)

• Always (closed) convex and positive homogeneous

• Any norm is a support function of the unit ball of its dual

• The subdifferential ∂σC will play a crucial role
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From Linear to Quadratic

• Suppose we have an algorithm to solve a linear program:

min
w≥0

⟨w, c⟩ s.t. Aw = b

• How do we solve a quadratic program?

min
w≥0

⟨w, Aw⟩+ ⟨w, c⟩ s.t. Aw = b

• The power of reduction: try to reduce quadratic to linear!
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Algorithm 1: Conditional gradient (condgrad)
Input: w0 ∈ C

1 for t = 0, 1, . . . do
2 zt ← argmax

z∈C
⟨z;−∇f(wt)⟩ // polar operator

3 choose step size ηt ∈ [0, 1]
4 wt+1 ← (1− ηt)wt + ηtzt // convex combination

• The only nontrivial step in Line 2 has a linear objective
• It is in fact ∂σC(−g) where g = ∇f(wt)

• We find a point in C that “correlates” the most with −∇f(wt)

• No projection to C needed: Line 4 remains in C

M. Frank and P. Wolfe. “An Algorithm for Quadratic Programming”. Naval Research Logistics Quarterly, vol. 3, no. 1-2 (1956), pp. 95–110,
V. F. Dem’yanov and A. M. Rubinov. “The Minimization of a Smooth Convex Functional on a Convex Set”. SIAM Journal on Control, vol. 5,
no. 2 (1967), pp. 280–294. [English translation of paper in Vestnik Leningradskogo Universitera, Seriya Matematiki, Mekhaniki i Astronomii vol.
19, pp. 7–17, 1964].
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https://doi.org/10.1002/nav.3800030109
https://doi.org/10.1137/0305019


Definition: Extreme point

w ∈ C is an extreme point (of C) if it does not lie on the line segment of any two
points in C. In other words, if w ∈ [w1,w2],w1,w2 ∈ C then w = w1 = w2.

• For a convex set C, w ∈ C is an extreme point iff C \ {w} remains convex.

Theorem: Convex maximizer is at the boundary

The maximizer of a convex f over C can always be chosen from the extreme points.

w1

w2
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https://en.wikipedia.org/wiki/Extreme_point


Consider the following simple problem:

min
w∈C

w2
1 + (w2 + 1)2 and C := {w : w1 ∈ [−1, 1], w2 ∈ [0, 2]}.

The global minimizer is clearly at w⋆ = (0, 0), as shown below.
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Let us see how the conditional gradient works on this toy problem:
• We first identify the four extreme points of C as

z1 = (−1, 0), z2 = (1, 0), z3 = (1, 2), z4 = (−1, 2).

• Start with say w1 = (1, 1), we compute the gradient ∇f(w1) = (2, 4).

• We pick the extreme point z that maximizes ⟨z;−∇f(w1)⟩. Clearly, z1 wins.

• Next, we find η > 0 to minimize f((1− η)w1 + ηz1) by setting its derivative
w.r.t. η to 0 :

η1 = η =
⟨w + (0, 1),w − z⟩

∥w − z∥22
=

4

5
.

• Lastly, we compute w2 = (1− η1)w1 + η1z1 = (−3
5
, 1
5
), and the process repeats.
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Convergence rate closely follows Θ(1/t), while projected gradient converges in 2
iterations on this example!
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Sparsity

Let C := {w : ∥w∥1 ≤ λ}, whose polar operator reduces to

zt = argmax
∥z∥1≤λ

⟨z;−∇f(wt)⟩ ∋ −λei, where ⟨ei;∇if(wt)⟩ = max
j
|∇jf(wt)|.

• May choose ei to be the i-th standard basis (i.e. 1 at the i-th entry and 0
elsewhere)

• After t steps, the iterate wt has (added) at most t nonzeros! In comparison, after
even a single iteration, projected gradient can result in a fully dense iterate!

• The resulting coordinate-wise update is a bit wasteful though: we compute the
entire gradient ∇f only to find its minimum index and throw out everything else...
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Sparsity in Rank

• For the matrix setting:

Zt = argmax
∥Z∥tr≤λ

⟨Z;−∇f(Wt)⟩ = −λuv⊤, where u⊤∇f(Wt)v = ∥∇f(Wt)∥sp

• After t steps, the iterate Wt has (added) rank at most t

• Computing the spectral norm, i.e. the largest singular value, costs O(mn), an
order of magnitude cheaper than projection

• Same for tensors
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Theorem: convergence of conditional gradient

Suppose f is convex and L-smooth, and C is compact convex with bounded diameter
ρ. Then, conditional gradient satisfies:

f(wt+1) ≤ f(w) + πt(1− η0)(f(w0)− f(w)) +
Lρ2

2

t∑
s=0

πt

πs

η2s ,

where πt :=
∏t

s=1(1− ηs) with π0 := 1.

• Setting ηt =
2

t+2
, we have η0 = 1, πt =

2
(t+1)(t+2)

and

f(wt)− f(w) ≤ ⟨wt − zt;∇f(wt)⟩ ≤
2Lρ2

t+ 3
,

where the initializer w0, surprisingly, does not play any role.
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The Proof

f(wt+1)− f(w) = f((1− ηt)wt + ηtzt)− f(w)

(L-smoothness) ≤ f(wt)− f(w) + ηt ⟨zt −wt;∇f(wt)⟩+
η2t
2
L ∥wt − zt∥2︸ ︷︷ ︸

≤ρ2

(optimality of zt) ≤ f(wt)− f(w) + ηt ⟨w −wt;∇f(wt)⟩+
η2t
2
Lρ2

(convexity of f) ≤ (1− ηt)(f(wt)− f(w)) +
η2t
2
Lρ2

Telescoping and collecting the terms we arrive at the claim
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Disccussions

• The rate O(1
t
) is tight and cannot be improved (disappointing)

• Polar operator can be solved approximately

– additive error: ⟨zt,−gt⟩ ≤ maxw∈C ⟨w,−gt⟩ − ϵt

– multiplicative error: ⟨zt,−gt⟩ ≤ 1
αt
·maxw∈C ⟨w,−gt⟩

• Choices of the step size ηt

– Open-loop rule: ηt =
2

t+2 , or more generally ηt = Θ(1/t).

– Cauchy’s rule: ηt ∈ argmin
0≤η≤1

f((1− η)wt + ηzt).

– Quadratic rule:

ηt = argmin
0≤η≤1

f(wt) + ηt ⟨zt −wt;∇f(wt)⟩+ L2η2
t ∥wt−zt∥2

2 =
[
⟨wt−zt;∇f(wt)⟩

L2∥wt−zt∥2

]1
0
.

• Possible to accelerate
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Extension to Composite

min
w

f(w), where ℓ(w) + r(w)

Algorithm 2: Generalized conditional gradient (GCG)
Input: w0 ∈ C, functions ℓ and r

1 for t = 0, 1, . . . do
2 zt ← argmin

z
⟨z;∇ℓ(wt)⟩+ r(w) // conjugate of r

3 choose step size ηt ∈ [0, 1]
4 wt+1 ← (1− ηt)wt + ηtzt // convex combination

T. Bonesky, K. Bredies, D. A. Lorenz, and P. Maass. “A Generalized Conditional Gradient Method for Nonlinear Operator Equations with
Sparsity Constraints”. Inverse Problems, vol. 23, no. 5 (2007), pp. 2041–2058, K. Bredies, D. A. Lorenz, and P. Maass. “A Generalized
Conditional Gradient Method and its Connection to an Iterative Shrinkage Method”. Computational Optimization and Applications, vol. 42
(2009), pp. 173–193, Y. Yu, X. Zhang, and D. Schuurmans. “Generalized Conditional Gradient for Structured Sparse Estimation”. Journal of
Machine Learning Research, vol. 18 (2017), pp. 1–46.
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https://doi.org/10.1088/0266-5611/23/5/014
https://doi.org/10.1088/0266-5611/23/5/014
https://doi.org/10.1007/s10589-007-9083-3
https://doi.org/10.1007/s10589-007-9083-3
https://jmlr.org/papers/volume18/14-348/14-348.pdf


Totally Corrective

• Inspecting the conditional gradient algorithm we realize that

wt+1 ∈ conv{w0, z1, . . . , zt},

where the extreme points zk are repeatedly identified and averaged.

• One immediate, natural idea is to replace the next iterate wt+1 as the best
approximation in the entire convex hull:

wt+1 = argmin
w∈conv{w0,z1,...,zt}

f(w).

• Potentially much faster, but more expensive in each step

• Can restrict memory size, even to 2

G. Meyer. “Accelerated Frank–Wolfe Algorithms”. SIAM Journal on Control, vol. 12, no. 4 (1974), pp. 655–655, C. A. Holloway. “An
extension of the Frank and Wolfe method of feasible directions”. Mathematical Programming, vol. 6 (1974), pp. 14–27.
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https://doi.org/10.1137/0312050
https://doi.org/10.1007/BF01580219
https://doi.org/10.1007/BF01580219



