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Problem

Composite minimization:

L4 f() . = B

® ;.12 — IR can be nonsmooth, but they are

More generally, each w; can be a block of variables

With f;(w;) = tc, (w;), we reduce to the constrained problem:

min ! e
WeC xCa--xCy fo(w)



Convex Function Estimation

Least-squares regression:

y=f(x)+e  min Ely — f(x))?

e Can assume [ is linear: f(x) = (x, w) and solve for w

e Can assume [ is convex and solve for | directly!

Example: Univariate convex function estimation, primal

and assume w.l.o.g. that




Example: Univariate convex function estimation, dual

Lagragian with dual variable

Setting we obtain the dual problem:

® How to solve the primal problem?

® How to solve the dual problem?

C. Hildreth. . Journal of the American Statistical Association, vol. 49, no. 267 (1954),
pp. 598-619


http://www.jstor.org/stable/2281132

Algorithm 1: Alternating Minimization (AltMin)

Input: w € dom [
1 fort=1.2...do

2 choose coordinate // cyclic, randomized or greedy
] wj +— argmin f(ws, ..., wj—1, 2, Wjt1,...,Wq)
// argmin fo(ws, ..., Wj—1,%,Wji1, ..., Wq)+fj(2), univariate problem!

e Can replace each exact minimization with simply a (proximal) gradient (or
descent) step

e Can replace with a for parallelism
® Appealing in practice due to , (could be derivative-free),
(could be step size free), (minimum storage) and

surprising



A Nice Univariate Result

Theorem: constrained univariate convex minimization

For any univariate convex function f and convex interval ., we have

is the closest point in (' to




Why Separability?

f(w) = fo(w +Zf1 W;

e What happens if f, = 0, i.e. [ is separable?
e What happens if the domain of | is separable?

min  w? + 22
w+2z=0
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The Difficulty for Nonsmooth fj

Example:

Consider the strongly convex function

where is arbitrary. Due to symmetry, it is clear that

However, if we start with , then alternating minimization immediately
gets stuck!




Th

e Difficulty for Nonconvex f

I —:ch—yz—z:l;—&-(:l;—l)i—&-(—fl:—l)i+(y—1)i+(—y—1)i+(z—1)i+(—z—1)i,

Taking 2 = y = = yields

—6z+3, ifz>1
—32° + 3(x — 1)1 + 3(—z — 1)2+ = ¢ —322, if v e[-1,1] .
6z + 3, if x < —1

Stationary points exist at zyz = 0,2 +y + 2z = 0,2,y,z € {0, +2}

. J. D. Powell. “On search directions for minimization algorithms”. Mathematical Programming, vol. 4 (1973), pp. 193-201.
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https://doi.org/10.1007/BF01584660

® Fixing v and =~ we obtain:

—z(y+2)+(x—1) ifz>1
—z(y + 2), if v € [-1,1], with z, =sign(y + 2) + 3(y + 2)
—z(y+2)+(x+1)} ifzr<-1

e Start with (—1 —¢,1+ Je, —1 — 1¢), in two passes we obtain

S 1. 1 .1 1 1.1 1
(flfc,l+§c,flfZc)~>(1+§c,l+5(,7171()%(14»5(,7171*6(,7171()%
1 1 1 1 1 1 A 1
—1651t 336> (ml-gge—1-qgeltgze)=(~1-gzel+ a5 1+356)

| | 1
—>(—1—aF,1+@F,—1—256€),

—)(1+%e,71

i.e. reducing ¢ by a factor of 64.
e AltMin cycles around the 6 limit points:

(=1,1,—1)—(1,1,—1)—(1,—1,—1)—(1,—1,1)—(—1,—1,1)—(=1,1,1)—(=1,1,—1),

neither of which is optimal or stationary.
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What Does AltMin Try to Find?

Algorithm 2: Alternating Minimization (AltMin)

Input: w € dom f
1 fort=1.2 .. .do

2 choose coordinate // cyclic, randomized or greedy
3 w; — argmin f(wy, ..., wj—1, 2, Wjt1, . . ., Wq)
// argmin fo(w, ..., wj—1,2,Wjt1,...,wq)+fj(2), univariate problem!
e Call w a (Nash) of [ if
Vi, w; € argmin f(wy, ..., wj—1, 2, Wjt1, . .., Wq).

z

e AltMin, if converges at all, converges to a Nash equilibrium?
® A Nash equilibrium may not be a minimizer, or even a stationary point of /!



Theorem: Convergence of AltMin for two blocks

Let and consider any function that is separately continuous in its
product domain. Assume AltMin is well-defined. Then, any limit point (if any) of
is an equilibrium.

Example: Nash equilibrium * minimizer

Consider the strongly convex function

where is arbitrary. Due to symmetry, it is clear that

However, if we start with , then AltMin immediately gets stuck!

L. Grippof and M. Sciandrone . Operations
Research Letters, vol. 26, no. 3 (2000), pp. 127-136



https://doi.org/10.1016/S0167-6377(99)00074-7

Theorem: Convergence of AltMin for any number of blocks

Let be convex and continuous on the sublevel set

which we assume to be compact. Assume [, is smooth and choose
the cyclic rule. Then, any limit point of AltMin is an equilibrium.

Theorem: Convergence of AltMin under uniqueness

Let / be continuous on the sublevel set which we assume to be compact.
Assume to be separable and choose the cyclic rule. If for all but one ; and

any w, the function is attained at a unique
minimizer, then any limit point of AltMin is an equilibrium.

min min f(w) + 5|z — w||3 = min M}(z)
z w ’ n < Z .

P. Tseng . Journal of Optimization Theory and
Applications, vol. 109 (2001), pp. 475—494.


https://doi.org/10.1023/A:1017501703105

Example: The shooting algorithm for lasso

Recall the lasso problem for sparse estimation:

Any limit point of AltMin is a bona fide minimizer!

To update the /-th coordinate, we need to solve the subproblem:

(Univariate) soft-shrinkage operator in closed-form.

After updating , we update

Complexity on par with gradient algorithms: for a full sweep.

W. J. Fu. . Journal of Computational and Graphical Statistics, vol. 7, no. 3 (1998),
pp. 397-416



https://www.jstor.org/stable/1390712

Example: Sparse precision matrix estimation

be the sample covariance matrix. Consider

O. Banerjee, L. E. Ghaoui, and A. d’'Aspremont.
. Journal of Machine Learning Research, vol. 9 (2008), pp. 485-516.



https://www.jmlr.org/papers/v9/banerjee08a.html
https://www.jmlr.org/papers/v9/banerjee08a.html

Diagonal 1/;; = 5;; + A due to monotonicity of log det
Sweep j-th column (and row) while fixing everything else:

: Tyxrr—
w; = argmin @ w W 1w
. : AVAY/
[W—s;loc <A

Dual problem is:

min z' WA;\;z — szz + Az

z

This is just the Lasso problem!

When is w; = 0, i.e. sparse column/row in the precision matrix?






