
University of Waterloo CS480/680 2025 Winter

CS480/680: Introduction to Machine Learning
Homework 3

Due: 11:59 pm, March 18, 2025, submit on LEARN and Crowdmark.
NAME

student number

Submit your writeup in pdf and all source code in a zip file (with proper documentation). Write a script for each
programming exercise so that the TA can easily run and verify your results. Make sure your code runs!

[Text in square brackets are hints that can be ignored.]

Exercise 1: Adaboost (5 pts)

In this exercise we will interpret Adaboost as minimizing the exponential loss:

min
α

1

n

n∑
i=1

exp

[
−yi

∑
t

αtht(xi)

]
, (1)

where ht are the so-called weak learners, and the aggregated classifier

hα(x) :=
∑
t

αtht(x). (2)

Note that we assume yi ∈ {±1} in this exercise.
Let us introduce the uniform distribution p1 = 1

n1 over our training set {xi, yi}ni=1, and rewrite (1) as:

min
α

Ep1
exp

[
− Y

∑
t

αtht(X)
]
, (3)

where (X,Y) ∼ p1, i.e., with probability pi1 = 1
n , X = xi,Y = yi.

1. (1 pt) Let q > 0 be an arbitrary function (or vector). By normalization, i.e., q ← q/
∫
q or q ← q/q⊤1 we

obtain a density function (or probability mass function). Find probability density (vector) p2 below so that

Ep1
exp

[
− Y

2∑
t=1

αtht(X)
]
= Z1 · Ep2

exp
[
− Y

2∑
t=2

αtht(X)
]
, (4)

as well as the formula for Z1 (a positive constant).

Ans:

2. (1 pt) Apply the previous exercise repeatedly with probability densities (vectors) pt so that

Ep1
exp

[
− Y

T∑
t=1

αtht(X)
]
=

T∏
t=1

Zt, (5)

where each Zt is a positive constant. Explain what is Zt for each t.
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Ans:

3. (1 pt) Prove the following bound on the training error:

Ep1
[[Y hα(X)︸ ︷︷ ︸

Ŷ

≤ 0]] = Ep1
[[Y

T∑
t=1

αtht(X) ≤ 0]] ≤
T∏

t=1

Zt, (6)

where each Zt is given in the previous exercise. Recall that hα(X) =
∑T

t=1 αtht(X) is the aggregated classifier.

Ans:

4. (1 pt) Assuming in the t-th iteration we have found ht. We now aim to find its coefficient αt by considering
the following (convex) minimization problem:

min
αt

Ept
exp[−Yαtht(X)], (7)

Suppose there is indeed a minimizer, then it must satisfy (by setting derivative to 0):

0 = Ept

{
Yht(X) · exp[−Yαtht(X)]

}
. (8)

From the above result deduce that

0 = Ept+1
[Yht(X)], (9)

and show that for (deterministic) weak classifiers ht ∈ {±1}:

Ept+1 [[ht(X) ̸= Y]] = 1
2 , (10)

namely that in the next iteration t+ 1, the previous classifier ht has error exactly
1
2 .
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Ans:

5. (1 pt) In (8) above we obtained a nonlinear equation of αt. Although it is possible to find αt through
numerical root finding algorithms, we prefer to derive a closed-form solution. Assuming ht ∈ [−1, 1] is given,
we can apply the bound (the so-called Jensen’s inequality)

exp(−αu) ≤ 1 + u

2
exp(−α) + 1− u

2
exp(α) (11)

to (7) first and then derive the optimal αt.

[This is essentially the coefficient log 1
βt

that we saw in class, up to some trivial changes.]

Ans:

(Remark) We have not talked much about choosing weak classifiers ht. Here is the catch: we could simply
pretend we enumerate all weak classifiers (infinitely many!) in our final aggregate hα. All we need to figure
out is the weight αt that we assign to each weak classifier ht, and a zero α means the corresponding weak
classifier is effectively discarded. The Adaboost algorithm starts with α ≡ 0 and only changes one α into
nonzero in each iteration. Thus, after T iterations, we have at most T nonzero α’s. On a high level, this is
very similar to kernels where the dual problem only involves n nonzero Lagrangian multiplier α’s (n being
the size of the training set). See, we do not need to fear infinite dimensions!

Exercise 2: Vision Transformers (10 pts)

Please follow the instructions of this ipynb file.

1. (1+3+2 = 6 pts) Complete the missing coding parts in the provided ipynb file.

2. (1 pt) Visualization of patches:
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A B
A B

3. (1 pt) The test accuracy I obtained on MNIST is: xxx%

4. (2 pts) Training / Validation accuracy vs. epoch:

A B
Exercise 3: Generative Adversarial Networks (5 pts)

Let us consider the game between the generator q(x) (the implicit density of Tθ(Z)) and the discriminator S(x):

inf
q

sup
S

∫
x

S(x)p(x)dx+

∫
x

log
(
1− exp(S(x))

)
q(x)dx+ log 4. (12)

We remind that q is a probability density (so is p which is given) while S is any real-valued function.
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1. (1 pt) Fix an arbitrary generator q and find the resulting optimal discriminator S.

Ans:

2. (1 pt) Plug the optimal discriminator S above back to (12) and find the optimal generator q.

Ans:

Now we swap the order of the two players:

sup
S

inf
q

∫
x

S(x)p(x)dx+

∫
x

log
(
1− exp(S(x))

)
q(x)dx+ log 4. (13)

3. (1 pt) Fix an arbitrary discriminator S and find an optimal generator q.

Ans:

4. (1 pt) Plug the optimal generator q above back to (13) and find the optimal discriminator S.

[Hint: average ≤ max.]

Ans:
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5. (1 pt) Let f : R+ → R be a convex function. We see in class that the f -divergence admits the following
variational form:

−Df (p∥q) = inf
S:Rd→[0,1]

−EX∼p[S(X)] + EX∼q[f
∗(S(X))], (14)

where for simplicity we have restricted the range of S to [0, 1]. Now consider the following distribution
(X,Y) ∼ D where Y = ±1 with equal probability while

[X | Y = 1] ∼ p and [X | Y = −1] ∼ q. (15)

We claim that

− 1
2Df (p∥q) = inf

S:Rd→[0,1]
E(X,Y)∼D[ℓ(Y, S(X))]. (16)

Express the binary loss function ℓ in terms of f . Thus, given an f -divergence, we may rewrite it as a binary
classification problem! Conversely, given any proper loss function ℓ, we may reverse the argument and induce
an f -divergence from the binary loss ℓ.

Ans:
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