CS480/680: Introduction to Machine Learning

Homework 3

Due: 11:59 pm, March 18, 2025, submit on LEARN and Crowdmark.

NAME

student number

Submit your writeup in pdf and all source code in a zip file (with proper documentation). Write a script for each programming exercise so that the TA can easily run and verify your results. Make sure your code runs! [Text in square brackets are hints that can be ignored.]

Exercise 1: Adaboost (5 pts)

In this exercise we will interpret Adaboost as minimizing the exponential loss:

$$\min_{\boldsymbol{\alpha}} \ \frac{1}{n} \sum_{i=1}^{n} \exp\left[-y_i \sum_{t} \alpha_t h_t(\mathbf{x}_i)\right],\tag{1}$$

where h_t are the so-called weak learners, and the aggregated classifier

$$h_{\alpha}(\mathbf{x}) := \sum_{t} \alpha_t h_t(\mathbf{x}).$$
⁽²⁾

Note that we assume $y_i \in \{\pm 1\}$ in this exercise.

Let us introduce the uniform distribution $\mathbf{p}_1 = \frac{1}{n}\mathbf{1}$ over our training set $\{\mathbf{x}_i, y_i\}_{i=1}^n$, and rewrite (1) as:

$$\min_{\boldsymbol{\alpha}} \mathbb{E}_{\mathbf{p}_1} \exp\Big[-\mathsf{Y}\sum_t \alpha_t h_t(\mathsf{X})\Big],\tag{3}$$

where $(X, Y) \sim \mathbf{p}_1$, i.e., with probability $p_{i1} = \frac{1}{n}$, $X = \mathbf{x}_i$, $Y = y_i$.

1. (1 pt) Let q > 0 be an arbitrary function (or vector). By normalization, i.e., $q \leftarrow q/\int q$ or $q \leftarrow q/q^{\top}1$ we obtain a density function (or probability mass function). Find probability density (vector) \mathbf{p}_2 below so that

$$\mathbb{E}_{\mathbf{p}_1} \exp\left[-\mathsf{Y}\sum_{t=1}^2 \alpha_t h_t(\mathsf{X})\right] = Z_1 \cdot \mathbb{E}_{\mathbf{p}_2} \exp\left[-\mathsf{Y}\sum_{t=2}^2 \alpha_t h_t(\mathsf{X})\right],\tag{4}$$

as well as the formula for Z_1 (a positive constant).

Ans:

2. (1 pt) Apply the previous exercise repeatedly with probability densities (vectors) \mathbf{p}_t so that

$$\mathbb{E}_{\mathbf{p}_1} \exp\left[-\mathsf{Y}\sum_{t=1}^T \alpha_t h_t(\mathsf{X})\right] = \prod_{t=1}^T Z_t,\tag{5}$$

where each Z_t is a positive constant. Explain what is Z_t for each t.

Ans:

3. (1 pt) <u>Prove the following bound</u> on the training error:

$$\mathbb{E}_{\mathbf{p}_1} \llbracket \mathsf{Y} \underbrace{h_{\boldsymbol{\alpha}}(\mathsf{X})}_{\hat{\mathsf{Y}}} \le 0 \rrbracket = \mathbb{E}_{\mathbf{p}_1} \llbracket \mathsf{Y} \sum_{t=1}^T \alpha_t h_t(\mathsf{X}) \le 0 \rrbracket \le \prod_{t=1}^T Z_t, \tag{6}$$

where each Z_t is given in the previous exercise. Recall that $h_{\alpha}(\mathsf{X}) = \sum_{t=1}^{T} \alpha_t h_t(\mathsf{X})$ is the aggregated classifier. Ans:

4. (1 pt) Assuming in the *t*-th iteration we have found h_t . We now aim to find its coefficient α_t by considering the following (convex) minimization problem:

$$\min_{\alpha_t} \mathbb{E}_{\mathbf{p}_t} \exp[-\mathsf{Y}\alpha_t h_t(\mathsf{X})],\tag{7}$$

Suppose there is indeed a minimizer, then it must satisfy (by setting derivative to 0):

$$0 = \mathbb{E}_{\mathbf{p}_t} \{ \mathsf{Y}h_t(\mathsf{X}) \cdot \exp[-\mathsf{Y}\alpha_t h_t(\mathsf{X})] \}.$$
(8)

From the above result deduce that

$$0 = \mathbb{E}_{\mathbf{p}_{t+1}}[\mathsf{Y}h_t(\mathsf{X})],\tag{9}$$

and show that for (deterministic) weak classifiers $h_t \in \{\pm 1\}$:

$$\mathbb{E}_{\mathbf{p}_{t+1}}\llbracket h_t(\mathsf{X}) \neq \mathsf{Y} \rrbracket = \frac{1}{2},\tag{10}$$

namely that in the next iteration t + 1, the previous classifier h_t has error exactly $\frac{1}{2}$.

Yao-Liang Yu (yaoliang.yu@uwaterloo.ca) ©2025

2/6

Ans:

5. (1 pt) In (8) above we obtained a nonlinear equation of α_t . Although it is possible to find α_t through numerical root finding algorithms, we prefer to derive a closed-form solution. Assuming $h_t \in [-1, 1]$ is given, we can apply the bound (the so-called Jensen's inequality)

$$\exp(-\alpha u) \le \frac{1+u}{2} \exp(-\alpha) + \frac{1-u}{2} \exp(\alpha)$$
(11)

to (7) first and then derive the optimal α_t .

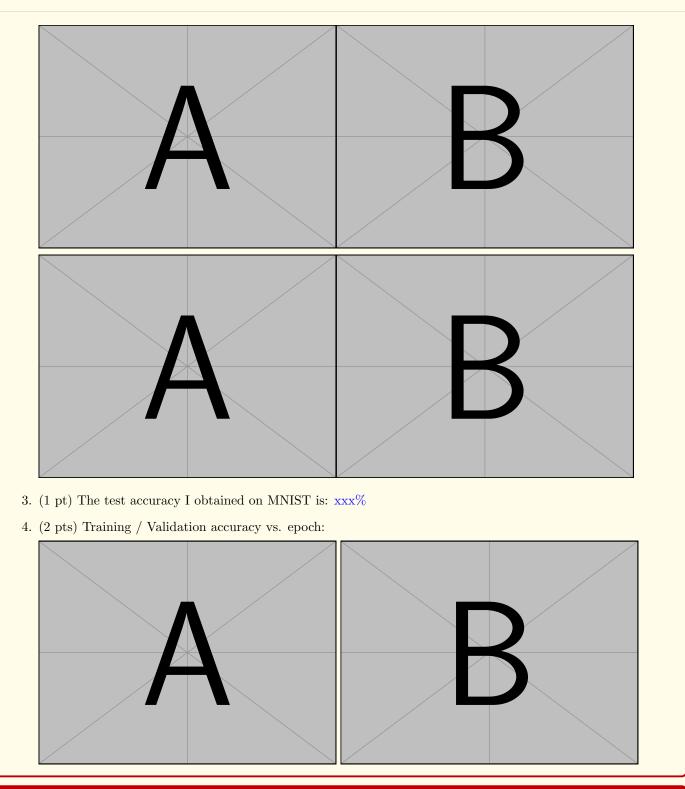
[This is essentially the coefficient $\log \frac{1}{\beta_t}$ that we saw in class, up to some trivial changes.] Ans:

(Remark) We have not talked much about choosing weak classifiers h_t . Here is the catch: we could simply pretend we enumerate all weak classifiers (infinitely many!) in our final aggregate h_{α} . All we need to figure out is the weight α_t that we assign to each weak classifier h_t , and a zero α means the corresponding weak classifier is effectively discarded. The Adaboost algorithm starts with $\alpha \equiv 0$ and only changes one α into nonzero in each iteration. Thus, after T iterations, we have at most T nonzero α 's. On a high level, this is very similar to kernels where the dual problem only involves n nonzero Lagrangian multiplier α 's (n being the size of the training set). See, we do not need to fear infinite dimensions!

Exercise 2: Vision Transformers (10 pts)

Please follow the instructions of this **ipynb** file.

- 1. (1+3+2=6 pts) Complete the missing coding parts in the provided ipynb file.
- 2. (1 pt) Visualization of patches:



Exercise 3: Generative Adversarial Networks (5 pts)

Let us consider the game between the generator $q(\mathbf{x})$ (the implicit density of $\mathsf{T}_{\theta}(\mathsf{Z})$) and the discriminator $S(\mathbf{x})$:

$$\inf_{\mathbf{q}} \sup_{S} \int_{\mathbf{x}} S(\mathbf{x}) \mathbf{p}(\mathbf{x}) d\mathbf{x} + \int_{\mathbf{x}} \log \left(1 - \exp(S(\mathbf{x})) \right) \mathbf{q}(\mathbf{x}) d\mathbf{x} + \log 4.$$
(12)

We remind that q is a probability density (so is p which is given) while S is any real-valued function.

Yao-Liang Yu (yaoliang.yu@uwaterloo.ca) ©2025

(1 pt) Fix an arbitrary generator q and find the resulting optimal discriminator S.
 Ans:

2. (1 pt) Plug the optimal discriminator S above back to (12) and find the optimal generator \mathbf{q} . Ans:

Now we swap the order of the two players:

$$\sup_{S} \inf_{\mathbf{q}} \int_{\mathbf{x}} S(\mathbf{x}) \mathbf{p}(\mathbf{x}) d\mathbf{x} + \int_{\mathbf{x}} \log \left(1 - \exp(S(\mathbf{x})) \right) \mathbf{q}(\mathbf{x}) d\mathbf{x} + \log 4.$$
(13)

 (1 pt) Fix an arbitrary discriminator S and find an optimal generator q. Ans:

4. (1 pt) Plug the optimal generator q above back to (13) and <u>find the optimal discriminator S</u>. [Hint: average ≤ max.]
Ans:

5. (1 pt) Let $f : \mathbb{R}_+ \to \mathbb{R}$ be a convex function. We see in class that the *f*-divergence admits the following variational form:

$$-\mathbb{D}_{f}(\mathbf{p}\|\mathbf{q}) = \inf_{S:\mathbb{R}^{d} \to [0,1]} -\mathbb{E}_{\mathsf{X} \sim \mathbf{p}}[S(\mathsf{X})] + \mathbb{E}_{\mathsf{X} \sim \mathbf{q}}[f^{*}(S(\mathsf{X}))],$$
(14)

where for simplicity we have restricted the range of S to [0,1]. Now consider the following distribution $(X, Y) \sim D$ where $Y = \pm 1$ with equal probability while

$$[\mathsf{X} | \mathsf{Y} = 1] \sim \mathsf{p} \text{ and } [\mathsf{X} | \mathsf{Y} = -1] \sim \mathsf{q}.$$
(15)

We claim that

$$-\frac{1}{2}\mathbb{D}_{f}(\mathbf{p}\|\mathbf{q}) = \inf_{S:\mathbb{R}^{d}\to[0,1]} \mathbb{E}_{(\mathbf{X},\mathbf{Y})\sim\mathcal{D}}[\ell(\mathbf{Y},S(\mathbf{X}))].$$
(16)

Express the binary loss function ℓ in terms of f. Thus, given an f-divergence, we may rewrite it as a binary classification problem! Conversely, given any *proper* loss function ℓ , we may reverse the argument and induce an f-divergence from the binary loss ℓ .

Ans: