University of Waterloo CS480/680 2025 Winter

CS480/680: Introduction to Machine Learning
Homework 3
Due: 11:59 pm, March 18, 2025, submit on LEARN and Crowdmark.
NAME

student number

Submit your writeup in pdf and all source code in a zip file (with proper documentation). Write a script for each
programming exercise so that the TA can easily run and verify your results. Make sure your code runs!
[Text in square brackets are hints that can be ignored.]

Exercise 1: Adaboost (5 pts)

In this exercise we will interpret Adaboost as minimizing the exponential loss:

1 n
i - —Yq h 1 5 ].
min nigleXp[ y % ol (x )] (1)
where h; are the so-called weak learners, and the aggregated classifier

X) 1= Z arhy(x). (2)

Note that we assume y; € {41} in this exercise.
Let us introduce the uniform distribution p; = 11 over our training set {x;,y;}7_,, and rewrite (1) as:

rr(l)i(n Ep, exp [ -Y Z aghy (X)] ) (3)

where (X,Y) ~ py, i.e., with probability p1 = 2, X =x;,Y = y;.

1. (1 pt) Let ¢ > 0 be an arbitrary function (or vector). By normalization, i.e., ¢ + ¢/ [q or ¢ « q/q"1 we
obtain a density function (or probability mass function). Find probability density (vector) ps below so that

Ep, exp[ YZatht } = Ep, exp{ YZatht } (4)

as well as the formula for Z; (a positive constant).
Ans:

2. (1 pt) Apply the previous exercise repeatedly with probability densities (vectors) p; so that

Ep, exp{ YZatht } = ﬁZt, (5)

where each Z; is a positive constant. Explain what is Z; for each t.
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Ans:

3. (1 pt) Prove the following bound on the training error:

T T
Epu Y ha(X) < 0] = Ep, VY aum) <0 <[ 2 (6)
Y

where each Z; is given in the previous exercise. Recall that he (X) = 23;1 ahi (X) is the aggregated classifier.

Ans:

4. (1 pt) Assuming in the ¢-th iteration we have found h;. We now aim to find its coefficient a; by considering
the following (convex) minimization problem:

min Bp, exp[—Yazh(X)], @

Suppose there is indeed a minimizer, then it must satisfy (by setting derivative to 0):
0 = Ep, {Yhi(X) - exp[—Yazhs(X)] }. (8)
From the above result deduce that
0=Ep, , [Yh«(X)], 9)
and show that for (deterministic) weak classifiers h, € {£1}:
Ep, o [he(X) # Y] = 3, (10)

namely that in the next iteration ¢ + 1, the previous classifier h; has error exactly %
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Ans:

5. (1 pt) In (8) above we obtained a nonlinear equation of ay;. Although it is possible to find «; through
numerical root finding algorithms, we prefer to derive a closed-form solution. Assuming h; € [—1,1] is given,
we can apply the bound (the so-called Jensen’s inequality)

14w 1—u
exp(—a) +

exp(—au) < exp(a) (11)

to (7) first and then derive the optimal ay.

[This is essentially the coefficient log % that we saw in class, up to some trivial changes.]
Ans:

(Remark) We have not talked much about choosing weak classifiers h;. Here is the catch: we could simply
pretend we enumerate all weak classifiers (infinitely many!) in our final aggregate he. All we need to figure
out is the weight «; that we assign to each weak classifier hy, and a zero a means the corresponding weak
classifier is effectively discarded. The Adaboost algorithm starts with a = 0 and only changes one « into
nonzero in each iteration. Thus, after T iterations, we have at most 7" nonzero a’s. On a high level, this is
very similar to kernels where the dual problem only involves n nonzero Lagrangian multiplier a’s (n being
the size of the training set). See, we do not need to fear infinite dimensions!

Exercise 2: Vision Transformers (10 pts)

Please follow the instructions of this ipynb file.

1. (14342 = 6 pts) Complete the missing coding parts in the provided ipynb file.

2. (1 pt) Visualization of patches:
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3. (1 pt) The test accuracy I obtained on MNIST is: xxx%

4. (2 pts) Training / Validation accuracy vs. epoch:

Exercise 3: Generative Adversarial Networks (5 pts)

Let us consider the game between the generator q(x) (the implicit density of Tg(Z)) and the discriminator S(x):
inf sup / S(x)p(x)dx + / log (1 — exp(S(x)))q(x)dx + log 4. (12)
q S x X

We remind that q is a probability density (so is p which is given) while S is any real-valued function.
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1. (1 pt) Fix an arbitrary generator q and find the resulting optimal discriminator S.
Ans:

2. (1 pt) Plug the optimal discriminator S above back to (12) and find the optimal generator q.
Ans:

Now we swap the order of the two players:
sup inf /S(x)p(x)dx+ / log (1 — exp(S5(x)))q(x)dx + log 4. (13)
S a x x

3. (1 pt) Fix an arbitrary discriminator S and find an optimal generator q.
Ans:

4. (1 pt) Plug the optimal generator q above back to (13) and find the optimal discriminator S.

[Hint: average < max.]
Ans:
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5. (1 pt) Let f : Ry — R be a convex function. We see in class that the f-divergence admits the following
variational form:

Dy(plla) = | inf | B [SO0] + Bxeal £ (SOO)], (14)

where for simplicity we have restricted the range of S to [0,1]. Now consider the following distribution
(X,Y) ~ D where Y = +1 with equal probability while

X|Y=1] ~ pand [X|Y=-1] ~ q. (15)
We claim that
1 _ .
~iDsla) = int | Exnenld(Y. SO0 (16)

Express the binary loss function £ in terms of f. Thus, given an f-divergence, we may rewrite it as a binary
classification problem! Conversely, given any proper loss function ¢, we may reverse the argument and induce
an f-divergence from the binary loss /.

Ans:
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