
University of Waterloo CS480/680 2025 Winter

CS480/680: Introduction to Machine Learning
Homework 2

Due: 11:59 pm, Feb 25, 2025, submit on LEARN.
NAME

student number

Submit your writeup in pdf and all source code in a zip file (with proper documentation). Write a script for each
programming exercise so that the TA can easily run and verify your results. Make sure your code runs!

[Text in square brackets are hints that can be ignored.]

Exercise 1: Graph Kernels (5 pts)

One cool way to construct a new kernel from an existing set of (base) kernels is through graphs. Let G = (V,E)
be a directed acyclic graph (DAG), where V denotes the nodes and E denotes the arcs (directed edges). For
convenience let us assume there is a source node s that has no incoming arc and there is a sink node t that has no
outgoing arc. We put a base kernel κe (that is, a function κe : X × X → R) on each arc e = (u → v) ∈ E. For
each path P = (u0 → u1 → · · · → ud) with ui−1 → ui being an arc in E, we can define the kernel for the path P
as the product of kernels along the path:

∀x, z ∈ X , κP (x, z) =

d∏
i=1

κui−1→ui
(x, z). (1)

Then, we define the kernel for the graph G as the sum of all possible s → t path kernels:

∀x, z ∈ X , κG(x, z) =
∑

P∈path(s→t)

κP (x, z). (2)

1. (1 pt) Prove that κG is indeed a kernel. [You may use any property that we learned in class about kernels.]

Ans:

2. (2 pts) Consider the subgragh of the figure below that includes nodes s, a, b, c (and arcs connecting them).
Compute the graph kernel where s and c play the role of source and sink, respectively. Repeat the computation
with the subgraph that includes s, a, b, c, d (and arcs connecting them), where d is the sink now.

s a b c d t
xz

e−(x−z)2

(xz − 1)2

tanh(xz + 1)

e−|x−z|/2 1

Ans:

Yao-Liang Yu (yaoliang.yu@uwaterloo.ca) ©2025 1/6

University of Waterloo CS480/680 2025 Winter

3. (2 pts) Find an efficient algorithm to compute the graph kernel κG(x, z) (for two fixed inputs x and z) in
time O(|V |+ |E|), assuming each base kernel κe costs O(1) to evaluate. You may assume there is always at
least one s− t path. State and justify your algorithm, e.g., include a full pseudocode.

[Note that the total number of paths in a DAG can be exponential in terms of the number of nodes |V |, so
naive enumeration would not work. For example, replicating the intermediate nodes in the above figure n
times creates 2n paths from s to t.]

[Hint: Recall that we can use topological sorting to rearrange the nodes in a DAG such that all arcs go from
a “smaller” node to a “bigger” one.]

Ans:

Exercise 2: CNN Implementation (8 pts)

Note: Please mention your Python version (and maybe the version of all other packages).
In this exercise you are going to run some experiments involving CNNs. You need to know Python and install

the following libraries: Pytorch, matplotlib and all their dependencies. You can find detailed instructions and
tutorials for each of these libraries on the respective websites.

For all experiments, running on CPU is sufficient. You do not need to run the code on GPUs, although you
could, using for instance Google Colab. Before start, we suggest you review what we learned about each layer in
CNN, and read at least this tutorial.

1. Implement and train a VGG11 net on the MNIST dataset. VGG11 was an earlier version of VGG16 and
can be found as model A in Table 1 of this paper, whose Section 2.1 also gives you all the details about each
layer. The goal is to get the loss as close to 0 as possible. Note that our input dimension is different from
the VGG paper. You need to resize each image in MNIST from its original size 28× 28 to 32× 32 [why?].

For your convenience, we list the details of the VGG11 architecture here. The convolutional layers are denoted
as Conv(number of input channels, number of output channels, kernel size, stride, padding);
the batch normalization layers are denoted as BatchNorm(number of channels); the max-pooling layers are
denoted as MaxPool(kernel size, stride); the fully-connected layers are denoted as FC(number of input

features, number of output features); the drop out layers are denoted as Dropout(dropout ratio):

- Conv(001, 064, 3, 1, 1) - BatchNorm(064) - ReLU - MaxPool(2, 2)

- Conv(064, 128, 3, 1, 1) - BatchNorm(128) - ReLU - MaxPool(2, 2)

- Conv(128, 256, 3, 1, 1) - BatchNorm(256) - ReLU

- Conv(256, 256, 3, 1, 1) - BatchNorm(256) - ReLU - MaxPool(2, 2)

- Conv(256, 512, 3, 1, 1) - BatchNorm(512) - ReLU

- Conv(512, 512, 3, 1, 1) - BatchNorm(512) - ReLU - MaxPool(2, 2)

- Conv(512, 512, 3, 1, 1) - BatchNorm(512) - ReLU

- Conv(512, 512, 3, 1, 1) - BatchNorm(512) - ReLU - MaxPool(2, 2)

- FC(0512, 4096) - ReLU - Dropout(0.5)

- FC(4096, 4096) - ReLU - Dropout(0.5)

- FC(4096, 10)

You should use the cross-entropy loss torch.nn.CrossEntropyLoss at the end.

Yao-Liang Yu (yaoliang.yu@uwaterloo.ca) ©2025 2/6

https://en.wikipedia.org/wiki/Topological_sorting
https://www.python.org/
https://pytorch.org/get-started/locally/
https://matplotlib.org/
https://colab.research.google.com/
https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html
https://pytorch.org/vision/stable/datasets.html#mnist
https://arxiv.org/pdf/1409.1556.pdf
https://pytorch.org/docs/master/generated/torch.nn.CrossEntropyLoss.html

University of Waterloo CS480/680 2025 Winter

[This experiment will take up to 1 hour on a CPU, so please be cautious of your time. If this running time is
not bearable, you may cut the training set to 1/10, so only have ∼600 images per class instead of the regular
∼6000.]

2. (4 pts) Once you’ve done the above, the next goal is to inspect the training process. Create the following
plots:

(a) (1 pt) test accuracy vs the number of epochs (say 3 ∼ 5)

(b) (1 pt) training accuracy vs the number of epochs

(c) (1 pt) test loss vs the number of epochs

(d) (1 pt) training loss vs the number of epochs

[If running multiple epochs is computationally infeasible, simply run 1 epoch and try to record the accura-
cy/loss after every few minibatches.]

Ans:

A B
C A

3. Then, it is time to inspect the generalization properties of your final model. Flip and blur the test set images
using any python library of your choice, and complete the following:

(e) (1 pt) test accuracy vs type of flip. Try the following two types of flipping: flip each image from left to
right, and from top to bottom. Report the test accuracy after each flip. What is the effect?

You can read this doc to learn how to build a complex transformation pipeline. We suggest the following
command for performing flipping:

torchvision.transforms.RandomHorizontalFlip(p=1)

torchvision.transforms.RandomVerticalFlip(p=1)

Ans: We can see that

Yao-Liang Yu (yaoliang.yu@uwaterloo.ca) ©2025 3/6

https://pytorch.org/vision/stable/transforms.html

University of Waterloo CS480/680 2025 Winter

A
(f) (1 pt) test accuracy vs Gaussian noise. Try adding standard Gaussian noise to each test image with

variance 0.01, 0.1, 1 and report the test accuracies. What is the effect?

For instance, you may apply a user-defined lambda as a new transform t which adds Gaussian noise
with variance say 0.01:

t = torchvision.transforms.Lambda(lambda x : x + 0.1*torch.randn_like(x))

Ans: We can see that

B
4. (2 pts) Lastly, let us verify the effect of regularization. Retrain your model with data augmentation and test

again as in item 3 above (both e and f). Report the test accuracy and explain what kind of data augmentation
you use in retraining.

Ans: We can see that

Yao-Liang Yu (yaoliang.yu@uwaterloo.ca) ©2025 4/6

University of Waterloo CS480/680 2025 Winter

A B
Exercise 3: Regularization (7 pts)

Notation: For the vector xi, we use xji to denote its j-th element.
Overfitting to the training set is a big concern in machine learning. One simple remedy is through injecting

noise: we randomly perturb each training data before feeding it into our machine learning algorithm. In this exercise
you are going to prove that injecting noise to training data is essentially the same as adding some particular form
of regularization.

1. Recall that least-squares regression aims at solving:

min
w∈Rd

n∑
i=1

(yi − ⟨w,xi⟩)2, (3)

where xi ∈ Rd and yi ∈ R are the training data. (For simplicity, we omit the bias term here.) Now, instead
of using the given feature vector xi, we perturb it first by some independent noise ϵi to get x̃i = f(xi, ϵi),
with different choices of the perturbation function f . Then, we solve the following expected least-squares
regression problem:

min
w∈Rd

n∑
i=1

E[(yi − ⟨w, x̃i⟩)2], (4)

where the expectation removes the randomness in x̃i (due to the noise ϵi), and we treat xi, yi as fixed here.

• (2 pts) Let x̃i = f(xi, ϵi) = xi + ϵi where ϵi ∼ N (0, λI) follows the standard Gaussian distribution.
Simplify (4) as the usual least-squares regression (3), plus a familiar regularization function on w.

Ans:

• (2 pts) Let x̃i = f(xi, ϵi) = xi⊙ϵi, where ⊙ denotes the element-wise product and pϵji ∼ Bernoulli(p)

independently for each j. That is, with probability 1 − p we reset xji to 0 and with probability p we
scale xji as xji/p. Note that for different training data xi, ϵi’s are independent. Simplify (4) as the
usual least-squares regression (3), plus a different regularization function on w (that may also depend
on x). [This way of injecting noise, when applied to the weight vector w in a neural network, is known
as Dropout (DropConnect).]

Yao-Liang Yu (yaoliang.yu@uwaterloo.ca) ©2025 5/6

https://en.wikipedia.org/wiki/Bernoulli_distribution
https://en.wikipedia.org/wiki/Independence_(probability_theory)

University of Waterloo CS480/680 2025 Winter

Ans:

2. (2 pts) Let us consider minimizing the exponential loss (as in Adaboost, which we will learn later):

min
w∈Rd

n∑
i=1

exp(−yi⟨w,xi⟩), (5)

where yi ∈ {±1}. Let x̃i = f(xi, ϵi) = xi+ϵi where ϵi ∼ N (0, λI) follows the standard Gaussian distribution.
Find a regularized problem (that only involves {(xi, yi)}) that is equivalent to the expected loss below:

min
w∈Rd

n∑
i=1

E[exp(−yi⟨w, x̃i⟩)], (6)

where the expectation removes the randomness in x̃i (due to the noise ϵi), and we treat xi, yi as fixed here.

[We remind that if X and Y are independent samples from N (0, 1), then aX+ bY ∼ N (0, a2 + b2). Also, the
integral of any density, e.g. that of N (µ, 1), is always 1.]

Ans:

3. (1 pt) Finally, we turn our attention to the zero-one loss and consider flipping the labels Y ∈ {±1} as follows:

Ỹ =

{
Y, with probability p

−Y, with probability 1− p
. (7)

Prove that for any classifier f taking values in {±1},

E[[f(X) ̸= Ỹ]] = (2p− 1) · E[[f(X) ̸= Y]] + 1− p. (8)

Ans:

Yao-Liang Yu (yaoliang.yu@uwaterloo.ca) ©2025 6/6

