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4 Support Vector Machines (SVM)

Goal

Define and understand the classical hard-margin SVM for binary classification. Dual view.

Alert 4.1: Convention

Gray boxes are not required hence can be omitted for unenthusiastic readers.
For less mathematical readers, think of the norm ∥ · ∥ and its dual norm ∥ · ∥◦ as the Euclidean ℓ2 norm

∥ · ∥2. Treat all distances as the Euclidean distance. All of our pictures are for this special case.
This note is likely to be updated again soon.

Definition 4.2: SVM as maximizing minimum distance
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Given a (strictly) linearly separable dataset D = {(xi, yi) ⊆ Rd × {±1} : i = 1, . . . , n}, there exists a
separating hyperplane Hw = {x ∈ Rd : ⟨x,w⟩+ b = 0}, namely that

∀i, yi(⟨xi,w⟩+ b) > 0.

In fact, there exist infinitely many separating hyperplanes: if we perturb (w, b) slightly, the resulting hyper-
plane would still be separating, thanks to continuity. Is there a particular separating hyperplane that stands
out, and be “optimal”?

The answer is yes! Let Hw be any separating hyperplane (w.r.t. the given dataset D). We can compute
the distance from each training sample xi to the hyperplane Hw:

dist(xi, Hw) := min
x∈Hw

∥x− xi∥◦ (e.g., the typical choice ∥ · ∥◦ = ∥ · ∥ = ∥ · ∥2)

≥
∣∣∣∣ ⟨x− xi,w⟩+ b− b

∥w∥

∣∣∣∣ (Cauchy-Schwarz, see Definition 1.25)

=
| ⟨xi,w⟩+ b|
∥w∥

(equality at x = xi − z
∥w∥2 (⟨xi,w⟩+ b), ⟨z,w⟩ = ∥w∥2, ∥z∥◦ = ∥w∥︸ ︷︷ ︸

z∈∂
[
1
2∥w∥2

] )

=
yi(⟨xi,w⟩+ b)

∥w∥
(yi ∈ {±1} and Hw is separating). (4.1)

Here and in the following, we always assume w.l.o.g. that the dataset D contains at least 1 positive example
and 1 negative example, so that w = 0 with any b cannot be a separating hyperplane.

Among all separating hyperplanes, support vector machines (SVM) tries to find one that maximizes the
minimum distance (with the typical choice ∥ · ∥ = ∥ · ∥2 in mind):

max
w:∀i,yiŷi>0

min
i=1,...,n

yiŷi
∥w∥

, where ŷi = ⟨xi,w⟩+ b. (4.2)
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We remark that the above formulation is scaling-invariant: If w = (w, b) is optimal, then so is γw for any
γ > 0 (the fraction is unchanged and the constraint on w is not affected). This is not at all surprising,
as w and γw really represent the same hyperplane: Hw = Hγw. Note also that the separating condition
∀i, yiŷi > 0 can be omitted since it is automatically satisfied if the dataset D is indeed (strictly) linearly
separable.

Exercise 4.3: Alternative: minimizing the maximal distance?

Use an example to show the difference between minimizing the maximal distance vs. maximizing the minimal
distance. Which one do you prefer?

Alert 4.4: Margin as minimum distance

We repeat the formula in Definition 4.2:

dist(x, Hw) :=
[
min
z∈Hw

∥z− x∥◦
]
=
| ⟨x,w⟩+ b|
∥w∥

=
y(⟨x,w⟩+ b)

∥w∥
=

yŷ

∥w∥
,

where the third equality holds if yŷ ≥ 0 and y ∈ {±1}. Given any hyperplane Hw, we define its margin w.r.t.
a data point (x, y) as:

γ((x, y);Hw) :=
yŷ

∥w∥
, ŷ = ⟨x,w⟩+ b.

Geometrically, when the hyperplane Hw classifies the data point (x, y) correctly (i.e., yŷ > 0), this margin
is exactly the distance from x to the hyperplane Hw, and the negation of the distance otherwise.

Fixing any hyperplaneHw, we can extend the notion of its margin to a datasetD = {(xi, yi) : i = 1, . . . , n}
by taking the (worst-case) minimum:

γ(D;Hw) :=
[

min
i=1,...,n

γ((xi, yi);Hw)
]
= min

i

yiŷi
∥w∥

, ŷi := ⟨xi,w⟩+ b.

Again, when the hyperplane Hw (strictly) separates the dataset D, the margin γ(D;Hw) > 0 coincides with
the minimum distance, as we saw in Definition 4.2. However, when D is not (strictly) separated by Hw, the
margin γ(D;Hw) ≤ 0 is the negation of the maximum distance among all wrongly classified data points.

We can finally define the margin of a dataset D as the (best-case) maximum among all hyperplanes:

γ(D) :=
[
max
w

γ(D;Hw)
]
= max

w
min

i=1,...,n

yiŷi
∥w∥

. (4.3)

Again, when the dataset D is (strictly) linearly separable, the margin γ(D) > 0 reduces to the minimum
distance to the SVM hyperplane, in which case the margin definition here coincides with what we saw in
Remark 1.30 (with the choice ∥ · ∥◦ = ∥ · ∥ = ∥ · ∥2) and characterizes “how linearly separable” our dataset
D is. On the other hand, when D is not (strictly) linearly separable, the margin γ(D) ≤ 0.

To summarize, hard-margin SVM, as defined in Definition 4.2, maximizes the margin among all hyper-
planes on a (strictly) linearly separable dataset. Interestingly, with this interpretation, the hard-margin
SVM formulation (4.3) continues to make sense even on a linearly inseparable dataset.

In the literature, sometimes people often call the unnormalized quantity yŷ margin, which is fine as long
as the scale ∥w∥ is kept constant.
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Definition 4.5: Alternative definition of margin

We give a slightly different definition of margin here: γ+. As the notation suggests, γ+ coincides with the
definition in Alert 4.4 on a (strictly) linearly separable dataset, and reduces to 0 otherwise.

• Given any hyperplane Hw, we define its margin w.r.t. a data point (x, y) as:

γ+((x, y);Hw) :=
(yŷ)+

∥w∥
, ŷ = ⟨x,w⟩+ b,

where recall (t)+ = max{t, 0} is the positive part. Geometrically, when the hyperplane Hw classifies the
data point (x, y) correctly (i.e., yŷ ≥ 0), this margin is exactly the distance from x to the hyperplane
Hw, and 0 otherwise.

• Fixing any hyperplane Hw, we can extend the notion of its margin to a dataset D = {(xi, yi) : i =
1, . . . , n} by taking the (worst-case) minimum:

γ+(D;Hw) :=
[

min
i=1,...,n

γ+((xi, yi);Hw)
]
= min

i

(yiŷi)
+

∥w∥
, ŷi := ⟨xi,w⟩+ b.

Again, when the hyperplane Hw (strictly) separates the dataset D, the margin γ+(D;Hw) > 0 coincides
with the minimum distance, as we saw in Definition 4.2. However, when D is not (strictly) separated
by Hw, the margin γ+(D;Hw) = 0.

• We can finally define the margin of a dataset D as the (best-case) maximum among all hyperplanes:

γ+(D) :=
[
max
w

γ+(D;Hw)
]
= max

w
min

i=1,...,n

[yiŷi]
+

∥w∥
.

Again, when the dataset D is (strictly) linearly separable, the margin γ+(D) reduces to the minimum
distance to the SVM hyperplane. In contrast, when D is not (strictly) linearly separable, the margin
γ+(D) = 0.

Remark 4.6: Important standardization trick

A simple standardization trick in optimization is to introduce an extra variable so that we can reduce an
arbitrary objective function to the canonical linear function. For instance, if we are interested in solving

min
w

f(w),

where f can be any complicated nonlinear function. Upon introducing an extra variable t, we can reformulate
our minimization problem equivalently as:

min
(w,t):f(w)≤t

t,

where the new objective (0; 1)⊤(w; t) is a simple linear function of (w; t). The expense, of course, is that we
have to deal with the extra constraint f(w) ≤ t now.

Remark 4.7: Removing homogeneity by normalizing direction

To remove the scaling-invariance mentioned in Definition 4.2, we can restrict the direction vector w to have
unit norm, which happened to yield the same formulation as that in Rosen (1965) (see Remark 4.20 below

Yaoliang Yu 68 –Version 0.11–September 22, 2021–



CS480/680–Spring 2024 §4 SUPPORT VECTOR MACHINES (SVM) University of Waterloo

for more details):

max
w:∥w∥=1

min
i=1,...,n

yiŷi. (4.4)

Applying the trick in Remark 4.6 (and noting we are maximizing here) yields the reformulation:

max
(w,δ):∥w∥=1

δ, s.t. min
i=1,...,n

yiŷi ≥ δ ⇐⇒ yiŷi ≥ δ, ∀i = 1, . . . , n,

which is completely equivalent to (4.3) (except by excluding out the trivial solution w = 0).
Observe that on any linearly separable dataset, at optimality we can always achieve δ ≥ 0. Thus, we

may relax the unit norm constraint on w slightly:

max
w,δ

δ (4.5)

s.t. ∥w∥ ≤ 1

yiŷi ≥ δ, ∀i = 1, . . . , n.

It is clear if the dataset D is indeed linearly separable, at maximum we may choose ∥w∥ = 1, hence the
“relaxation” is in fact equivalent (on any linearly separable dataset that consists of at least 1 positive and 1
negative).

Rosen, J. (1965). “Pattern separation by convex programming”. Journal of Mathematical Analysis and Applications,
vol. 10, no. 1, pp. 123–134.

Exercise 4.8: Detecting linear separability

Prove an additional advantage of the “relaxation” (4.5): Its maximum value is always greater than 0, which
is attained iff the dataset is not (strictly) linearly separable.

In contrast, prove that the original formulation (4.4) with exact unit norm constraint

• is equivalent to (4.5) with strictly positive maximum value, iff the dataset is (strictly) linearly separable;

• is different from (4.5) with strictly negative maximum value, iff the dataset is not (strictly) linearly
separable and the intersection of positive and negative convex hulls has nonempty (relative) interior;

• is similar to (4.5) with exactly 0 maximum value, iff the dataset is not (strictly) linearly separable and
the intersection of positive and negative convex hulls has empty (relative) interior.

Remark 4.9: Linear separability, revisited

Recall our definition of (strict) linear separability of a dataset D = {(xi, yi) ∈ Rd × {±1} : i = 1, . . . , n}:

∃w ∈ Rd, b ∈ R, s > 0, such that yiŷi ≥ s, ∀i = 1, . . . , n, where ŷi := ⟨xi,w⟩+ b.

Let us now break the above condition for any positive example yi = 1 and any negative example yj = −1:

⟨xi,w⟩+ b ≥ s ≥ −s ≥ ⟨xj ,w⟩+ b ⇐⇒ ⟨xi,w⟩ ≥ s− b ≥ −s− b ≥ ⟨xj ,w⟩
⇐⇒ min

i:yi=1
⟨xi,w⟩> max

j:yj=−1
⟨xj ,w⟩ .

It is clear now that the linear separability condition has nothing to do with the offset term b but the normal
vector w.
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Remark 4.10: Removing homogeneity by normalizing offset

A different way to remove the scaling-invariance mentioned in Definition 4.2 is to perform normalization on
the offset so that

min
i=1,...,n

yiŷi = δ,

where δ > 0 is any fixed constant. When the dataset D is indeed (strictly) linearly separable, this nor-
malization can always be achieved (simply by scaling w). After normalizing this way, we can simplify (4.2)
as:

max
w

δ

∥w∥
, s.t. min

i=1,...,n
yiŷi = δ.

We remind again that δ here is any fixed positive constant and we are not optimizing it (in contrast to what
we did in Remark 4.7). Applying some elementary transformations (that do not change the minimizer) we
arrive at the usual formulation of SVM (due to Boser et al. (1992)):

min
w

1
2∥w∥

2 (4.6)

s.t. yiŷi ≥ δ, ∀i = 1, . . . , n.

It is clear that the actual value of the positive constant δ is immaterial. Most often, we simply set δ = 1,
which is our default choice for the rest of this note.

The formulation (4.6) only makes sense on (strictly) linearly separable datasets, unlike our original
formulation (4.3).
Boser, B. E., I. M. Guyon, and V. N. Vapnik (1992). “A Training Algorithm for Optimal Margin Classiers”. In: COLT,

pp. 144–152.

Alert 4.11: Any positive number but not zero

Note that in the familiar SVM formulation (4.6), we can choose δ to be any (strictly) positive number (which
amounts to a simple change of scale). However, we cannot set δ = 0, for otherwise the solution could be
trivially w = 0, b = 0.

Remark 4.12: Perceptron vs. SVM

We can formulate perceptron as the following feasibility problem:

min
w

0

s.t. yiŷi ≥ δ, ∀i = 1, . . . , n,

where as before δ > 0 is any fixed constant.
Unlike SVM, the objective function of perceptron is the trivial constant 0 function, i.e., we are not trying

to optimize anything (such as distance/margin) other than satisfying a bunch of constraints (separating the
positives from the negatives). Computationally, perceptron belongs to linear programming (LP), i.e., when
the objective function and all constraints are linear functions. In contrast, SVM belongs to the slightly more
complicated quadratic programming (QP): the objective function is a quadratic function while all constraints
are still linear. Needless to say, LP ⊊ QP.
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Remark 4.13: Three parallel hyperplanes

Geometrically, we have the following intuitive picture. As an example, the dataset D consists of 2 positive
and 2 negative examples. The left figure shows the SVM solution, and for comparison the right figure depicts
a suboptimal solution. We will see momentarily why the left solution is optimal.
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To understand the above figure, let us take a closer look at the SVM formulation (4.6), where w.l.o.g.
we choose δ = 1. Recall that the dataset D contains at least 1 positive example and 1 negative example (so
that w = 0 is ruled out). Let us breakdown the constraints in (4.6):

⟨xi,w⟩+ b ≥ 1, yi = 1

⟨xi,w⟩+ b ≤ −1, yi = −1

}
⇐⇒ 1− min

i:yi=1
⟨xi,w⟩ ≤ b ≤ −1− max

i:yi=−1
⟨xi,w⟩ .

If one of the inequalities is strict, say the left one, then we can decrease b slightly so that both inequalities are
strict. But then we can scale down w and b without violating any constraint while decreasing the objective
1
2∥w∥

2 further. Therefore, at minimum, we must have

1− min
i:yi=1

⟨xi,w⟩ = b = −1− max
i:yi=−1

⟨xi,w⟩ , i.e., yiŷi = 1 for at least one yi = 1 and one yi = −1.

Given the SVM solution (w, b), we can now define three parallel hyperplanes:

H0 := {x : ⟨x,w⟩+ b = 0}
H+ := {x : ⟨x,w⟩+ b = 1} (we choose δ = 1)
H− := {x : ⟨x,w⟩+ b = −1}.

The hyperplane H0 is the decision boundary of SVM: any point above or below it is classified as positive or
negative, respectively, i.e., ŷ = sign(⟨x,w⟩+ b). The hyperplane H+ is the translate of H0 on which for the
first time we pass through some positive examples, and similarly for H−. Note that there are no training
examples between H− and H+ (a dead zone), with H0 at the middle between H− and H+. More precisely,
we can compute the distance between H0 and H+:

dist(H+, H0) := min
p∈H+

min
q∈H0

∥p− q∥◦

= min
i:yi=1

dist(xi, H0) (since H+ first passes through positive examples)

=
1

∥w∥
(see (4.1))

= min
i:yi=−1

dist(xi, H0) (since H− first passes through negative examples)

= dist(H−, H0).
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Exercise 4.14: Uniqueness of w

For the ℓ2 norm, prove the parallelogram equality

∥w1 +w2∥22 + ∥w1 −w2∥22 = 2(∥w1∥22 + ∥w2∥22).

(The parallelogram law, in fact, characterizes norms that are induced by an inner product). With this choice
∥ · ∥ = ∥ · ∥2, prove

• that the SVM weight vector w is unique;

• that the SVM offset b is also unique.

Definition 4.15: Convex set

A set C ⊆ Rd is called convex iff for all x, z ∈ C and for all α ∈ [0, 1] we have

(1− α)x+ αz ∈ C,

i.e., the line segment connecting any two points in C remains in C.
By convention the empty set is convex. Obviously, the universe Rd, being a vector space, is convex.

Exercise 4.16: Basic properties of convex sets

Prove the following:

• The intersection
⋂

γ∈Γ Cγ of a collection of convex sets {Cγ}γ∈Γ is convex.

• A set in R (the real line) is convex iff it is an interval (not necessarily bounded or closed).

• The union of two convex sets need not be convex.

• The complement of a convex set need not be convex.

• Hyperplanes H0 := {x ∈ Rd : ⟨x,w⟩+ b = 0} are convex.

• Halfspaces H≤ := {x ∈ Rd : ⟨x,w⟩+ b ≤ 0} are convex.

(In fact, a celebrated result in convex analysis shows that any closed convex set is an intersection of halfs-
paces.)

Definition 4.17: Convex hull

The convex hull conv(A) of an arbitrary set A is the intersection of all convex supersets of A, i.e.,

conv(A) :=
⋂

convex C⊇A

C.

In other words, the convex hull is the “smallest” convex superset.

Exercise 4.18: Convex hull as convex combination

We define the convex combination of a finite set of points x1, . . . ,xn as any point x =
∑n

i=1 αixi with
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coefficients α ≥ 0,1⊤α = 1, i.e., α ∈ ∆n−1. Prove that for any A ⊆ Rd:

conv(A) =

{
x =

n∑
i=1

αixi : n ∈ N,α ∈ ∆n−1,xi ∈ A

}
,

i.e., the convex hull is simply the set of all convex combinations of points in A.
(The celebrated Carathéodory theorem allows us to restrict n ≤ d+ 1, and n ≤ d if A is connected.)

Exercise 4.19: Unit balls of norms are convex

Recall that the unit ball of the ℓp “norm” is defined as:

Bp := {x : ∥x∥p ≤ 1},

which is convex iff p ≥ 1. The following figure shows the unit ball Bp for p = 2,∞, 12 , 1.

As shown above:

conv(B 1
2
) = B1.

• For what values of p and q do we have conv(Bp) = Bq?

• For what value of p is the sphere Sp := {x : ∥x∥p = 1} = ∂Bp convex?

Remark 4.20: The first dual view of SVM (Rosen 1965)

Rosen (1965) was among the first few people who recognized that a dataset D is (strictly) linearly separable
(see Definition 1.24) iff

conv(D+) ∩ conv(D−) = ∅, where D± := {xi ∈ D : yi = ±1}.

(Prove the only if part by yourself; to see the if part, note that the convex hull of a compact set (e.g., finite
set) is compact, and disjoint compact sets can be strictly separated by a hyperplane, due to the celebrated
Hahn-Banach Theorem.)

Rosen, J. (1965). “Pattern separation by convex programming”. Journal of Mathematical Analysis and Applications,
vol. 10, no. 1, pp. 123–134.
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Remark 4.21: Dual view of SVM, as bisector of minimum distance pair
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In Definition 4.2 we defined SVM as maximizing the minimum distance of training examples to the
decision boundary H0. We now provide a dual view which geometrically is very appealing.

• We first make a simple observation about a (strict) separating hyperplane H:

⟨xi,w⟩+ b > 0, if xi ∈ D+ := {xj : yj = 1}
⟨xi,w⟩+ b < 0, if xi ∈ D− := {xj : yj = −1}

}
=⇒

{
⟨x,w⟩+ b > 0, if x ∈ conv(D+)

⟨x,w⟩+ b < 0, if x ∈ conv(D−)
,

i.e., H also (strictly) separates the convex hulls of positive examples and negative ones.

• The second observation we make is about the minimum distance of all positive (negative) examples to
a separating hyperplane:

min
x∈D±

dist(x, H) = min
x∈D±

±(⟨x,w⟩+ b)

∥w∥
= min

x∈conv(D±)

±(⟨x,w⟩+ b)

∥w∥
= min

x∈conv(D±)
dist(x, H),

where the first equality follows from (4.1), the second from linearity, and the third from our observation
above. In other words, we could replace the datasets D± with their convex hulls.

• Based on the second observation, we now find the pair of x+ ∈ conv(D+) and x− ∈ conv(D−) so that
dist(x+,x−) achieves the minimum distance among all pairs from the two convex hulls. We connect
the segment from x+ to x− and find its bisector, a separating hyperplane H that passes the middle
point 1

2 (x+ + x−) with normal vector proportional to ∂
[
1
2∥x+ − x−∥2

]
. We claim that

min
x∈D±

dist(x, H) = min
x∈conv(D±)

dist(x, H) = 1
2dist(x+,x−) =

1
2dist(conv(D

+), conv(D−)).

To see the second equality, we translate H in parallel until it passes x+ and x−, and obtain hyperplanes
H+ and H−, respectively. Since H is a bisector of the line segment x+x−,

dist(H+, H) = dist(H−, H) = 1
2dist(x+,x−).

We are left to prove there is no point in conv(D±) that lies between H− and H+. Suppose, for the sake
of contradiction, there is some z+ ∈ conv(D+) that lies between H− and H+. The remaining proof
for the Euclidean case where ∥ · ∥ = ∥ · ∥2 is depicted above: We know the angle ∠x−x+z+ < 90◦.
If we move a point u on the segment z+x+ from z+ to x+, because the angle ∠ux−x+ → 0◦, so
eventually we will have ∠x−ux+≥90◦, in which case we would have dist(u,x−) < dist(x+,x−). Since
u ∈ conv(D+), we have a contradiction:

dist(u,x−) ≥ dist(conv(D+), conv(D−)) = dist(x+,x−) > dist(u,x−).

The proof for any norm is as follows: Since the line segment z+x+ ∈ conv(D+) and by definition
dist(x+,x−) = dist(conv(D+), conv(D−)), we know for any uλ = λz++(1−λ)x+ on the line segment,
f(λ) := dist(uλ,x−) ≥ dist(x+,x−) = f(0), i.e., the minimum of f(λ) over the interval λ ∈ [0, 1] is
achieved at λ = 0. Since f(λ) is convex its right derivative at λ = 0, namely ⟨w, z+ − x+⟩, where
w ∈ ∂∥x+−x−∥, must be positive. But we know the hyperplane H+ = {x : w⊤(x−x+) = 0} and the
middle point 1

2 (x+ + x−) is on the left side of H+, hence z+ is on the right side of H+, contradiction.
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• We can finally claim that H is the SVM solution, i.e., H maximizes the minimum distance to every
training examples in D. Indeed, let H ′ be any other separating hyperplane. According to our first
observation above, H ′ intersects with the line segment x+x− at some point q (due to separability).
Define p± as the projection of x± onto the hyperplane H ′, and since q ∈ H ′,

dist(x±,p±) = dist(x±, H
′) ≤ dist(x±,q).

Therefore, using our second and third observations above:

min
x∈D±

dist(x, H ′) = min
x∈conv(D±)

dist(x, H ′) ≤ dist(x+,p+) ∧ dist(x−,p−)

≤ 1
2 [dist(x+,p+) + dist(x−,p−)]

≤ 1
2 [dist(x+,q) + dist(x−,q)]

= 1
2dist(x+,x−)

= min
x∈conv(D±)

dist(x, H) = min
x∈D±

dist(x, H).

Exercise 4.22: Necessity of convex hull

In Remark 4.21, we picked the pair x+ and x− from the two convex hulls D± of the positive and negative
examples, respectively. Prove the following:

• One of x+ and x− can be chosen from the original datasets D±.

• Not both of x+ and x− may be chosen from the original datasets D±.

• What observation(s) in Remark 4.21 might fail if we insist in picking both x+ and x− from the original
datasets D±?
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Remark 4.23: SVM dual, from geometry to algebra

We complement the geometric dual view of SVM in Remark 4.21 with a “simpler” algebraic view. Applying
scaling we may assume the weight vector w of a separating hyperplane Hw is normalized. Then, we maximize
the minimum distance as follows:

max
∥w∥=1,b

dist(D+, Hw) ∧ dist(D−, Hw) = max
∥w∥=1,b

[
min

x+∈D+
(⟨x+,w⟩+ b) ∧ min

x−∈D−
−(⟨x−,w⟩+ b)

]
= max

∥w∥=1,b

[
min

x±∈D±,t∈[0,1]
t(⟨x+,w⟩+ b) + (1− t)(−⟨x−,w⟩ − b)

]
= max

∥w∥≤1,b

[
min

x+∈t conv(D+),x−∈(1−t) conv(D−),t∈[0,1]
⟨x+ − x−,w⟩+ b(2t− 1)

]
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= min
x+∈t conv(D+),x−∈(1−t) conv(D−),t∈[0,1]

max
∥w∥≤1,b

[⟨x+ − x−,w⟩+ b(2t− 1)]

= min
x+∈ 1

2 conv(D+),x−∈ 1
2 conv(D−)

max
∥w∥≤1

⟨x+ − x−,w⟩

= min
x+∈ 1

2 conv(D+),x−∈ 1
2 conv(D−)

∥x+ − x−∥◦

= 1
2dist(conv(D

+), conv(D−)),

where in the third equality we used linearity to replace with convex hulls, which then allowed us to apply the
minimax theorem to swap max with min. The sixth equality follows from Cauchy-Schwarz and is attained
when w ∝ x+ − x−, i.e., when Hw is a bisector.
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https://en.wikipedia.org/wiki/Minimax_theorem

