
CS480/680–Spring 2024 §3 LOGISTIC REGRESSION University of Waterloo �

3 Logistic Regression

Goal

Understand logistic regression. Confidence. Comparison with linear regression. Newton’s algorithm.

Alert 3.1: Convention

Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.
Unlike the slides, in this note we encode the label y ∈ {±1} and we arrange xi in the columns of X.
We use x and w for the original vectors and x and w for the padded versions (with constant 1 and bias

b respectively). Similar, we use X and W for the original matrices and X and W for the padded versions.

Remark 3.2: Confidence of prediction

In perceptron we make predictions directly through a linear threshold function:

ŷ = sign(w⊤x+ b).

Often, we would also like to know how confident we are about this prediction ŷ. For example, we can use the
magnitude |w⊤x+ b| as the indication of our “confidence.” This choice, however, can be difficult to interpret
at times, after all the magnitude could be any positive real number.

In the literature there are many attempts to turn the real output of a classifier into probability estimates,
see for instance Vovk and Petej (2014) and Vovk et al. (2015).
Vovk, V. and I. Petej (2014). “Venn-Abers Predictors”. In: Conference on Uncertainty in Artificial Intelligence UAI.
Vovk, V., I. Petej, and V. Fedorova (2015). “Large-scale probabilistic predictors with and without guarantees of

validity”. In: Advances in Neural Information Processing Systems 28.

Remark 3.3: Reduce classification to regression?

Recall that the optimal Bayes classifier is

h⋆(x) = sign(2η(x)− 1), where η(x) = Pr(Y = 1|X = x).

The posterior probability η(x) is a perfect measure of our confidence in predicting ŷ = h⋆(x). Therefore,
one may attempt to estimate the posterior probability

η(x) = Pr(Y = 1|X = x) = E(1Y=1|X = x).

If we define Ỹ = 1Y=1 ∈ {0, 1}, then η(X) is exactly the regression function of (X, Ỹ), see Definition 2.8. So,
in principle, we could try to estimate the regression function based on some i.i.d. samples {(Xi, Ỹi) : i =
1, . . . , n}.

The issue with the above approach is that we are in fact reducing an easier problem (classification) to a
more general hence harder problem (regression). Note that the posterior probability η(x) always lies in [0, 1],
and we would like to exploit this a priori knowledge. However, a generic approach to estimate the regression
function would not be able to take this structure into account. In fact, an estimate of the regression function
(e.g. through linear regression) may not always take values in [0, 1] at all.

As a practical rule of thumb: Never try to solve a more general problem than necessary. (Theoreticians
violate this rule all the time but nothing is meant to be practical in theory anyways.)

Yaoliang Yu 57 –Version 0.22–September 19, 2022–

http://auai.org/uai2014/proceedings/individuals/166.pdf
https://proceedings.neurips.cc/paper/2015/hash/a9a1d5317a33ae8cef33961c34144f84-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/a9a1d5317a33ae8cef33961c34144f84-Abstract.html

CS480/680–Spring 2024 §3 LOGISTIC REGRESSION University of Waterloo �

Definition 3.4: Bernoulli model

Let us consider the binary classification problem with labels y ∈ {±1}. With the parameterization:

Pr(Y = 1|X = x) =: p(x;w), (3.1)

where p is a function that maps x and w into [0, 1], we then have the Bernoulli model for generating the
label y ∈ {±1}:

Pr(Y = y|X = x) = p(x;w)(1+y)/2[1− p(x;w)](1−y)/2.

Let D = {(xi, yi) : i = 1, . . . , n} be an i.i.d. sample from the same distribution as (X,Y). The conditional
likelihood factorizes under the i.i.d. assumption:

Pr(Y1 = y1, . . . ,Yn = yn|X1 = x1, . . . ,Xn = xn) =

n∏
i=1

Pr(Yi = yi|Xi = xi)

=

n∏
i=1

p(xi;w)(1+yi)/2[1− p(xi;w)](1−yi)/2. (3.2)

A standard algorithm in statistics and machine learning for parameter estimation is to maximize the (con-
ditional) likelihood. In this case, we can maximize (3.2) w.r.t. w. Once we figure out w, we can then make
probability estimates on any new test sample x, by simply plugging w and x into (3.1).

Example 3.5: What is that function p(x;w)?

Let us consider two extreme cases:

• p(x;w) = p(x), i.e., the function p can take any value on any x. This is the extreme case where
anything we learn from one data point xi may have nothing to do with what p(xj) can take. Denote
pi = p(xi), take logarithm on (3.2), and negate:

min
p1,...,pn

−1

2

n∑
i=1

(1 + yi) log pi + (1− yi) log(1− pi).

Since the pi’s are not related, we can solve them separately. Recall the definition of the KL divergence,
we know

− 1+yi
2 log pi − 1−yi

2 log(1− pi) = KL

((1+yi
2

1−yi
2

)∥∥∥∥∥
(

pi
1− pi

))
− 1+yi

2 log 1+yi
2 − 1−yi

2 log 1−yi
2 .

Since the KL divergence is nonnegative, to maximize the conditional likelihood we should set

pi =
1+yi
2 .

This result does make sense, since for yi = 1 we set pi = 1 while for yi = −1 we set pi = 0 (so that
1− pi = 1, recall that pi is the probability of yi being 1).

• p(x;w) = p(w) = p, i.e., the function p is independent of x hence is a constant. The is the extreme
case where anything we learn from one data point immediately applies in the same way to any other
data point. Similar as above, we find p by solving

min
p
−1

2

n∑
i=1

(1 + yi) log p+ (1− yi) log(1− p).

Let p̄ = 1
n

∑n
i=1

1+yi
2 , which is exactly the fraction of positive examples in our training set D. Obviously

then 1 − p̄ = 1
n

∑n
i=1

1−yi
2 . Prove by yourself that p̄ is indeed the optimal choice. This again makes

sense: if we have to pick one and only one probability estimate (for every data point), intuitively we
should just use the fraction of positive examples in our training set.

Yaoliang Yu 58 –Version 0.22–September 19, 2022–

https://en.wikipedia.org/wiki/Bernoulli_distribution
https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

CS480/680–Spring 2024 §3 LOGISTIC REGRESSION University of Waterloo �

The above two extremes are not satisfactory: it is either too flexible by allowing each data point to have
its own probability estimate (which may have nothing to do with each other hence learning is impossible) or
it is too inflexible by restricting every data point to use the same probability estimate. Logistic regression,
which we define next, is an interpolation between the two extremes.

Definition 3.6: Logistic Regression (Cox 1958)

Motivated by the two extreme cases in Example 3.5, we want to parameterize p(x;w) in a not-too-flexible
and not-too-inflexible way. One natural choice is to set p as an affine function (how surprising): p(x;w) =
⟨x,w⟩+ b. However, this choice has the disadvantage in the sense that the left-hand side takes value in [0, 1]
while the right-hand side takes value in R. To avoid this issue, we first take a logit transformation of p and
then equate it to an affine function:

log
p(x;w)

1− p(x;w)
= ⟨x,w⟩+ b.

The ratio on the left-hand side is known as odds ratio (probability of 1 divide by probability of -1). Or
equivalently,

p(x;w) =
1

1 + exp(−⟨x,w⟩ − b)
= sgm(⟨x,w⟩+ b), where sgm(t) =

1

1 + exp(−t)
=

exp(t)

1 + exp(t)
(3.3)

is the so-called sigmoid function. Note that our definition of p involves x but not the label y. This is crucial
as later on we will use p(x;w) to predict the label y.

Plugging (3.3) into the conditional likelihood (3.2) and maximizing w = (w, b) we get the formulation of
logistic regression, or in equivalent form:

min
w

1

2

n∑
i=1

(1 + yi) log(1 + exp(−x⊤i w)) + (1− yi) log(1 + exp(−x⊤i w)) + (1− yi)x
⊤
i w,

which is usually written in the more succinct form:

min
w

n∑
i=1

lgt(yiŷi), where ŷi = ⟨xi,w⟩ , and lgt(t) := log(1 + exp(−t)) (3.4)

is the so-called logistic loss in the literature. (Clearly, the base of log is immaterial and we use the natural
log.) In the above we have applied padding, see Remark 1.17, to ease notation.

−5−4−3−2−1 0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

t

s
g
m
(t
)
=

1
1
+
e
x
p
(−

t)

sigmoid function

−4 −3 −2 −1 0 1 2 3 4

0

1

2

3

4

t

l
g
t
(t
)
=

lo
g
[1

+
ex
p
(−
t)
]

logistic loss

Cox, D. R. (1958). “The Regression Analysis of Binary Sequences”. Journal of the Royal Statistical Society. Series B
(Methodological), vol. 20, no. 2, pp. 215–242.

Yaoliang Yu 59 –Version 0.22–September 19, 2022–

http://www.jstor.org/stable/2983890

CS480/680–Spring 2024 §3 LOGISTIC REGRESSION University of Waterloo �

Alert 3.7: Binary labels: {±1} or {0, 1}?

In this note we choose to encode binary labels as {±1}. In the literature the alternative choice {0, 1} is
also common. In essence there is really no difference if we choose one convention or the other: the eventual
conclusions would be the same. However, some formulas do look a bit different on the surface! For example,
the neat formula (3.4) becomes

min
w

n∑
i=1

log[exp
(
(1− yi) ⟨xi,w⟩

)
+ exp(−yi ⟨xi,w⟩)],

had we chosen the convention yi ∈ {0, 1}. Always check the convention before you subscribe to any formula!

Remark 3.8: Prediction with confidence

Once we solve w as in (3.4) and given a new test sample x, we can compute p(x;w) = 1
1+exp(−⟨x,w⟩) and

predict

ŷ(x) =

{
1, if p(x;w) ≥ 1/2 ⇐⇒ ⟨x,w⟩ ≥ 0

−1, otherwise
.

In other words, for predicting the label we are back to the familiar rule ŷ = sign(⟨x,w⟩). However, now we
are also equipped with the probability confidence p(x;w).

It is clear that logistic regression is a linear classification algorithm, whose decision boundary is given by
the hyperplane

H = {x : ⟨x,w⟩ = 0}.

Alert 3.9: Something is better than nothing?

It is tempting to prefer logistic regression over other classification algorithms since the former spits out not
only label predictions but also probability confidences. However, one should keep in mind that in logistic
regression, we make the assumption (see Equation (3.3))

Pr(Y = 1|X = x) = sgm(⟨x,w⟩) = 1

1 + exp(−⟨x,w⟩)
,

which may or may not hold on your particular dataset. So the probability estimates we get from logistic
regression can be totally off. Is it really better to have a probability estimate that is potentially very wrong
than not to have anything at all? To exaggerate in another extreme, for any classification algorithm we can
“make up” a 100% confidence on each of its predictions. Does this “completely fake” probability confidence
bring any comfort? But, how is this any different from the numbers you get from logistic regression?

Alert 3.10: Do not do extra work

Logistic regression does more than classification, since it also tries to estimate the posterior probabilities.
However, if prediction (of the label) is our sole goal, then we do not have to, and perhaps should not, estimate
the posterior probabilities. Put it more precisely, all we need to know is whether or not η(x) = Pr(Y =
1|X = x) is larger than 1/2. The precise value of η(x) is not important; only its comparison with 1/2 is.
As we shall see, support vector machines, in contrast, only tries to estimate the decision boundary (i.e. the
relative comparison between η(x) and 1/2), hence can be more efficient.

Yaoliang Yu 60 –Version 0.22–September 19, 2022–

CS480/680–Spring 2024 §3 LOGISTIC REGRESSION University of Waterloo �

Remark 3.11: More than logistic regression

The main idea behind logistic regression is to equate the posterior probability p(x;w) with some transforma-
tion F of the affine function ⟨x,w⟩. Here the transformation F turns a real number into some value in [0, 1]
(where the posterior probability belongs to). Obviously, we can choose F to be any cumulative distribution
function (cdf) on the real line. Indeed, plug the formula

p(x;w) = F (⟨x,w⟩),

into the conditional likelihood (3.2) gives us many variants of logistic regression. If we choose F to be the
cdf of the logistic distribution (hence the name)

F (x;µ, s) =
1

1 + exp
(
−x−µ

s

) ,
where µ is the mean and s is some shape parameter (with variance s2π2/3), then we recover logistic regression
(provided that µ = 0 and s = 1).

If we choose F to be the cdf of the standard normal distribution, then we get the so-called probit
regression.

Algorithm 3.12: Gradient descent for logistic regression

Unlike linear regression, logistic regression no longer admits a closed-form solution. Instead, we can apply
gradient descent to iteratively converge to a solution. All we need is to apply the chain rule to compute the
gradient of each summand of the objective function in (3.4):

∇lgt(yi ⟨xi,w⟩) = −
exp(−t)

1 + exp(−t)

∣∣∣
t=yi⟨xi,w⟩

· yixi = −sgm(−yi ⟨xi,w⟩) · yixi

= −yixi + sgm(yi ⟨xi,w⟩)yixi

=

{
(p(xi;w)− 1)xi, if yi = 1

(p(xi;w)− 0)xi, if yi = −1

=
(
p(xi;w)− yi+1

2

)
xi.

In the following algorithm, we need to choose a step size η. A safe choice is

η =
4

∥X∥2sp
,

namely, the inverse of the largest singular value of the Hessian (see below). An alternative is to start with
some small η and decrease it whenever we are not making progress (known as step size annealing).

Algorithm: Gradient descent for binary logistic regression.
Input: X ∈ Rd×n, y ∈ {−1, 1}n (training set), initialization w ∈ Rp

Output: w ∈ Rp

1 for t = 1, 2, . . . , maxiter do
2 sample a minibatch I = {i1, . . . , im} ⊆ {1, . . . , n}
3 g← 0
4 for i ∈ I do // use for-loop only in parallel implementation
5 pi ← 1

1+exp(−⟨xi,w⟩) // in serial, replace with p← 1
1+exp(−X⊤

:,Iw)

6 g← g + (pi − 1+yi
2)xi // in serial, replace with g← X:,I(p− 1+yI

2)

7 choose step size η > 0
8 w← w − ηg
9 check stopping criterion // e.g. ∥ηg∥ ≤ tol

For small problems (n ≤ 104 say), we can set I = {1, . . . , n}, i.e., use the entire dataset in every iteration.

Yaoliang Yu 61 –Version 0.22–September 19, 2022–

https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Probit_model
https://en.wikipedia.org/wiki/Probit_model
https://cs.uwaterloo.ca/~y328yu/mycourses/794/lectures/lec-gd.pdf

CS480/680–Spring 2024 §3 LOGISTIC REGRESSION University of Waterloo �

Algorithm 3.13: Newton iteration for logistic regression

We can also apply Newton’s algorithm for solving logistic regression. In addition to computing the gradient,
we now also need to compute the Hessian:

Hi = ∇2
wlgt(yi ⟨xi,w⟩) = xi[∇wp(xi;w)]⊤ = p(xi;w)[1− p(xi;w)]xix

⊤
i .

Algorithm: Newton iteration for binary logistic regression.
Input: X ∈ Rd×n, y ∈ {−1, 1}n (training set), initialization w ∈ Rp

Output: w ∈ Rp

1 for t = 1, 2, . . . , maxiter do
2 sample a minibatch I = {i1, . . . , im} ⊆ {1, . . . , n}
3 g← 0, H ← 0
4 for i ∈ I do // use for-loop only in parallel implementation
5 pi ← 1

1+exp(−⟨xi,w⟩) // in serial, replace with p← 1
1+exp(−X⊤

:,Iw)

6 g← g + (pi − 1+yi
2)xi // in serial, replace with g← X:,I(p− 1+yI

2)

7 H ← H + pi(1− pi)xix⊤i // in serial, replace with H ← X:,I diag(p⊙ (1− p))X⊤
:,I

8 choose step size η > 0
9 w← w − ηH−1g // solve H−1g as linear system

10 check stopping criterion // e.g. ∥g∥ ≤ tol

Typically, we need to tune η at the initial phase but quickly we can just set η ≡ 1. Newton’s algorithm
is generally much faster than gradient descent. The downside, however, is that computing and storing the
Hessian can be expensive. For example, Line 9 has per-step time complexity O(md) and space complexity
O(d) (or O(nd) if X is stored explicitly in memory) while Line 10 has per-step time complexity O(md2+d3)
and space complexity O(d2) (or O(nd+ d2) if X is stored explicitly in memory).

Alert 3.14: Overflow and underflow (Goldberg 1991)

Numerically computing exp(a) can be tricky when the vector a has very large or small entries. The usual
trick is to shift the origin as follows. Let t = maxi ai−mini ai be the range of the elements in a. Then, after
shifting 0 to t/2:

exp(a) = exp(a− t/2) exp(t/2).

Computing exp(a − t/2) may be numerically better than computing exp(a) directly. The scaling factor
exp(t/2) usually will cancel out in later computations so we do not need to compute it. (Even when we have
to, it may be better to return t/2 than exp(t/2).)
Goldberg, D. (1991). “What every computer scientist should know about floating-point arithmetic”. ACM Computing

Surveys, vol. 23, no. 1, pp. 5–48.

Remark 3.15: Logistic regression as iterative re-weighted linear regression

Let us define the diagonal matrix Ŝ = diag
(
p̂ ⊙ (1 − p̂)

)
. If we set η ≡ 1, then we can interpret Newton’s

iteration in Line 10 as iterative re-weighted linear regression (IRLS):

w← w − (XŜX⊤)−1X(p̂− 1+y
2)

= (XŜX⊤)−1[(XŜX⊤)w − X(p̂− 1+y
2)]

= (XŜX⊤)−1XŜy, y := X⊤w − Ŝ−1(p̂− 1+y
2)

= argmin
w

n∑
i=1

ŝi(w
⊤xi − yi)

2, ŝi := p̂i(1− p̂i), (3.5)

Yaoliang Yu 62 –Version 0.22–September 19, 2022–

https://en.wikipedia.org/wiki/Newton's_method
https://doi.org/10.1145/103162.103163

CS480/680–Spring 2024 §3 LOGISTIC REGRESSION University of Waterloo �

where the last equality can be seen by setting the derivative w.r.t. w to 0.
So, Newton’s algorithm basically consists of two steps:

• given the current w, compute the weights ŝi and update the targets yi. Importantly, if the current w
yields very confident prediction p̂i for the i-th training example (i.e., when p̂i is close to 0 or 1), then
the corresponding weight ŝi is close to 0, i.e., we are down-weighting this training example whose label
we are already fairly certain about. On the other hand, if p̂i is close to 1/2, meaning we are very unsure
about the i-th training example, then the corresponding weight ŝi will be close to the maximum value
1/4, i.e. we pay more attention to it in the next iteration.

• solve the re-weighted least squares problem (3.5).

We have to iterate the above two steps because p̂ hence ŝ are both functions of w themselves. It would be
too difficult to solve w in one step. This iterative way of solving complicated problems is very typical in
machine learning.

Remark 3.16: Linear regression vs. logistic regression

In the following comparison, Ŝ = diag
(
p̂⊙ (1− p̂)

)
. We note that as ŷi deviates from yi, the least squares

loss varies from 0 to ∞. Similarly, as p̂i deviates from yi, the cross-entropy loss varies from 0 to ∞ as well.

• least-squares:
∑n

i=1(yi − ŷi)2

• prediction: ŷi = ⟨xi,w⟩

• objective: ∥y − ŷ∥22

• grad: w← w − ηX(ŷ − y)

• Newton: w← w − η(XX⊤)−1X(ŷ − y)

• cross-entropy:
∑n

i=1−
1+yi
2 log p̂i− 1−yi

2 log(1−p̂i)

• prediction: ŷi = sign(⟨xi,w⟩), p̂i = sgm(⟨xi,w⟩)

• objective: KL(1+y
2 ∥p̂)

• grad: w← w − ηX(p̂− 1+y
2)

• Newton: w← w − η(XŜX⊤)−1X(p̂− 1+y
2)

Exercise 3.17: Linearly separable

If the training data D = *(xi, yi) : i = 1, . . . , n+ is linearly separable (see Definition 1.24), does logistic
regression have a solution w? What happens if we run gradient descent (Line 9) or Newton’s iteration
(Line 10)?

Exercise 3.18: Regularization

Derive the formulation and an algorithm (gradient or Newton) for ℓ2-regularized logistic regression, where
we add λ∥w∥22.

Remark 3.19: More than 2 classes

We can easily extend logistic regression to c > 2 classes. As before, we make the assumption

Pr(Y = k|X = x) = fk(Wx), k = 1, . . . , c,

where W = [w1, . . . ,wc]
⊤ ∈ Rc×p and the vector-valued function f = [f1, . . . , fc] : R

c → ∆c−1 maps a vector
of size c × 1 to a probability vector in the simplex ∆c−1. Given an i.i.d. training dataset D = {(xi,yi) :
i = 1, . . . , n}, where each yi ∈ {0, 1}c is a one-hot vector, i.e. 1⊤yi = 1, then the (negated) conditional

Yaoliang Yu 63 –Version 0.22–September 19, 2022–

CS480/680–Spring 2024 §3 LOGISTIC REGRESSION University of Waterloo �

log-likelihood is:

− log Pr(Y1 = y1, . . . ,Yn = yn|X1 = x1, . . . ,Xn = xn) = − log

n∏
i=1

c∏
k=1

[fk(Wxi)]
yki

=

n∑
i=1

c∑
k=1

−yki log fk(Wxi).

To minimize the negated log-likelihood, we can apply gradient descent or Newton’s iteration as before:

∇ℓi(W) =

c∑
k=1

−yki
1

fk(Wxi)

[
∇fk|Wxi

]
· x⊤i , (3.6)

∀G ∈ Rc×p, [∇2ℓi(W)](G) =
c∑

k=1

−yki
1

f2k (Wxi)

[
∇fk∇f⊤k − fk∇2fk

]
|Wxi

Gxix
⊤
i , (3.7)

where recall that ∇ℓi(W) ∈ Rc×p and ∇2ℓi(W) : Rc×p → Rc×p. Note that due to our one-hot encoding, the
above summation has actually one term.

Definition 3.20: Multiclass logistic regression, a.k.a. Multinomial logit or softmax regression

The multinomial logit model corresponds to choosing the softmax function:

f(Wx) = softmax(Wx), where softmax : Rc → ∆c−1, y 7→
exp(y)

1⊤ exp(y)
.

Let p̂i = f(Wxi) and specialize (3.6) and (3.7) to the softmax function we obtain its gradient and Hessian:

∇ℓi(W) = (p̂i − yi)x
⊤
i ,

∀G ∈ Rc×p, [∇2ℓi(W)](G) =
(
diag(p̂i)− p̂ip̂

⊤
i

)
Gxix

⊤
i .

In the multiclass setting, solving the Newton step could quickly become infeasible (O(d3c3)). As Böhning
(1992) pointed out, we can instead use the upper bound:

0 ⪯diag(p̂i)− p̂ip̂
⊤
i ⪯

1

2
(Ik − 1

k+111
⊤),

which would reduce the computation to inverting only the data matrix XX⊤ =
∑

i xix
⊤
i .

Böhning, D. (1992). “Multinomial logistic regression algorithm”. Annals of the Institute of Statistical Mathematics,
vol. 44, no. 1, pp. 197–200.

Remark 3.21: Mean and Covariance

We point out the following “miracle:” Let Y be a random vector taking values on standard bases {ek ∈
{0, 1}c : k = 1, . . . , c,1⊤ek = 1} and following the multinomial distribution:

Pr(Y = ek) = pk, k = 1, . . . , c.

Then, straightforward calculation verifies:

E(Y) = p,

Cov(Y) = diag(p)− pp⊤.

Yaoliang Yu 64 –Version 0.22–September 19, 2022–

http://www.ism.ac.jp/editsec/aism/pdf/044_1_0197.pdf

CS480/680–Spring 2024 §3 LOGISTIC REGRESSION University of Waterloo �

Remark 3.22: Removing translation invariance in softmax

In the above multiclass logistic regression formulation, we used a matrix W with c rows to represent c classes.
Note however that the softmaxfunction is translation invariant:

∀w, softmax((W + 1w⊤)x) = softmax(Wx).

Therefore, for identifiability purposes, we may assume w.l.o.g. wc = 0 and we need only optimize the first
c − 1 rows. If we denote L(w1, . . . ,wc−1,wc) as the original negated log-likelihood in Definition 3.20, then
fixing wc = 0 changes our objective to L(w1, . . . ,wc−1,0). Clearly, the gradient and Hessian formula in
Definition 3.20 still works after deleting the entries corresponding to wc.

Setting c = 2 we recover binary logistic regression, with the alternative encoding y ∈ {0, 1} though.

Exercise 3.23: Alternative constraint to remove translation invariance

An alternative fix to the translation-invariance issue of softmax is to add the following constraint:

1⊤W = 0. (3.8)

In this case our objective changes to L(w1, . . . ,wc−1,−
∑c−1

k=1 wk). How should we modify the gradient and
Hessian?

Interestingly, after we add ℓ2 regularization to the unconstrained multiclass logistic regression:

min
W

L(w1, . . . ,wc) + λ∥W∥2F,

the solution automatically satisfies the constraint (3.8). Why? What if we added ℓ1 regularization?

Definition 3.24: Generalized linear models (GLMs)

The similarity between linear regression and logistic regression is not coincidental: they both belong to
generalized linear models (i.e. exponential family noise distributions), see Nelder and Wedderburn (1972).
Nelder, J. A. and R. W. M. Wedderburn (1972). “Generalized Linear Models”. Journal of the Royal Statistical Society.

Series A (General), vol. 135, no. 3, pp. 370–384.

Yaoliang Yu 65 –Version 0.22–September 19, 2022–

http://www.jstor.org/stable/2344614

