
CS480/680–Spring 2024 §12 GRAPH NEURAL NETWORKS University of Waterloo �

12 Graph Neural Networks

Goal

Introducing the basics of GNN and the popular variants.

Alert 12.1: Convention

Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.
Nice surveys on this topic include Bronstein et al. (2017) and Wu et al. (2020).

Bronstein, M. M., J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst (2017). “Geometric Deep Learning: Going
beyond Euclidean data”. IEEE Signal Processing Magazine, vol. 34, no. 4, pp. 18–42.

Wu, Z., S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu (2020). “A Comprehensive Survey on Graph Neural
Networks”. IEEE Transactions on Neural Networks and Learning Systems, pp. 1–21.

Definition 12.2: Graph learning

Consider a graph G = (V, E , l) with nodes V, edges E , node feature/attribute/label lv ∈ Rd for each node
v ∈ V, and edge feature/attribute/label le ∈ Rp for each edge e ∈ E . The graph may be directed or
undirected, where the direction of the edge can be easily encoded in the edge feature. We use Nv = N (v) ⊆ V
to denote the neighboring nodes of v and Mv =M(v) ⊆ E for the edges that have node v as a vertex. For
positional graphs, we also have an injective function pv : Nv → {1, 2, . . . , |V|} that encodes the relative
position of each neighbor of a node v. For instance, on a 2-D image, {1, 2, 3, 4} may represent the west,
north, east, and south neighbor, respectively.

Alert 12.3: All for one, and one for all

Let (Gi,yi), i = 1, . . . , n be a given supervised set of graphs and labels. Our goal is to learn a predictive
function ŷ that maps a new test graph G to its corresponding label: ŷ(G) ≈ y. The labels could be at the
node, edge or graph level. Do not confuse the label y with the feature l, since some authors also refer to the
latter as “labeling.”

Interestingly, we can piece all graphs into one large, disconnected graph, greatly simplifying our notation
and without compromising generality. Note that this is more than just a reduction trick: in some cases it is
actually the natural thing to do, such as in web-scale applications where the entire internet is just one giant
graph. We follow this trick throughout.

Example 12.4: Some applications of graph learning

We mention some example applications of graph learning:

• Each node may represent an atom in some chemical compound while the edges model the (strength
of) chemical bonds linking the atoms. We may be interested in predicting how a certain disease reacts
to the chemical compound.

• All image analyses fall into graph learning with each pixel playing a node of the underlying (regular)
grid and the pixel value being the node feature.

• Social network, where we may be interested in classifying the nodes or imputing missing links. For
instance, each webpage is a node and hyperlinks act as edges.

Yaoliang Yu 107 –Version 0.1–Oct 19, 2021–

https://ieeexplore.ieee.org/document/7974879
https://ieeexplore.ieee.org/document/7974879
https://doi.org/10.1109/tnnls.2020.2978386
https://doi.org/10.1109/tnnls.2020.2978386

CS480/680–Spring 2024 §12 GRAPH NEURAL NETWORKS University of Waterloo �

Definition 12.5: Graph neural network (GNN) (Scarselli et al. 2009)

GNNs, as defined here, can be regarded as a natural extension of recurrent networks, from a chain graph to
a general graph. Indeed, we define the following recursion: for all v ∈ V,

hv ← f(hv,hNv
, lv, lNv

, lMv
;w)

ov = g(hv, lv;w),

where hv is the hidden state at node v and ov is its output. The two (local) update functions f ,g are
parameterized by w, which is shared among all nodes. We remark that in general it is up to us to define
the neighborhoods N and M, and f ,g may have slightly different forms (such as involving other inputs).

Collect all local updates into one abstract formula:

x :=

[
h
o

]
← F(x, l;w). (12.1)

Note that the input node/edge features l are fixed. Thus, for a fixed weight w, the above update defines the
(enhanced) state x as a fixed point of the map Fl,w : x 7→ F(x, l;w).

To compute the state x with a fixed weight w, we perform the (obvious) iteration:

xt+1 = F(xt, l;w), x0 initialized. (12.2)

According to Banach’s fixed point theorem, (for any initialization x0) the above iteration converges geomet-
rically to the unique fixed point of Fl,w, provided that the latter is a contraction (or more generally a firm
nonexpansion). For later reference, we abstract (the unique) solution of the nonlinear equation (12.1) as:

o = ŷ(l;w),

where we have discarded the state h and only retained the output o.
Scarselli, F., M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini (2009). “The Graph Neural Network Model”.

IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80.

Alert 12.6: Recursive neural network

When the underlying graph is a DAG (and the update function of a node only depends on its descendants),
we may arrange the computation in (12.2) according to some topological ordering so that it stops after one
(sequential) pass of all nodes. When the graph is a chain, we recover the familiar recurrent neural network.

Example 12.7: Local update function

We mention two examples of local update function:

• For positional graphs, we arrange the neighbors in hNv
, lNv

, lMv
according to their relative positions

decided by pv (say in increasing order). For non-existent neighbors, we may simply pad with null
values.

• For non-positional graphs, the following permutation-invariant local update is convenient:

hv ←
1

|Nv|
∑
u∈Nv

f(hv,hu, lv, lu, l(v,u)).

More generally, we may replace the above average with any permutation-invariant function (e.g., av-
eraged ℓp norm), see Xu et al. (2019) for some discussion on possible limitations of this choice.

Xu, K., W. Hu, J. Leskovec, and S. Jegelka (2019). “How Powerful are Graph Neural Networks?” In: International
Conference on Learning Representations.

Yaoliang Yu 108 –Version 0.1–Oct 19, 2021–

https://en.wikipedia.org/wiki/Fixed_point_(mathematics)
https://en.wikipedia.org/wiki/Banach_fixed-point_theorem
https://en.wikipedia.org/wiki/Contraction_mapping
https://en.wikipedia.org/wiki/Contraction_mapping#Firmly_non-expansive_mapping
https://en.wikipedia.org/wiki/Contraction_mapping#Firmly_non-expansive_mapping
https://doi.org/10.1109/TNN.2008.2005605
https://openreview.net/forum?id=ryGs6iA5Km

CS480/680–Spring 2024 §12 GRAPH NEURAL NETWORKS University of Waterloo �

Algorithm 12.8: Learning GNN

To learn the weights w of a GNN, we choose a loss function ℓ, and apply (stochastic) gradient descent to
solve

min
w

ℓ(ŷ(l;w),y),

where recall that ŷ(l;w) is (the unique) solution of the nonlinear equation (12.1) and is practically computed
by the iteration (12.2) (similar to unrolling in RNN). If F(x, l;w) is differentiable in w and contracting in x,
then a simple application of the implicit function theorem reveals that the solution ŷ(l;w) is also differentiable
in w. Thus, we may apply the recurrent back-propagation algorithm. If memory is not an issue, we can
also apply back-propagation through time (BPTT) by replacing ŷ with ot after a fixed number of unrolling
steps in (12.1).

Example 12.9: Parameterizing local update function

• Affine: Let F(x, l;w) = A(l;w)x+ b(l;w), where the matrix A and bias vector b are outputs of some
neural net with input l and weights w. By properly scaling A, it is easy to make F a contraction.

• More generally, we may parameterize F by a (highly) nonlinear deep network. However, care must be
taken (e.g., through regularization) so that F is (close to) a contraction at the learned weights.

• We remark that in theory any parameterization of F can be used; it does not have to be a neural
network.

Example 12.10: PageRank belongs to GNN

Define the normalized adjacency matrix

Āuv =

{
1
|Nu| , if (u, v) ∈ E
0, otherwise

,

which represents the probability of visiting a neighboring node v once we are at node u. Consider the GNN
with linear state update function:

x← αx0 + (1− α)Ā⊤x,

where the parameter α ∈ [0, 1) models the probability of “telescoping” and x0 ∈ ∆. In other words, the state
of node v is an aggregation of the states of its neighbors:

xv = αxv,0 + (1− α)
∑

(u,v)∈E

1
|Nu|xu.

For any α ∈ (0, 1), the above iterate converges to a unique fixed point known as the PageRank.

Definition 12.11: Spatial convolutional networks on graphs (Bruna et al. 2014)

Given a (weighted) graph G0 = (V0, A0), where A0 is the adjacency matrix, we define a sequence of coars-
enings Gl = (V l, Al), l = 1, . . . , L, where recursively each node V ∈ V l+1 is a subset (e.g., neighborhood) of

Yaoliang Yu 109 –Version 0.1–Oct 19, 2021–

https://en.wikipedia.org/wiki/Implicit_function_theorem
https://en.wikipedia.org/wiki/PageRank

CS480/680–Spring 2024 §12 GRAPH NEURAL NETWORKS University of Waterloo �

nodes in V l, i.e.,

V l+1 ⊆ 2V
l

, and for all U, V ∈ V l+1, Al+1
UV =

∑
u∈U⊆Vl

∑
v∈V⊆Vl

Al
uv.

Typically, the nodes in V l+1 form a partition of the nodes in V l, using say some graph partitioning algorithm.
For instance we may cluster a node u with all “nearby” and available nodes v with Auv ≤ ϵ, hence forming
an ϵ-cover.

Let xl = [xl
1; . . . ;x

l
dl
] ∈ R|Vl|dl be a dl-channel signal on the nodes of graph Gl. We define a layer of

spatial convolution as follows:

xl+1
r = P

(
σ(W l

rx
l)
)
, W l

r ∈ R|V
l|×|Vl|dl , r = 1, . . . , dl+1,

where each W l
r is a spatially compact filter (with nonzero entries only when Al

uv larger than some threshold),
σ : R→ R some (nonlinear) component-wise activation function, and P a pooling operator that pools the
values in each neighborhood (corresponding to nodes in V l+1). The total number of parameters in the filter
W l is O(|E l|dldl+1). Since nodes in a general graph (as opposed to regular ones such as grids) may have
different neighborhoods, it is not possible to share the filter weights at different nodes (i.e., the rows in W l

r
have to be different).
Bruna, J., W. Zaremba, A. Szlam, and Y. LeCun (2014). “Spectral Networks and Locally Connected Networks on

Graphs”. In: International Conference on Learning Representations.

Example 12.12: Spatial CNN (Niepert et al. 2016)

The main difficulty in extending spatial convolution to general graphs is the lack of correspondence of the
nodes. Niepert et al. (2016) proposed to first label the nodes so that they are somewhat in correspondence.
Consider l : V → L that sends a node v ∈ V to a color lv in some totally ordered set L. For instance, l could
simply be the node degree or computed by the WL Algorithm 12.23 below. We proceed similarly as in CNN:

• The color l induces an ordering of the nodes, allowing us to select a fixed number n of nodes, starting
from the “smallest” and incrementing with stride s. We pad (disconnected) trivial nodes if run out of
choices.

• For each chosen node v above, we incrementally select its neighbors Nv :=
⋃

d{u : dist(u, v) ≤ d} using
breadth first search (BFS), until exceeding the receptive field size or running out of choice.

• We recompute colors on Nv with the constraint dist(u, v) < dist(w, v) =⇒ lu < lw. Depending on the
size of Nv, we either select a fixed number m of (top) neighbors and recompute their colors, or pad
(disconnected) trivial nodes to make the fixed number m. Lastly, we perform canoniocalization using
Nauty (McKay and Piperno 2014) while respecting the node colors.

• Finally, we collect the results into tensors with size n×m×d for d-dim node features and n×m×m×p
for p-dim edge features, which can be reshaped to nm × d and nm2 × p. We apply 1-d convolution
with stride and receptive field size m to the first and m2 to the second tensor.

For grid graphs, if we use the WL Algorithm 12.23 to color the nodes, then it is easy to see that the above
procedure recovers the usual CNN.
Niepert, M., M. Ahmed, and K. Kutzkov (2016). “Learning Convolutional Neural Networks for Graphs”. In: Proceed-

ings of The 33rd International Conference on Machine Learning, pp. 2014–2023.
McKay, B. D. and A. Piperno (2014). “Practical graph isomorphism, II”. Journal of Symbolic Computation, vol. 60,

pp. 94–112.

Yaoliang Yu 110 –Version 0.1–Oct 19, 2021–

https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1312.6203
http://proceedings.mlr.press/v48/niepert16.html
https://doi.org/10.1016/j.jsc.2013.09.003

CS480/680–Spring 2024 §12 GRAPH NEURAL NETWORKS University of Waterloo �

Definition 12.13: Graph Laplacian

Let A be the usual adjacency matrix of an (undirected) graph and D the diagonal matrix of degrees:

Auv =

{
1, if (u, v) ∈ E
0, otherwise

, Duv =

{∑
v Auv, if u = v

0, otherwise
.

More generally, we may consider a weighted graph with (nonnegative, real-valued and symmetric) weights
Auv = wuv. We define the graph Laplacian and its normalized version:

L = D −A, L̄ = I −D−1/2AD−1/2 = D−1/2LD−1/2.

Among many other nice properties, the graph Laplacian is useful because of its connection to quadratic
potentials. Too see this, let xv ∈ Rd be a feature vector at each node v and we verify that

1

2

∑
u,v

Auv∥xu − xv∥22 =
1

2

∑
u,v

Auv[∥xu∥22 + ∥xv∥22 − 2 ⟨xu,xv⟩] =
∑
u

du∥xu∥22 −
∑
u,v

Auv ⟨xu,xv⟩

= tr(X(D −W)X⊤) = tr(XLX⊤) =
d∑

j=1

Xj:LX
⊤
j: , X = [. . . ,xv, . . .] ∈ Rd×|V|.

Taking d = 1 we see that the Laplacian L is symmetric and positive semidefinite. Similarly,

tr(XL̄X⊤) = tr((XD−1/2)L(D−1/2X⊤)) =
1

2

∑
u,v

Auv∥ xu√
du
− xv√

dv
∥22.

Of course, the normalized graph Laplacian is also symmetric and positive semidefinite.

Exercise 12.14: Laplacian and Connectedness

Prove that the dimension of the null space of the Laplacian is exactly the number of connected components
in the (weighted) graph.

Moreover, L1 = 0, so the Laplacian always has 0 as an eigenvalue and 1 as the corresponding eigenvector.

Remark 12.15: Graph Laplacian is everywhere

The graph Laplacian played significant roles in the early days of segmentation, dimensionality reduction and
semi-supervised learning, see Shi and Malik (e.g., 2000), Dhillon et al. (2007), Zhu et al. (2003), Zhou et al.
(2004), Coifman et al. (2005), Belkin et al. (2006), Belkin and Niyogi (2008), Hammond et al. (2011), and
Shuman et al. (2013). It allows us to propagate information from one node to another through traversing the
edges and to enforce global consistency through local ones. Typical ways to construct graph from sampled
data include thresholding pairwise distances or comparing node features.
Shi, J. and J. Malik (2000). “Normalized cuts and image segmentation”. IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 22, no. 8, pp. 888–905.
Dhillon, I. S., Y. Guan, and B. Kulis (2007). “Weighted Graph Cuts without Eigenvectors A Multilevel Approach”.

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 11, pp. 1944–1957.
Zhu, X., Z. Ghahramani, and J. Lafferty (2003). “Semi-Supervised Learning Using Gaussian Fields and Harmonic

Functions”. In: Proceedings of the Twentieth International Conference on International Conference on Machine
Learning, pp. 912–919.

Zhou, D., O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf (2004). “Learning with Local and Global Consistency”.
In: Advances in Neural Information Processing Systems 16, pp. 321–328.

Coifman, R. R., S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. W. Zucker (2005). “Geometric
diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps”. Proceedings of the
National Academy of Sciences, vol. 102, no. 21, pp. 7426–7431.

Yaoliang Yu 111 –Version 0.1–Oct 19, 2021–

https://ieeexplore.ieee.org/document/868688
https://ieeexplore.ieee.org/document/4302760
https://www.aaai.org/Papers/ICML/2003/ICML03-118.pdf
https://www.aaai.org/Papers/ICML/2003/ICML03-118.pdf
http://papers.nips.cc/paper/2506-learning-with-local-and-global-consistency.html
https://www.pnas.org/content/102/21/7426
https://www.pnas.org/content/102/21/7426

CS480/680–Spring 2024 §12 GRAPH NEURAL NETWORKS University of Waterloo �

Belkin, M., P. Niyogi, and V. Sindhwani (2006). “Manifold Regularization: A Geometric Framework for Learning
from Labeled and Unlabeled Examples”. Journal of Machine Learning Research, vol. 7, pp. 2399–2434.

Belkin, M. and P. Niyogi (2008). “Towards a theoretical foundation for Laplacian-based manifold methods”. Journal
of Computer and System Sciences, vol. 74, no. 8, pp. 1289–1308.

Hammond, D. K., P. Vandergheynst, and R. Gribonval (2011). “Wavelets on graphs via spectral graph theory”.
Applied and Computational Harmonic Analysis, vol. 30, no. 2, pp. 129–150.

Shuman, D. I., S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst (2013). “The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains”. IEEE
Signal Processing Magazine, vol. 30, no. 3, pp. 83–98.

Definition 12.16: Spectral convolutional networks on graphs (Bruna et al. 2014)

Bruna et al. (2014) also defined the spectral graph convolution of two graph signals x ∈ R|V| and g ∈ R|V|
as:

x ∗ g := U [(U⊤x)⊙ (U⊤g)], where L = UΛU⊤

is the spectral decomposition of the graph Laplacian L and ⊙ denotes component-wise multiplication. Let
g, or equivalently w := U⊤g, represent a filter. We then define a layer of spectral graph convolution as:

xl+1
r = σ

(
U [W l

r ⊙ (U⊤X l)]1
)
, r = 1, . . . , dl+1, X

l = [xl
1, . . . ,x

l
dl
], (12.3)

where dl is the number of channels for layer l and σ : R→ R is some component-wise (nonlinear) activation
function. The formula (12.3) continues to make sense if we only take say bottom sl eigenvectors in U
(corresponding to the smallest eigenvalues). Thus, the number of filter parameters in W l is O(sldldl+1),
which we may reduce through interpolating a few “landmarks”: W l

r = Bαl
r, where B is a fixed interpolation

kernel and the few knots αl
r are tunable.

When a sequence of coarsenings Gl is available (like the spatial convolution in Definition 12.11), we can
then perform pooling on the signal X l by pooling the values in each neighborhood (corresponding to nodes
in V l+1).

Henaff et al. (2015) also considered learning the graph topology and spectral convolution alternately.
Bruna, J., W. Zaremba, A. Szlam, and Y. LeCun (2014). “Spectral Networks and Locally Connected Networks on

Graphs”. In: International Conference on Learning Representations.
Henaff, M., J. Bruna, and Y. LeCun (2015). “Deep Convolutional Networks on Graph-Structured Data”.

Definition 12.17: Chebyshev polynomial

Let p0 ≡ 1 and p1(x) = x. For k ≥ 2 we define the k-th Chebyshev polynomial recursively:

pk(x) = 2x · pk−1(x)− pk−2(x).

It is known that Chebyshev polynomials form an orthogonal basis for L2([−1, 1],dx/
√
1− x2).

Example 12.18: Chebyshev Net (Defferrard et al. 2016)

The spectral graph convolution in Definition 12.16 is expensive as we need to eigen-decompose the Laplacian
L. However, note that

x ∗ g := U [(U⊤g)⊙ (U⊤x)] = U [diag(f(λ;w))(U⊤x)] = [U diag(f(λ;w))U⊤]x,

where we assume U⊤g = f(λ;w) and recall the eigen-decomposition L = U diag(λ)U⊤. The univariate
function f : R→ R is parameterized by w and is applied component-wise to a vector (and component-wise

Yaoliang Yu 112 –Version 0.1–Oct 19, 2021–

https://www.jmlr.org/papers/v7/belkin06a.html
https://www.jmlr.org/papers/v7/belkin06a.html
https://doi.org/10.1016/j.jcss.2007.08.006
https://doi.org/10.1016/j.acha.2010.04.005
https://ieeexplore-ieee-org/document/6494675
https://ieeexplore-ieee-org/document/6494675
https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1506.05163

CS480/680–Spring 2024 §12 GRAPH NEURAL NETWORKS University of Waterloo �

to the eigenvalues of a symmetric matrix). Then, it follows

x ∗ g = f(L;w)x,

and with a polynomial function f(λ;w) =
∑k−1

j=0 wjλ
j we have x ∗ g =

∑k−1
j=0 wjL

jx, where the polynomial
Lj only depends on nodes within j edges hence localized. Using the Chebyshev polynomial we may then
parameterize spectral convolution:

x ∗ g =

k−1∑
j=0

wjpj(L̃)x, where L̃ := 2L/∥L∥ − I,

whose spectrum lies in [−1, 1]. If we define xj = pj(L̃)x, then recursively

xj = 2L̃xj−1 − xj−2, with x0 = x, x1 = L̃x.

The above recursion indicates that Chebyshev net is similar to a k-step unrolling of GNN with linear update
functions.

Thus, computing the graph convolution x ∗ g costs only O(k|E|). We easily extend to multi-channel
signals X = [x1, . . . ,xs] ∈ R|V|×s with filters Wr = [wr

0, . . . ,w
r
k−1] ∈ Rs×k:

x ∗ gr =

s∑
i=1

k−1∑
j=0

wr
ijpj(L̃)xi =

[
p0(L̃), · · · , pk−1(L̃)

]
vec(XWr), r = 1, . . . , t,

where s and t are the number of input and output channels, respectively. Component-wise nonlinear acti-
vation is applied afterwards, and pooling can be similarly performed as before if a sequence of coarsenings
is available.
Defferrard, M., X. Bresson, and P. Vandergheynst (2016). “Convolutional Neural Networks on Graphs with Fast

Localized Spectral Filtering”. In: Advances in Neural Information Processing Systems 29, pp. 3844–3852.

Definition 12.19: Graph convolutional network (GCN) (Kipf and Welling 2017)

Given a weighted graph G = (V, A), a layer of GCN is defined concisely as:

X l+1 = σ
(
D̊−1/2ÅD̊−1/2X lW l

)
, X l = [xl

1, . . . ,x
l
s] ∈ R|V|×s, W l ∈ Rs×t, (12.4)

where Å = A + I (i.e., adding self-cycle), D̊ is the usual diagonal degree matrix of Å, and s and t are the
number of input and output channels, respectively.

GCN can be motivated by setting k = 1 and with weight-sharing wr
i,0 = −wr

i,1 = wr
i in Chebyshev net

(see Example 12.18):

x ∗ gr =

s∑
i=1

(wr
i,0I + wr

i,1L̃)xi =

s∑
i=1

wr
i (I − 2L/∥L∥+ I)xi.

If we use the normalized Laplacian and assume ∥L̄∥ = 2, then

x ∗ gr =

s∑
i=1

wr
i (I +D−1/2AD−1/2)xi = (I︸︷︷︸

self-loop

+ D−1/2AD−1/2︸ ︷︷ ︸
1-hop neighbors

)Xwr.

Comparing to (12.4), we see that GCN first adds the self-loop to the adjacency matrix to get Å and then
renormalizes to get the 1-hop neighbor term D̊−1/2ÅD̊−1/2.

Comparing to Chebyshev net, 1 layer of GCN only takes 1-hop neighbors into account while Chebyshev
net takes all k-hop neighbors into account. However, this can be compensated by stacking k layers in GCN.
Kipf and Welling (2017) applied GCN to semi-supervised node classification where cross-entropy on labeled
nodes is minimized while the unlabeled nodes affect the Laplacian hence also learning of the weights W .

Yaoliang Yu 113 –Version 0.1–Oct 19, 2021–

http://papers.nips.cc/paper/6081-convolutional-neural-networks-on-graphs-with-fast-localized-spectral-filtering.html
http://papers.nips.cc/paper/6081-convolutional-neural-networks-on-graphs-with-fast-localized-spectral-filtering.html

CS480/680–Spring 2024 §12 GRAPH NEURAL NETWORKS University of Waterloo �

Kipf, T. N. and M. Welling (2017). “Semi-Supervised Classification with Graph Convolutional Networks”. In: Inter-
national Conference on Learning Representations.

Example 12.20: Simple graph convolution (SGC) (Wu et al. 2019)

As mentioned above, GCN replaces a layer of Chebyshev net with k compositions of a simple layer defined
in (12.4):

X → σ(L̊XW 1)→ · · · → σ(L̊XW k), L̊ := D̊−1/2ÅD̊−1/2.

Surprisingly, Wu et al. (2019) showed that collapsing the above leads to similar performance, effectively
bringing us back to Chebyshev net with a different polynomial parameterization:

X → σ(L̊kXW).

Wu et al. (2019) proved that the self-loop in Å effectively shrinks the spectrum.
Wu, F., A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger (2019). “Simplifying Graph Convolutional Networks”.

In: Proceedings of the 36th International Conference on Machine Learning, pp. 6861–6871.

Exercise 12.21: Multiplication is indeed composition

Prove that the mapping x 7→ Lkx depends only on k-hop neighbors.

Alert 12.22: The deeper, the worse? (Oono and Suzuki 2020)

Both GCN and SGC seem to suggest that we do not need to build very deep graph networks. This is possibly
due to the small-world phenomenon in many real-word graphs, namely that each node can be reached from
any other node through very few hops. See Oono and Suzuki (2020) for an interesting result along this
direction.
Oono, K. and T. Suzuki (2020). “Graph Neural Networks Exponentially Lose Expressive Power for Node Classifica-

tion”. In: International Conference on Learning Representations.

Algorithm 12.23: Iterative color refinement (Weisfeiler and Lehman 1968)

Algorithm: Weisfeiler-Lehman iterative color refinement (Weisfeiler and Lehman 1968)
Input: Graph G = (V, E , l0)
Output: l|V|−1

1 for t = 0, 1, . . . , |V| − 1 do
2 lt+1 ← hash

(
[ltv, l

t
u∈Nv

] : v ∈ V
)

// [·] is a multiset, allowing repetitions

3 Function hash
(
[lv, lu∈Nv

] : v ∈ V
)
:

4 for v ∈ V do
5 sort

(
lu∈Nv

)
// sort the neighbors

6 add lv as prefix to the sorted list [lv, lu∈Nv
] // lv does not participate in sorting!

7 l+v ← f([lv, lu∈Nv
]) // f : L∗ → L strictly increasing w.r.t. lexicographic order

We follow Shervashidze et al. (2011) to explain the Weisfeiler-Lehman (WL) iterative color refinement
algorithm. Consider a graph G = (V, E , l) with node feature lv in some totally ordered space L for each node

Yaoliang Yu 114 –Version 0.1–Oct 19, 2021–

https://openreview.net/forum?id=SJU4ayYgl
http://proceedings.mlr.press/v97/wu19e.html
https://openreview.net/forum?id=S1ldO2EFPr
https://openreview.net/forum?id=S1ldO2EFPr
https://en.wikipedia.org/wiki/Total_order

CS480/680–Spring 2024 §12 GRAPH NEURAL NETWORKS University of Waterloo �

v ∈ V. For instance, we may simply set lv ≡ 1 and L = {1, 2, . . . , |V|} (a.k.a. colors) if no better information
is available. Then, for each node (in parallel) we repeatedly aggregate information from its neighbors and
reassign its node feature using a hash function (which may change from iteration to iteration).

A typical choice for the hash function is illustrated above, based on sorting the neighbors and using
a strictly increasing function f : L∗ → L that maps the smallest neighborhood [lv, lu∈Nv] to the smallest
element in L, and so on and so forth. (Note that in this convention f may change in different iterations in
WL). By construction, the node feature lv for any node will never decrease (thanks to the monotonicity of
f). W.l.o.g. we may identify L = {1, 2, . . . , |V|}, from which we see that the algorithm need only repeat for
at most |V| iterations: |V|2 ≥

∑
v lv ≥ |V| and each non-vacuous update increases the sum by at least 1. If

we maintain a histogram on the alphabet L, then we may early stop the algorithm when the histogram stops
changing. WL can be implemented in almost linear time (e.g., Berkholz et al. 2017).

As mentioned in this historic comment, WL was motivated by applications in computational chemistry,
where a precursor already appeared in Morgan (1965). An interesting story about Andrey Lehman is
available here while an unsettling story about the disappearance of Boris Weisfeiler is available here.
Weisfeiler, B. and A. Lehman (1968). “The reduction of a graph to canonical form and the algebra which appears

therein”. Nauchno-Technicheskaya Informatsia, vol. 2, no. 9, pp. 12–16.
Shervashidze, N., P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and K. M. Borgwardt (2011). “Weisfeiler-Lehman

Graph Kernels”. Journal of Machine Learning Research, vol. 12, no. 77, pp. 2539–2561.
Berkholz, C., P. Bonsma, and M. Grohe (2017). “Tight Lower and Upper Bounds for the Complexity of Canonical

Colour Refinement”. Theory of Computing Systems, vol. 60, pp. 581–614.
Morgan, H. L. (1965). “The Generation of a Unique Machine Description for Chemical Structures-A Technique

Developed at Chemical Abstracts Service”. Journal of Chemical Documentation, vol. 5, no. 2, pp. 107–113.

Algorithm 12.24: Graph isomorphism test

Testing whether two graphs are isomorphic is one of the few surprising problems in NP that we do not know
if it is in NPC or P. The WL Algorithm 12.23 immediately leads to an early test for graph isomorphism:
we simply “glue” the two input graphs as disjoint components into one graph and start with trivial labeling
lv ≡ 1. Run WL Algorithm 12.23. If at some iteration the histograms on the two components/graphs differ,
then we claim “non-isomorphic.” Otherwise we classify as “possibly isomorphic.”

The above test was mistakenly believed to be a solution to graph isomorphism (Weisfeiler and Lehman
1968) but soon counterexamples were found. Nevertheless, Babai and Kucera (1979) and Babai et al. (1980)
proved that for almost all graphs, the WL test is valid. The exact power of the WL test has been characterized
in Arvind et al. (2015) and Kiefer et al. (2015).
Weisfeiler, B. and A. Lehman (1968). “The reduction of a graph to canonical form and the algebra which appears

therein”. Nauchno-Technicheskaya Informatsia, vol. 2, no. 9, pp. 12–16.
Babai, L. and L. Kucera (1979). “Canonical labelling of graphs in linear average time”. In: 20th Annual Symposium

on Foundations of Computer Science, pp. 39–46.
Babai, L., P. Erdös, and S. M. Selkow (1980). “Random Graph Isomorphism”. SIAM Journal on Computing, vol. 9,

no. 3, pp. 628–635.
Arvind, V., J. Köbler, G. Rattan, and O. Verbitsky (2015). “On the Power of Color Refinement”. In: Fundamentals

of Computation Theory, pp. 339–350.
Kiefer, S., P. Schweitzer, and E. Selman (2015). “Graphs Identified by Logics with Counting”. In: Mathematical

Foundations of Computer Science, pp. 319–330.

Algorithm 12.25: High dimensional WL (e.g., Grohe 2017; Weisfeiler 1976, §O)

For any k ≥ 2, we may lift the WL algorithm by considering k-tuples of nodes v in Vk. Variations on the
neighborhood Nv include:

• WLk: Nv := [Nv,1, . . . ,Nv,k], where Nv,j = [u ∈ Vk : u\j = v\j].

• fWLk: Nv := [Nv,u : u ∈ V], where Nv,u = [(u, v2, . . . , vk), (v1, u, . . . , vk), . . . , (v1, v2, . . . , u)].

• sWLk (Morris et al. 2019): Nv := [u ∈ Vk : |u ∩ v| = k − 1].

Yaoliang Yu 115 –Version 0.1–Oct 19, 2021–

https://www.iti.zcu.cz/wl2018/wlpaper.html
https://towardsdatascience.com/a-forgotten-story-of-soviet-ai-4af5daaf9cdf
http://www.boris.weisfeiler.com/
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
http://jmlr.org/papers/v12/shervashidze11a.html
http://jmlr.org/papers/v12/shervashidze11a.html
https://doi.org/10.1007/s00224-016-9686-0
https://doi.org/10.1007/s00224-016-9686-0
https://doi.org/10.1021/c160017a018
https://doi.org/10.1021/c160017a018
https://en.wikipedia.org/wiki/Graph_isomorphism
https://en.wikipedia.org/wiki/NP_(complexity)
https://en.wikipedia.org/wiki/NP-completeness
https://en.wikipedia.org/wiki/P_(complexity)
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://ieeexplore-ieee-org/document/4567999
https://doi.org/10.1137/0209047
https://link.springer.com/chapter/10.1007/978-3-319-22177-9_26
https://link.springer.com/chapter/10.1007/978-3-662-48057-1_25

CS480/680–Spring 2024 §12 GRAPH NEURAL NETWORKS University of Waterloo �

We initialize k-tuples u and v with the same node feature (color) if the (ordered) subgraph they induce are
isomorhpic (and with the same node features inherited from the original graph). The WL Algorithm 12.23
will be denoted as WL1; see Grohe (2017, p. 84) on how to unify the description.

It is known that WLk+1 is as powerful as fWLk (Grohe and Otto 2015). For k ≥ 2, WLk+1 is strictly
more powerful than WLk (Grohe and Otto 2015; Cai et al. 1992, Observation 5.13 and Theorem 5.17), while
WL1 is equivalent to WL2 (Grohe and Otto 2015; Cai et al. 1992). Moreover, sWLk is strictly weaker than
WLk (Sato 2020, page 15).
Grohe, M. (2017). “Descriptive Complexity, Canonisation, and Definable Graph Structure Theory”. Cambridge Uni-

versity Press.
Weisfeiler, B. (1976). “On Construction and Identification of Graphs”. Springer.
Morris, C., M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe (2019). “Weisfeiler and

Leman Go Neural: Higher-Order Graph Neural Networks”. In: Proceedings of the AAAI Conference on Artificial
Intelligence.

Grohe, M. and M. Otto (2015). “Pebble Games and Linear Equations”. The Journal of Symbolic Logic, vol. 80, no. 3,
pp. 797–844.

Cai, J., M. Fürer, and N. Immerman (1992). “An optimal lower bound on the number of variables for graph identifi-
cation”. Combinatorica, vol. 12, pp. 389–410.

Sato, R. (2020). “A Survey on The Expressive Power of Graph Neural Networks”.

Remark 12.26: The connection between WL and GCN

The similarity between WL Algorithm 12.23 and GCN is recognized in Kipf and Welling (2017). Indeed,
consider the following specialization of the hash function in Algorithm 12.23:

ll+1
v = σ

([
1

dv+1 lv +
∑
u∈Nv

avu√
(dv+1)(du+1)

llu

]
W l

)
,

which is exactly the GCN update in (12.4) (with the identification Xv: = lv). From this observation we
see that even with random weights W , GCN may still be able to extract useful node features, as confirmed
through an example in Kipf and Welling (2017, Appendix A.1).
Kipf, T. N. and M. Welling (2017). “Semi-Supervised Classification with Graph Convolutional Networks”. In: Inter-

national Conference on Learning Representations.

Remark 12.27: Graph isomorphism network (GIN) (Xu et al. 2019)

(Xu et al. 2020; Maron et al. 2019; Dehmamy et al. 2019; Bianchi and Lachi 2023)
Xu, K., W. Hu, J. Leskovec, and S. Jegelka (2019). “How Powerful are Graph Neural Networks?” In: International

Conference on Learning Representations.
Xu, K., J. Li, M. Zhang, S. S. Du, K.-i. Kawarabayashi, and S. Jegelka (2020). “What Can Neural Networks Reason

About?” In: International Conference on Learning Representations.
Maron, H., H. Ben-Hamu, H. Serviansky, and Y. Lipman (2019). “Provably Powerful Graph Networks”. In: Advances

in Neural Information Processing Systems 32, pp. 2156–2167.
Dehmamy, N., A.-L. Barabasi, and R. Yu (2019). “Understanding the Representation Power of Graph Neural Networks

in Learning Graph Topology”. In: Advances in Neural Information Processing Systems 32, pp. 15413–15423.
Bianchi, F. M. and V. Lachi (2023). “The expressive power of pooling in Graph Neural Networks”. In: Advances in

Neural Information Processing Systems 36, pp. 610–619.

Definition 12.28: Graph attention

(Veličković et al. 2018; Lee et al. 2018, 2019; Zhang et al. 2018)
Veličković, P., G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio (2018). “Graph Attention Networks”. In:

International Conference on Learning Representations.

Yaoliang Yu 116 –Version 0.1–Oct 19, 2021–

https://doi.org/10.1017/9781139028868
https://link.springer.com/book/10.1007/BFb0089374
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.1017/jsl.2015.28
https://doi.org/10.1007/BF01305232
https://doi.org/10.1007/BF01305232
https://arxiv.org/abs/2003.04078
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=rJxbJeHFPS
https://openreview.net/forum?id=rJxbJeHFPS
http://papers.nips.cc/paper/8488-provably-powerful-graph-networks.html
http://papers.nips.cc/paper/9675-understanding-the-representation-power-of-graph-neural-networks-in-learning-graph-topology.html
http://papers.nips.cc/paper/9675-understanding-the-representation-power-of-graph-neural-networks-in-learning-graph-topology.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/e26f31de8b13ec569bf507e6ae2cd952-Abstract-Conference.html
https://openreview.net/forum?id=rJXMpikCZ

CS480/680–Spring 2024 §12 GRAPH NEURAL NETWORKS University of Waterloo �

Lee, J. B., R. Rossi, and X. Kong (2018). “Graph Classification Using Structural Attention”. In: Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1666–1674.

Lee, J. B., R. A. Rossi, S. Kim, N. K. Ahmed, and E. Koh (2019). “Attention Models in Graphs: A Survey”. ACM
Transactions on Knowledge Discovery from Data, vol. 13, no. 6.

Zhang, J., X. Shi, J. Xie, H. Ma, I. King, and D.-Y. Yeung (2018). “GaAN: Gated Attention Networks for Learning
on Large and Spatiotemporal Graphs”. In: UAI.

Yaoliang Yu 117 –Version 0.1–Oct 19, 2021–

https://doi.org/10.1145/3219819.3219980
https://doi.org/10.1145/3363574
http://auai.org/uai2018/proceedings/papers/139.pdf
http://auai.org/uai2018/proceedings/papers/139.pdf

