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15 Generative Adversarial Networks (GAN)

Goal

Push-forward, Generative Adversarial Networks, min-max optimization, duality.

Alert 15.1: Convention

Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.

Example 15.2: Simulating distributions

Suppose we want to sample from a Gaussian distribution with mean u and covariance S. The typical approach
is to first sample from the standard Gaussian distribution (with zero mean and identity covariance) and then
perform the transformation:

If Z ∼ N (0, I), then X = T(Z) := u+ S1/2Z ∼ N (u, S).

Similarly, we can sample from a χ2 distribution with zero mean and degree d by the transformation:

If Z ∼ N (0, Id), then X = T(Z) :=
d∑

j=1

Z2
j ∼ χ2(d).

In fact, we can sample from any distribution F on R by the following transformation:

If Z ∼ N (0, 1), then X = T(Z) := F−(Φ(Z)) ∼ F, where F−(z) = min{x : F (x) ≥ z},

and Φ is the cumulative distribution function of standard normal.

Theorem 15.3: Transforming to any probability measure

Let µ be a diffuse (Borel) probability measure on a polish space Z and similarly ν be any (Borel) probability
measure on another polish space X. Then, there exist (measurable) maps T : Z→ X such that

If Z ∼ µ, then X := T(Z) ∼ ν.

■
Recall that a (Borel) probability measure is diffuse iff any single point has measure 0. For less math-

ematical readers, think of Z = Rp, X = Rd, µ and ν as probability densities on the respective Euclidean
spaces.

Definition 15.4: Push-forward generative modeling

Given an i.i.d. sample X1, . . . ,Xn ∼ χ, we can now estimate the target density χ by the following push-
forward approach:

inf
θ

D(X,Tθ(Z)),

where say Z ∼ N (0, Ip), Tθ : Rp → Rd, and X ∼ χ (the true underlying data generating distribution). The
function D is a “distance” that measures the closeness of our (true) data distribution (represented by X) and
model distribution (represented by Tθ(Z)). By minimizing D we bring our model Tθ(Z) close to our data
X.
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Remark 15.5: The good, the bad, and the beautiful

One big advantage of the push-forward approach in Definition 15.4 is that after training (e.g. finding a
reasonable θ) we can effortlessly generate new data: we sample Z ∈ N (0, Id) and then set X = Tθ(Z). On
the flip side, we no longer have any explicit form for the model density (namely, that of Tθ(Z) when p < d).
This renders direct maximum likelihood estimation of θ impossible.

This is where we need the beautiful idea called duality. Basically, we need to distinguish two distributions:
the data distribution represented by a sample X and the model distribution represented by a sample Tθ(Z).
We distinguish them by running many tests, represented by functions f :

sup
f∈F

|Ef(X)− Ef
(
Tθ(Z)

)
|.

If the class of tests F we run is dense enough, then we would be able to tell the difference between the two
distributions and provide feedback for the model θ to improve, until we no longer can tell the difference.

Definition 15.6: f-divergence (Csiszár 1963; Ali and Silvey 1966)

Let f : R+ → R be a strictly convex function (see the background lecture on optimization) with f(1) = 0.
We define the following f -divergence to measure the closeness of two pdfs p and q:

Df (p∥q) :=
∫
f
(
p(x)/q(x)

)
· q(x) dx, (15.1)

where we assume q(x) = 0 =⇒ p(x) = 0 (otherwise we put the divergence to ∞).
For two random variables Z ∼ q and X ∼ p, we sometimes abuse the notation to mean

Df (X∥Z) := Df (p∥q).

Csiszár, I. (1963). “Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität
von Markoffschen Ketten”. A Magyar Tudományos Akadémia Matematikai Kutató Intézetének közleményei, vol. 8,
pp. 85–108.

Ali, S. M. and S. D. Silvey (1966). “A General Class of Coefficients of Divergence of One Distribution from Another”.
Journal of the Royal Statistical Society. Series B (Methodological), vol. 28, no. 1, pp. 131–142.

Exercise 15.7: Properties of f-divergence

Prove the following:

• Df (p∥q) ≥ 0, with 0 attained iff p = q;

• Df+g = Df + Dg and Dsf = sDf for s > 0;

• Let g(t) = f(t) + s(t− 1) for any s. Then, Dg = Df ;

• If p(x) = 0 ⇐⇒ q(x) = 0, then Df (p∥q) = Df⋄(q∥p), where f⋄(t) := t · f(1/t);

• f⋄ is (strictly) convex, f⋄(1) = 0 and (f⋄)⋄ = f ;

The second last result indicates that f -divergences are not usually symmetric. However, we can always
symmetrize them by the transformation: f ← f + f⋄.

Yaoliang Yu 56 –Version 0.11–Nov 2, 2021–

https://en.wikipedia.org/wiki/The_Good,_the_Bad_and_the_Ugly
https://en.wikipedia.org/wiki/F-divergence
https://adt.arcanum.com/hu/view/MATKUTINT_08/
https://adt.arcanum.com/hu/view/MATKUTINT_08/
http://www.jstor.org/stable/2984279


CS480/680–Spring 2024 §15 GENERATIVE ADVERSARIAL NETWORKS (GAN) University of Waterloo �

Example 15.8: KL and LK

Let f(t) = t log t, then we obtain the Kullback-Leibler (KL) divergence:

KL(p∥q) =
∫

p(x) log(p(x)/q(x)) dx.

Reverse the inputs we obtain the reverse KL divergence (a.k.a. Burg’s entropy, Burg 1975):

LK(p∥q) := KL(q∥p).

Verify by yourself that the underlying function f = − log for reverse KL.
Burg, J. P. (1975). “Maximum Entropy Spectral Analysis”. PhD thesis.

Example 15.9: More divergences, more fun

Derive the formula for the following f -divergences:

• Pearson’s χ2-divergence: f(t) = 1
2 (t− 1)2;

• Neyman’s reverse χ2-divergence: f(t) = 1
2 (

1
t + t− 2) = t

2 (
1
t − 1)2;

• Hellinger divergence: f(t) = 2(
√
t− 1)2;

• total variation: f(t) = |t− 1|;

• Jensen-Shannon divergence: f(t) = t log t− (t+ 1) log(t+ 1) + log 4;

• Rényi divergence (Rényi 1961, 1965): fα(t) =
tα−1−α(t−1)

α(α−1) for some α ∈ R. What are the limits for
α = 1 and α = 0? Show that f⋄α(t) = f1−α(t).

Which of the above are symmetric?
Rényi, A. (1961). “On Measures of Entropy and Information”. In: Proceedings of the Fourth Berkeley Symposium on

Mathematical Statistics and Probability, pp. 547–561.
— (1965). “On the Foundations of Information Theory”. Review of the International Statistical Institute, vol. 33,

no. 1, pp. 1–14.

Remark 15.10: More on the Rényi divergence

(Tsallis 1988; Perez 1967; Havrda and Charvát 1967)
Tsallis, C. (1988). “Possible generalization of Boltzmann-Gibbs statistics”. Journal of statistical physics, vol. 52, no. 1,

pp. 479–487.
Perez, A. (1967). “Information-theoretic risk estimates in statistical decision”. Kybernetika, vol. 3, no. 1, pp. 1–21.
Havrda, J. and F. Charvát (1967). “Quantification method of classification processes. Concept of structural a-entropy”.

Kybernetika, vol. 3, no. 1, pp. 30–35.

Definition 15.11: Fenchel conjugate function

For any extended real-valued function f : V→ (−∞,∞] we define its Fenchel conjugate function as:

f∗(x∗) := sup
x
⟨x,x∗⟩ − f(x).

We remark that f∗ is always a convex function (of x∗).
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If dom f is nonempty and closed, and f is continuous, then

f∗∗ := (f∗)∗ = f.

This remarkable property of convex functions will now be used!

Example 15.12: Fenchel conjugate of JS

Consider the convex function that defines the Jensen-Shannon divergence:

f(t) = t log t− (t+ 1) log(t+ 1) + log 4. (15.2)

We derive its Fenchel conjugate:

f∗(s) = sup
t
st− f(t) = sup

t
st− t log t+ (t+ 1) log(t+ 1)− log 4.

Taking derivative w.r.t. t we obtain

s− log t− 1 + log(t+ 1) + 1 = 0 ⇐⇒ t =
1

exp(−s)− 1
,

and plugging it back we get

f∗(s) =
s

exp(−s)− 1
− 1

exp(−s)− 1
log

1

exp(−s)− 1
+

exp(−s)
exp(−s)− 1

log
exp(−s)

exp(−s)− 1
− log 4

=
s

exp(−s)− 1
− 1

exp(−s)− 1
log

1

exp(−s)− 1
+

exp(−s)
exp(−s)− 1

log
1

exp(−s)− 1
− s exp(−s)

exp(−s)− 1
− log 4

= −s− log(exp(−s)− 1)− log 4

= − log(1− exp(s))− log 4. (15.3)

Using conjugation again, we obtain the important formula:

f(t) = sup
s
st− f∗(s) = sup

s
st+ log(1− exp(s)) + log 4.

Exercise 15.13: More conjugates

Derive the Fenchel conjugate of the other convex functions in Example 15.8 and Example 15.9.

Definition 15.14: Generative adversarial networks (GAN) (Goodfellow et al. 2014)

We are now ready to define the original GAN, which amounts to using the Jensen-Shannon divergence in
Definition 15.4:

inf
θ

JS(X∥Tθ(Z)), where JS(p∥q) = Df (p∥q) = KL(p∥ p+q
2 ) + KL(p∥ p+q

2 ),

and the convex function f is defined in (15.2), along with its Fenchel conjugate f∗ given in (15.3).
To see how we can circumvent the lack of an explicit form of the density q(x) of Tθ(Z), we expand using

duality:

JS(X∥Tθ(Z)) =

∫
x

f
(
p(x)/q(x)

)
q(x) dx

=

∫
x

[sup
s
sp(x)/q(x)− f∗(s)]q(x) dx

Yaoliang Yu 58 –Version 0.11–Nov 2, 2021–

https://en.wikipedia.org/wiki/Closed_set


CS480/680–Spring 2024 §15 GENERATIVE ADVERSARIAL NETWORKS (GAN) University of Waterloo �

=

∫
x

[sup
s
sp(x)− f∗(s)q(x)] dx

= sup
S:Rd→R

∫
x

S(x)p(x) dx−
∫
x

f∗(S(x))q(x) dx

= sup
S:Rd→R

ES(X)− Ef∗(S(Tθ(Z))).

Therefore, if we parameterize the test function S by ϕ (say a deep net), then we obtain a lower bound of
the Jensen-Shannon divergence for minimizing:

inf
θ

sup
ϕ
ESϕ(X)− Ef∗(Sϕ(Tθ(Z))).

Of course, we cannot compute either of the two expectations, so we use sample average to approximate them:

inf
θ

sup
ϕ
ÊSϕ(X)− Êf∗(Sϕ(Tθ(Z))), (15.4)

where the first sample expectation Ê is simply the average of the given training data while the second sample
expectation is the average over samples generated by the model Tθ(Z) (recall Remark 15.5).

In practice, both Tθ and Sϕ are represented by deep nets, and the former is called the generator while
the latter is called the discriminator. Our final objective (15.4) represents a two-player game between
the generator and the discriminator. At equilibrium (if any) the generator is forced to mimic the (true)
data distribution (otherwise the discriminator would be able to tell the difference and incur a loss for the
generator).

See the background lecture on optimization for a simple algorithm (gradient-descent-ascent) for solving
(15.4).
Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio (2014).

“Generative Adversarial Nets”. In: Advances in Neural Information Processing Systems.

Remark 15.15: Approximation

We made a number of approximations in Definition 15.14. Thus, technically speaking, the final GAN
objective (15.4) no longer minimizes the Jensen-Shannon divergence. Nock et al. (2017) and Liu et al.
(2017) formally studied this approximation trade-off.
Nock, R., Z. Cranko, A. K. Menon, L. Qu, and R. C. Williamson (2017). “f -GANs in an Information Geometric

Nutshell”. In: Advances in Neural Information Processing Systems.
Liu, S., L. Bottou, and K. Chaudhuri (2017). “Approximation and convergence properties of generative adversarial

learning”. In: Advances in Neural Information Processing Systems.

Exercise 15.16: Catch me if you can

Let us consider the game between the generator q(x) (the implicit density of Tθ(Z)) and the discriminator
S(x):

inf
q

sup
S

∫
x

S(x)p(x) dx+

∫
x

log
(
1− exp(S(x))

)
q(x) dx+ log 4.

• Fixing the generator q, what is the optimal discriminator S?

• Plugging the optimal discriminator S back in, what is the optimal generator?

• Fixing the discriminator S, what is the optimal generator q?

• Plugging the optimal generator q back in, what is the optimal discriminator?
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Exercise 15.17: KL vs. LK

Recall that the f -divergence Df (p∥q) is infinite iff for some x, p(x) ̸= 0 while q(x) = 0. Consider the
following twin problems:

qKL := argmin
q∈Q

KL(p∥q)

qLK := argmin
q∈Q

LK(p∥q).

Recall that supp(p) := cl{x : p(x) ̸= 0}. What can we say about supp(p), supp(qKL) and supp(qLK)?
What about JS?

Definition 15.18: KL GAN (Sønderby et al. 2017)

Sønderby, C. K., J. Caballero, L. Theis, W. Shi, and F. Huszár (2017). “Amortised MAP Inference for Image Super-
resolution”. In: International Conference on Learning Representations.

Definition 15.19: f-GAN (Nowozin et al. 2016)

Following Nowozin et al. (2016), we summarize the main idea of f -GAN as follows:

• Generator: Let µ be a fixed reference probability measure on space Z (usually the standard normal
distribution) and Z ∼ µ. Let ν be any target probability measure on space X and X ∼ ν. Let
T ⊆ {T : Z → X} be a class of transformations. According to Theorem 15.3 we know there exist
transformations T (which may or may not be in our class T ) so that T(Z) ∼ X ∼ ν. Our goal is to
approximate such transformations T using our class T .

• Loss: We use the f -divergence to measure the closeness between the target X and the transformed
reference T(Z):

inf
T∈T

Df

(
X∥T(Z)

)
.

In fact, any loss function that allows us to distinguish two probability measures can be used. However,
we face an additional difficulty here: the densities of X and T(Z) (w.r.t. a third probability measure
λ) are not known to us (especially the former) so we cannot naively evaluate the f -divergence in (15.1).

• Discriminator: A simple variational reformulation will resolve the above difficulty! Indeed,

Df (X∥T(Z)) =
∫
f

(
dν

dτ
(x)

)
dτ(x) (T(Z) ∼ τ)

=

∫
sup

s∈dom(f∗)

[
s
dν

dτ
(x)− f∗(s)

]
dτ(x) (f∗∗ = f)

≥ sup
S∈S

∫ [
S(x)

dν

dτ
(x)− f∗(S(x))

]
dτ(x) (S ⊆ {S : X→ dom(f∗)})

= sup
S∈S

E[S(X)]−E[f∗
(
S(T(Z))

)
] (equality if f ′

(
dν

dτ

)
∈ S),

so our estimation problem reduces to the following minimax zero-sum game:

inf
T∈T

sup
S∈S

E[S(X)]−E[f∗
(
S(T(Z))

)
].

By replacing the expectations with empirical averages we can (approximately) solve the above problem
with classic stochastic algorithms.
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• Reparameterization: The class of functions S we use to test the difference between two probability
measures in the f -divergence must have their range contained in the domain of f∗. One convenient
way to enforce this constraint is to set

S = σ ◦ U := {σ ◦ U : U ∈ U}, σ : R→ dom(f∗), U ⊆ {U : X→ R},

where the functions U are unconstrained and the domain constraint is enforced through a fixed “acti-
vation function” σ. With this choice, the final f -GAN problem we need to solve is:

inf
T∈T

sup
U∈U

E[σ ◦ U(X)]−E[(f∗ ◦ σ)
(
U(T(Z))

)
].

Typically we choose an increasing σ so that the composition f∗◦σ is “nice.” Note that the monotonicity
of σ implies the same monotonicity of the composition f∗ ◦ σ (since f∗ is always increasing as f is
defined only on R+). In this case, we prefer to pick a test function U so that U(X) is large while
U(T(Z)) is small. This choice aligns with the goal to “maximize target and minimize transformed
reference,” although the opposite choice would work equally well (merely a sign change).

Nowozin, S., B. Cseke, and R. Tomioka (2016). “f -GAN: Training Generative Neural Samplers using Variational
Divergence Minimization”. In: Advances in Neural Information Processing Systems.

Remark 15.20: f-GAN recap

To specify an f -GAN, we need:

• A reference probability measure µ: should be easy to sample and typically we use standard normal;

• A class of transformations (generators): T ⊆ {T : Z→ X};

• An increasing convex function f∗ : dom(f∗) → R with f∗(0) = 0 and f∗(s) ≥ s (or equivalently an
f -divergence);

• An increasing activation function σ : R→ dom(f∗) so that f∗ ◦ σ is “nice”;

• A class of unconstrained test functions (discriminators): U ⊆ {U : X→ R} so that S = σ ◦ U .

More on f -GAN: (Mescheder et al. 2018).
Mescheder, L., A. Geiger, and S. Nowozin (2018). “Which Training Methods for GANs do actually Converge?” In:

Proceedings of the 35th International Conference on Machine Learning.

Definition 15.21: Wasserstein GAN (WGAN) (Arjovsky et al. 2017)

If we let the test functions range over the set of all 1-Lipschitz continuous functions L, we then obtain
WGAN:

inf
θ

sup
S∈L

ES(X)− ES
(
Tθ(Z)

)
,

which corresponds to the dual of the 1-Wasserstein distance.
Gulrajani et al. 2017; Salimans et al. 2016; Petzka et al. 2018; Wei et al. 2018; Adler and Lunz 2018; Liu

et al. 2018.
Arjovsky, M., S. Chintala, and L. Bottou (2017). “Wasserstein Generative Adversarial Networks”. In: Proceedings of

the 34th International Conference on Machine Learning.
Gulrajani, I., F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville (2017). “Improved Training of Wasserstein

GANs”. In: Advances in Neural Information Processing Systems.
Salimans, T., I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen (2016). “Improved Techniques for

Training GANs”. In: Advances in Neural Information Processing Systems.
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Petzka, H., A. Fischer, and D. Lukovnikov (2018). “On the regularization of Wasserstein GANs”. In: International
Conference on Learning Representations.

Wei, X., B. Gong, Z. Liu, W. Lu, and L. Wang (2018). “Improving the Improved Training of Wasserstein GANs: A
Consistency Term and Its Dual Effect”. In: International Conference on Learning Representations.

Adler, J. and S. Lunz (2018). “Banach Wasserstein GAN”. In: Advances in Neural Information Processing Systems.
Liu, H., X. GU, and D. Samaras (2018). “A Two-Step Computation of the Exact GAN Wasserstein Distance”. In:

Proceedings of the 35th International Conference on Machine Learning.

Definition 15.22: Maximum Mean Discrepancy GAN (MMD-GAN)

If, instead, we choose the test functions from a reproducing kernel Hilbert space (RKHS), then we obtain
the so-called MMD-GAN (Dziugaite et al. 2015; Li et al. 2015; Li et al. 2017a; Bińkowski et al. 2018):

inf
θ

sup
S∈Hκ

ES(X)− ES
(
Tθ(Z)

)
,

where Hκ is the unit ball of the RKHS induced by the kernel κ.
More on MMD-GAN: (Li et al. 2017a; Wang et al. 2019; Mroueh et al. 2017; Arbel et al. 2018; Dai et al.

2017; Li et al. 2018; Ren et al. 2016; Sutherland et al. 2017; Zhao et al. 2017; Li et al. 2017b).
Dziugaite, G. K., D. M. Roy, and Z. Ghahramani (2015). “Training generative neural networks via maximum mean

discrepancy optimization”. In: Conference on Uncertainty in Artificial Intelligence.
Li, Y., K. Swersky, and R. Zemel (2015). “Generative Moment Matching Networks”. In: Proceedings of the 32nd

International Conference on Machine Learning.
Li, C.-L., W.-C. Chang, Y. Cheng, Y. Yang, and B. Poczos (2017a). “MMD GAN: Towards Deeper Understanding

of Moment Matching Network”. In: Advances in Neural Information Processing Systems.
Bińkowski, M., D. J. Sutherland, M. Arbel, and A. Gretton (2018). “Demystifying MMD GANs”. In: International

Conference on Learning Representations.
Wang, W., Y. Sun, and S. Halgamuge (2019). “Improving MMD-GAN Training with Repulsive Loss Function”. In:

International Conference on Learning Representations.
Mroueh, Y., T. Sercu, and V. Goel (2017). “McGan: Mean and Covariance Feature Matching GAN”. In: Proceedings

of the 34th International Conference on Machine Learning.
Arbel, M., D. J. Sutherland, M. Bińkowski, and A. Gretton (2018). “On gradient regularizers for MMD GANs”. In:

Advances in Neural Information Processing Systems.
Dai, Z., A. Almahairi, P. Bachman, E. Hovy, and A. Courville (2017). “Calibrating Energy-based Generative Adver-

sarial Networks”. In: International Conference on Learning Representations.
Li, C.-L., M. Zaheer, Y. Zhang, B. Poczos, and R. Salakhutdinov (2018). “Point Cloud GAN”. arXiv:1810.05795.
Ren, Y., J. Zhu, J. Li, and Y. Luo (2016). “Conditional Generative Moment-Matching Networks”. In: Advances in

Neural Information Processing Systems.
Sutherland, D. J., H.-Y. Tung, H. Strathmann, S. De, A. Ramdas, A. Smola, and A. Gretton (2017). “Generative Mod-

els and Model Criticism via Optimized Maximum Mean Discrepancy”. In: International Conference on Learning
Representations.

Zhao, J., M. Mathieu, and Y. LeCun (2017). “Energy-based Generative Adversarial Networks”. In: International
Conference on Learning Representations.

Li, Y., A. Schwing, K.-C. Wang, and R. Zemel (2017b). “Dualing GANs”. In: Advances in Neural Information
Processing Systems.

Definition 15.23: Fisher GAN (Mroueh and Sercu 2017)

Mao et al. 2017; Tao et al. 2018; Bellemare et al. 2017
Mroueh, Y. and T. Sercu (2017). “Fisher GAN”. In: Advances in Neural Information Processing Systems.
Mao, X., Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley (2017). “Least Squares Generative Adversarial

Networks”. In: IEEE International Conference on Computer Vision (ICCV), pp. 2813–2821.
Tao, C., L. Chen, R. Henao, J. Feng, and L. Carin (2018). “χ2 Generative Adversarial Network”. In: Proceedings of

the 35th International Conference on Machine Learning.
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Definition 15.24: Sobolev GAN (Mroueh et al. 2018)
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