
CS480/680–Spring 2024 §7 AUTOMATIC DIFFERENTIATION (AUTODIFF) University of Waterloo �

7 Automatic Differentiation (AutoDiff)

Goal

Forward and reverse mode auto-differentiation.

Alert 7.1: Convention

Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.

Definition 7.2: Function superposition and computational graph (Bauer 1974)

Let F0 be a class of basic functions. A (vector-valued) function g : X ⊆ Rd → Rm is a superposition of
the basic class F0 if the following is satisfied:

• There exist some DAG G = (V ,E) where using topological sorting we arrange the nodes as follows:

v1, . . . , vd︸ ︷︷ ︸
input

, vd+1, . . . , vd+k,︸ ︷︷ ︸
intermediate variables

vd+k+1, . . . , vd+k+m︸ ︷︷ ︸
output

, and (vi, vj) ∈ E =⇒ i < j.

Here we implicitly assume the outputs of the function g do not depend on each other. If they do, we
need only specify the indices of the output nodes accordingly (i.e., they may not all appear in the end).

• For each node vi, let Ii := {u ∈ V : (u, vi) ∈ E } and Oi := {u ∈ V : (vi, u) ∈ E } denote the
(immediate) predecessors and successors of vi, respectively. Clearly, Ii = ∅ if i ≤ d (i.e., input nodes)
and Oi = ∅ if i > d+ k (i.e., output nodes).

• The nodes are computed as follows: sequentially for i = 1, . . . , d+ k +m,

vi =

{
xi, i ≤ d
fi(Ii), i > d

, where fi ∈ F0. (7.1)

Our definition of superposition closely resembles the computational graph of Bauer (1974), who attributed
the idea to Kantorovich (1957).

Bauer, F. L. (1974). “Computational Graphs and Rounding Error”. SIAM Journal on Numerical Analysis, vol. 11,
no. 1, pp. 87–96.

Kantorovich, L. V. (1957). “On a system of mathematical symbols, convenient for electronic computer operations”.
Soviet Mathematics Doklady, vol. 113, no. 4, pp. 738–741.

Exercise 7.3: Neural networks as function superposition

Let F0 = {+,×, σ, constant}. Prove that any multi-layer NN is a superposition of the basic class F0.
Is exp a superposition of the basic class above?

Theorem 7.4: Automatic differentiation (e.g., Kim et al. 1984)

Let F0 be a basic class of differentiable functions that includes +,×, and all constants. Denote T (f) as
the complexity of computing the function f and T (f,∇f) the complexity with additional computation of
the gradient. Let If and Of be the input and output arguments and assume there exists some constant

Yaoliang Yu 82 –Version 0.1–May 30, 2024–

https://en.wikipedia.org/wiki/Directed_acyclic_graph
http://www.jstor.org/stable/2156433
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=21784&option_lang=eng

CS480/680–Spring 2024 §7 AUTOMATIC DIFFERENTIATION (AUTODIFF) University of Waterloo �

C = C(F0) > 0 so that

∀f ∈ F0, T (f,∇f) + |If ||Of |[T (+) + T (×) + T (constant)] ≤ C · T (f). (7.2)

Then, for any superposition g : Rd → Rm of the basic class F0, we have

T (g,∇g) ≤

{
Cγd · T (g), forward mode
Cγm · T (g), reverse mode

, i.e., T (g,∇g) ≤ Cγ(m ∧ d) · T (g),

where γ is the maximum output dimension of the basic functions used to superpose g.

Proof: Applying the chain rule to the recursive formula (7.1) it is clear that any superposition g is differen-
tiable too. We split the proof into two parts: a forward mode and a backward mode.

Forward mode: Let us define the block matrix U = [U1, . . . , Ud, Ud+1, . . . , Ud+k, Ud+k+1, . . . , Ud+k+m] ∈
Rd×

∑
i di , where each column block Ui corresponds to the gradient ∂vi

∂x ∈ R
d×di , where di is the output

dimension of node vi (typically 1). By definition of the input nodes we have

Ui = ei, i = 1, . . . , d,

where ei is the standard basis vector in Rd. Using the recursive formula (7.1) and chain rule we have

Ui =
∂vi
∂x

=
∑
j∈Ii

∂vj
∂x
· ∂vi
∂vj

=
∑
j∈Ii

Uj · ∇jfi, where ∇jfi =
∂fi
∂vj
∈ Rdj×di .

In essence, by differentiating at each node, we obtain a square and sparse system of linear equations, where
∇jfi are known coefficients and Ui are unknown variables. Solving the linear system yields Ud+k+1, . . . , Ud+k+m,
the desired gradient of g. Thanks to the topological ordering, we can simply solve Ui one by one. Let
γ = maxi di be the maximum output dimension of any node. We bound the complexity of the forward mode
as follows:

T (g,∇g) ≤
∑
i∈V

T (fi,∇fi) +
∑
j∈Ii

ddidj [T (+) + T (×) + T (constant)]

≤ dγ
∑
i∈V

T (fi,∇fi) + |Ifi ||Ofi |[T (+) + T (×) + T (constant)] ≤ dγ
∑
i∈V

C · T (fi) = dγC · T (g).

Reverse mode: Let us rename the outputs yi = vd+k+i for i = 1, . . . ,m. Similarly we define the
block matrix V = [V1; . . . ;Vd;Vd+1; . . . ;Vd+k;Vd+k+1; . . . ;Vd+k+m] ∈ R

∑
i di×m, where each row block Vi

corresponds to the transpose of the gradient ∂y
∂vi
∈ Rm×di , where di is the output dimension of node vi

(typically 1). By definition of the output nodes we have

Vd+k+i = ei, i = 1, . . . ,m, ei ∈ R1×m.

Using the recursive formula (7.1) and chain rule we have

Vi =
∂y

∂vi
=
∑
j∈Oi

∂vj
∂vi
· ∂y
∂vj

=
∑
j∈Oi

∇ifj · Vj , where ∇ifj =
∂fj
∂vi
∈ Rdi×dj . (7.3)

Again, by differentiating at each node we obtain a square and sparse system of linear equations, where
∇ifj are known coefficients and Vi are unknown variables. Solving the linear system yields V1, . . . , Vd, the
desired gradient of g. Thanks to the topological ordering, we can simply solve Vi one by one backwards,
after a forward pass to get the function values at each node. Similar as the forward mode, we can bound
the complexity as mγC · T (g).

Thus, surprisingly, for real-valued superpositions (m = γ = 1), computing the gradient, which is a d× 1
vector, costs at most constant times that of the function value (which is a scalar), if we operate in the reverse
mode! The common misconception is that the gradient has size d × 1 hence if we compute one component

Yaoliang Yu 83 –Version 0.1–May 30, 2024–

https://en.wikipedia.org/wiki/Chain_rule

CS480/680–Spring 2024 §7 AUTOMATIC DIFFERENTIATION (AUTODIFF) University of Waterloo �

at a time we end up d times slower. This is wrong, because we can recycle computations. Note also that
even reading the input already costs O(d). However, this time complexity gain, as compared to that of the
forward mode, is achieved through a space complexity tradeoff: in reverse mode we need a forward pass first
to collect and store all function values at each node, whereas in the forward mode these function values can
be computed on the fly.

We note that in the proof we (tacitly) took for granted that

T (g) =
∑
i∈V

T (fi),

i.e., the computational cost of the supposition g is simply the total cost of each component (e.g., by following
the recursion (7.1) blindly).
Kim, K. V., Y. E. Nesterov, and B. V. Cherkasskii (1984). “An estimate of the effort in computing the gradient”.

Soviet Mathematics Doklady, vol. 29, no. 2, pp. 384–387.

Algorithm 7.5: Automatic differentiation (AD) pesudocode

We summarize the forward and reverse algorithms below. Note that to compute the gradient-vector multi-
plication w⊤∇g, we can use the forward mode and initialize Vi = wi (i.e., multiplying w from left on both
sides of line 8). Similarly, to compute (∇g)w, we can use the reverse mode and initialize Vd+k+i = wi.

Algorithm: Forward-mode automatic differentiation for superposition
Input: x ∈ Rd, basic function class F0, computational graph G
Output: gradient [Vd+k+1, . . . , Vd+k+m] ∈ Rd×m

1 for i = 1, . . . , d do // forward: initialize function values and derivatives
2 vi ← xi
3 Vi ← ei ∈ Rd×1

4 for i = d+ 1, . . . , d+ k +m do // forward: accumulate function values and derivatives
5 compute vi ← fi(Ii)
6 for j ∈ Ii do
7 compute partial derivatives ∇jfi(Ii)

8 Vi ←
∑

j∈Ii
Vj · ∇jfi

Algorithm: Reverse-mode automatic differentiation for superposition
Input: x ∈ Rd, basic function class F0, computational graph G
Output: gradient [V1; . . . ;Vd] ∈ Rd×m

1 for i = 1, . . . , d do // forward: initialize function values
2 vi ← xi

3 for i = d+ 1, . . . , d+ k +m do // forward: accumulate function values
4 compute vi ← fi(Ii)

5 for i = 1, . . . ,m do // backward: initialize derivatives
6 Vd+k+i ← ei ∈ R1×m

7 for i = d+ k, . . . , 1 do // backward: accumulate derivatives
8 for j ∈ Oi do
9 compute partial derivatives ∇ifj(Ii)

10 Vi ←
∑

j∈Oi
∇ifj · Vj

We remark that, as suggested by Wolfe (1982), one effective way to test AD (or manually programmed
derivatives) and locate potential errors is through the classic finite difference approximation.
Wolfe, P. (1982). “Checking the Calculation of Gradients”. ACM Transactions on Mathematical Software, vol. 8,

no. 4, pp. 337–343.

Yaoliang Yu 84 –Version 0.1–May 30, 2024–

https://archive.org/details/sim_doklady-mathematics_march-april-1984_29_2
https://en.wikipedia.org/wiki/Finite_difference
http://doi.acm.org/10.1145/356012.356013

CS480/680–Spring 2024 §7 AUTOMATIC DIFFERENTIATION (AUTODIFF) University of Waterloo �

Example 7.6: Some applications of AD

• Directional derivative in line search, such as cubic interpolation, can be cheaply computed using Algo-
rithm 7.5 (Kim et al. 1984).

• Consider a (recurrent) function f defined through recursion:

f(w) = ϕt(xt,w), where xk+1 = ϕk(xk,w), k = 0, . . . , t− 1.

The forward-mode differentiation (e.g., Kim et al. 1984, p. 66) is

∇wf(w) = Ut∇xϕt(xt,w) +∇wϕt(xt,w), where Uk+1 :=
∂xk+1

∂w
= Uk∇xϕk(xk,w) +∇wϕk(xk,w),

with U0 = I, while the reverse-mode differentiation is

∇wf(w) =

t∑
k=0

∇wϕk(xk,w)Vk+1, where Vk :=
∂f

∂xk
= ∇xϕk(xk,w)Vk+1, Vt+1 = I.

Kim, K. V., Y. E. Nesterov, V. A. Skokov, and B. V. Cherkasskii (1984). “An efficient algorithm for computing
derivatives and extremal problems”. Ekonomika i matematicheskie metody, vol. 20, no. 2, pp. 309–318.

Exercise 7.7: Matrix multiplication

To understand the difference between forward-mode and backward-mode differentiation, let us consider the
simple matrix multiplication problem: Let Aℓ ∈ Rdℓ×dℓ+1 , ℓ = 1, . . . , L, where d1 = d and dL+1 = m. We
are interested in computing

A =

L∏
ℓ=1

Aℓ.

• What is the complexity if we multiply from left to right (i.e. ℓ = 1, 2, . . . , L)?

• What is the complexity if we multiply from right to left (i.e. ℓ = L,L− 1, . . . , 1)?

• What is the optimal way to compute the product?

Remark 7.8: Further insights on AD

If we associate an edge weight wij =
∂vj

∂vi
to (i, j) ∈ E , then the desired gradient

∂gi
∂xj

=
∑

path P :vj→vi

∏
e∈P

we. (7.4)

However, we cannot compute the above naively, as the number of paths in a DAG can grow exponentially
quickly with the depth. The forward and reverse modes in the proof of Theorem 7.4 correspond to two
dynamic programming solutions. (Incidentally, this is exactly how one computes the graph kernel too.)

Naumann (2008) showed that finding the optimal way to compute (7.4) is NP-hard.
Naumann, U. (2008). “Optimal Jacobian accumulation is NP-complete”. Mathematical Programming, vol. 112, no. 2,

pp. 427–441.

Yaoliang Yu 85 –Version 0.1–May 30, 2024–

https://cs.uwaterloo.ca/~y328yu/classics/Kim84f.pdf
https://cs.uwaterloo.ca/~y328yu/classics/Kim84f.pdf
https://en.wikipedia.org/wiki/Graph_kernel
https://doi.org/10.1007/s10107-006-0042-z

CS480/680–Spring 2024 §7 AUTOMATIC DIFFERENTIATION (AUTODIFF) University of Waterloo �

Remark 7.9: Tightness of dimension dependence in AD (e.g., Griewank 2012)

The dimensional dependence m ∧ d cannot be reduced in general. Indeed, consider the simple function
f(x) = sin(⟨x,w⟩)b, where x ∈ Rd and b ∈ Rm. Computing f clearly costs O(d+m) (assuming sin can be
evaluated in O(1)) while even outputting the gradient costs O(dm).
Griewank, A. (2012). “Who Invented the Reverse Mode of Differentiation?” Documenta Mathematica, vol. Extra

Volume ISMP, pp. 389–400.

Exercise 7.10: Backpropogation (e.g., Rumelhart et al. 1986)

Apply Theorem 7.4 to multi-layer NNs and recover the celebrated backpropogation algorithm. Distinguish
two cases:

• Fix the network weights W1, . . . ,WL and compute the derivative w.r.t. the input x of the network.
This is useful for constructing adversarial examples.

• Fix the input x of the network and compute the derivative w.r.t. the network weights W1, . . . ,WL.
This is useful for training the network.

Suppose we know how to compute the derivatives of f(x, y). Explain how to compute the derivative of
f(x, x)?

• Generalize from above to derive the backpropogation rule for convolutional neural nets (CNN).

• Generalize from above to derive the backpropogation rule for recurrent neural nets (RNN).

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). “Learning representations by back-propagating errors”.
Nature, vol. 323, pp. 533–536.

Remark 7.11: Fast computation of other derivatives (Kim et al. 1984)

Kim et al. (1984) pointed out an important observation, namely that the proof of Theorem 7.4 only uses
the chain-rule property of differentiation:

∂f

∂x
=
∂f

∂y
· ∂x
∂y
.

In other words, we could replace differentiation with any other operation that respects the chain rule and
obtain the same efficient procedure for computation. For instance, the relative differential in numerical
analysis or the directional derivative can both be efficiently computed in the same way.

As hinted by Kim et al. (1984, p. 62), generalized derivatives for nonsmooth functions may also be
efficiently computed in a similar manner, as long as the chain rule still holds under additional regularity
conditions. See Nesterov (1987, 2005) and Kakade and Lee (2018).
Kim, K. V., Y. E. Nesterov, V. A. Skokov, and B. V. Cherkasskii (1984). “An efficient algorithm for computing

derivatives and extremal problems”. Ekonomika i matematicheskie metody, vol. 20, no. 2, pp. 309–318.
Nesterov, Y. (1987). “The technique of nonsmooth differentiation”. Engineering Cybernetics: Soviet Journal of Com-

puter and Systems Science, vol. 25, no. 6, pp. 113–123.
— (2005). “Lexicographic differentiation of nonsmooth functions”. Mathematical Programming, vol. 104, pp. 669–

700.
Kakade, S. M. and J. D. Lee (2018). “Provably Correct Automatic Sub-Differentiation for Qualified Programs”. In:

NIPS, pp. 7125–7135.

Yaoliang Yu 86 –Version 0.1–May 30, 2024–

https://www.math.uni-bielefeld.de/documenta/vol-ismp/52_griewank-andreas-b.pdf
https://doi.org/10.1038/323533a0
https://cs.uwaterloo.ca/~y328yu/classics/Kim84f.pdf
https://cs.uwaterloo.ca/~y328yu/classics/Kim84f.pdf
https://archive.org/details/sim_journal-of-computer-systems-sciences-international_november-december-1987_25_6
https://doi.org/10.1007/s10107-005-0633-0
http://papers.nips.cc/paper/7943-provably-correct-automatic-sub-differentiation-for-qualified-programs.pdf

CS480/680–Spring 2024 §7 AUTOMATIC DIFFERENTIATION (AUTODIFF) University of Waterloo �

Algorithm 7.12: Reverse-mode Hessian-vector product (Kim et al. 1984)

Similarly, one can compute the Hessian-vector product efficiently as it also respects the chain rule. Indeed,
following Kim et al. (1984, p. 61) we denote the directional derivative of f along direction z as

D(f) = D(f(x); z) :=
df(x+ tz)

dt
↾t=0= f ′(x)(z).

Then, applying D on both sides of the reverse recursion (7.3):

Rdi×m ∋ D(Vi) =
∑
j∈Oi

[D(∇ifj) · Vj +∇ifj ·D(Vj)] =
∑
j∈Oi

[
∇ifj ·D(Vj) +

(∑
l∈Ij

∇2
ilfj ×D(vl)

)
· Vj
]
.

Recall that vj = fj(Ij), whence from forward-mode differentiation:

R1×dj ∋ D(vj) =
∑
l∈Ij

D(vl) · ∇lfj , where ∇lfj =
∂fj
∂vl
∈ Rdj×dl .

Augmenting the assumption (7.2) to include ∇2f , we conclude that the time complexity of the algorithm
below is on par with that of the reverse-mode auto-differentiation in Algorithm 7.5.

Algorithm: Reverse-mode Hessian-vector product for superposition (Kim et al. 1984, p. 58)

Input: x ∈ Rd, direction z ∈ Rd, basic function class F0, computational graph G
Output: Hessian-vector product [D(V1); . . . ;D(Vd)] ∈ Rd×m

1 Run reverse-mode AD in Algorithm 7.5
2 for i = 1, . . . , d do // forward: initialize directional derivative
3 D(vi)← zi

4 for j = d+ 1, . . . , d+ k +m do // forward: accumulate directional derivatives
5 D(vj)←

∑
l∈Ij

D(vl) · ∇lfj // D(vj) ∈ R1×dj

6 ġ:j ←
∑

l∈Ij
∇2

:lfj ×D(vl) // ġij ∈ Rdi×dj

7 for i = 1, . . . ,m do // backward: initialize Hessian-vector product
8 D(Vd+k+i)← 0 // D(Vd+k+i) ∈ R1×m

9 for i = d+ k, . . . , 1 do // backward: accumulate Hessian-vector product
10 D(Vi)←

∑
j∈Oi

[
∇ifj ·D(Vj) + ġij · Vj

]
// D(Vi) ∈ Rdi×m

We can similarly derive the forward-mode Hessian-vector product:

Rd×di ∋ D(Ui) =
∑
j∈Ii

[D(Uj) · ∇jfi + Uj ·D(∇jfi)] =
∑
j∈Ii

[
D(Uj) · ∇jfi + Uj ·

∑
l∈Ii

∇2
jlfi ×D(vl)

]
.

Running the above algorithms with z ∈ {e1, e2, . . . , ed} recovers the entire Hessian, which is thus d times
more expensive than computing the Hessian-vector product or the gradient.

Needless to say, the same idea extends to computing even higher order of derivatives (Kim et al. 1984,
p. 62), including possibly those of nonsmooth functions.
Kim, K. V., Y. E. Nesterov, V. A. Skokov, and B. V. Cherkasskii (1984). “An efficient algorithm for computing

derivatives and extremal problems”. Ekonomika i matematicheskie metody, vol. 20, no. 2, pp. 309–318.

Example 7.13: Hessian-vector product in practice

We mention the following example applications of fast Hessian-vector product.

• Conjugate gradient using Algorithm 7.12 (Kim et al. 1984):

wt+1 = wt − ηtst, where

Yaoliang Yu 87 –Version 0.1–May 30, 2024–

https://cs.uwaterloo.ca/~y328yu/classics/Kim84f.pdf
https://cs.uwaterloo.ca/~y328yu/classics/Kim84f.pdf

CS480/680–Spring 2024 §7 AUTOMATIC DIFFERENTIATION (AUTODIFF) University of Waterloo �

st = ∇f(wt)−
〈
∇2f(wt)st−1,∇f(wt)

〉
⟨∇2f(wt)st−1, st−1⟩

st−1

ηt = argmin
η≥0

f(wt − ηst)

• Newton’s method using Algorithm 7.12 (Kim et al. 1984), where the update can be reformulated as a
quadratic minimizaiton problem, solved through conjugate gradient.

• See also Christianson (1992), Møller (1993), Pearlmutter (1994), and Schraudolph (2002).

Kim, K. V., Y. E. Nesterov, V. A. Skokov, and B. V. Cherkasskii (1984). “An efficient algorithm for computing
derivatives and extremal problems”. Ekonomika i matematicheskie metody, vol. 20, no. 2, pp. 309–318.

Christianson, B. (1992). “Automatic Hessians by reverse accumulation”. IMA Journal of Numerical Analysis, vol. 12,
no. 2, pp. 135–150.

Møller, M. (1993). “Exact Calculation of the Product of the Hessian Matrix of Feed-Forward Network Error Functions
and a Vector in O(N) Time”. Tech. rep. DAIMI Report Series, 22(432).

Pearlmutter, B. A. (1994). “Fast Exact Multiplication by the Hessian”. Neural Computation, vol. 6, no. 1, pp. 147–
160.

Schraudolph, N. N. (2002). “Fast Curvature Matrix-Vector Products for Second-Order Gradient Descent”. Neural
Computation, vol. 14, no. 7, pp. 1723–1738.

Remark 7.14: Approximating the diagonal of Hessian (e.g., LeCun et al. 1989)

Differentiating again the recursion (7.3) we obtain

Rdi×di×m ∋ ∂2y

∂v2i
=
∑
j∈Oi

[
∇2

i fj
∂y

∂vj
+∇ifj

∂2y

∂vj∂vi

]
≈
∑
j∈Oi

∇2
i fj

∂y

∂vj
. (7.5)

Clearly, the right-hand side is only an approximation of the diagonal of the Hessian and can be computed
at the same cost as the gradient. LeCun et al. (1989) used the Taylor expansion

∆f(w) ≈ ⟨∇f(w),∆w⟩+ 1
2

〈
∇2f(w)∆w,∆w

〉
to assess the saliency of components of w. At a local optimum, ∇f(w) ≈ 0, so we only need to approximate
the quadratic term. By dropping the off-diagonal terms as in (7.5),

LeCun, Y., J. Denker, and S. Solla (1989). “Optimal Brain Damage”. In: Advances in Neural Information Processing
Systems 2.

Yaoliang Yu 88 –Version 0.1–May 30, 2024–

https://cs.uwaterloo.ca/~y328yu/classics/Kim84f.pdf
https://cs.uwaterloo.ca/~y328yu/classics/Kim84f.pdf
https://doi.org/10.1093/imanum/12.2.135
https://doi.org/10.7146/dpb.v22i432.6748
https://doi.org/10.7146/dpb.v22i432.6748
https://www.mitpressjournals.org/doi/pdf/10.1162/neco.1994.6.1.147
https://doi.org/10.1162/08997660260028683
https://proceedings.neurips.cc/paper/1989/hash/6c9882bbac1c7093bd25041881277658-Abstract.html

