CS480/680: Introduction to Machine Learning Lec 11: Decision Trees

Yaoliang Yu

Feb 13, 2025

• Decision trees can represent any boolean function

Classification And Regression Tree

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. "Classification and Regression Trees". CRC, 1984.

Learning Decision Trees

- Which variables to split at each stage?
- What threshold to use?
- When to stop?
 - regularization, e.g. early stopping
 - pruning
- What to put at the leaves?
 - classification: majority / probability
 - regression: average
 - can also simply store the training set

L. Hyafil and R. L. Rivest. "Constructing optimal binary decision trees is NP-complete". Information Processing Letters, vol. 5, no. 1 (1976), pp. 15–17.

- $\bullet\,$ Splitting can only be based on ${\bf x}\,$
- Evaluation can be based on y as well

- $\bullet\,$ Splitting can only be based on ${\bf x}\,$
- Evaluation can be based on y as well

- $\bullet\,$ Splitting can only be based on ${\bf x}\,$
- Evaluation can be based on y as well

- \bullet Splitting can only be based on ${\bf x}$
- Evaluation can be based on y as well

- $\bullet\,$ Splitting can only be based on ${\bf x}\,$
- Evaluation can be based on y as well

- $\bullet\,$ Splitting can only be based on ${\bf x}\,$
- Evaluation can be based on y as well

- $\bullet\,$ Splitting can only be based on ${\bf x}\,$
- Evaluation can be based on y as well

- $\bullet\,$ Splitting can only be based on ${\bf x}\,$
- Evaluation can be based on y as well

- $\bullet\,$ Splitting can only be based on ${\bf x}\,$
- Evaluation can be based on y as well

$$(j^*, t^*) = \underset{j=1, \dots, d}{\operatorname{argmin}} \min_{t \in T_j} \ \ell(\{\mathbf{x}_i, y_i\} : x_{ij} \le t) + \ell(\{\mathbf{x}_i, y_i\} : x_{ij} > t)$$

- Greedily choose the *j*-th feature to split
- Greedily choose a threshold $t \in T_j$ to split

- what should T_j be? For categorical features?

- Partition training data into two disjoint parts: $x_{ij} \leq t$ vs. $x_{ij} > t$
- Evaluate the resulting cost (objective)

- Maximum depth exceeded
- Maximum runtime exceeded
- All childen nodes are (sufficiently) homogeneous
- All children nodes have too few training examples
- Reduction in cost stagnates:

$$\Delta := \ell(D) - \left(\frac{|\mathcal{D}_L|}{|\mathcal{D}|} \cdot \ell(\mathcal{D}_L) + \frac{|\mathcal{D}_R|}{|\mathcal{D}|} \cdot \ell(\mathcal{D}_R)\right)$$

• Cross-validation

$$\ell(\mathcal{D}) := \left[\min_{y} \sum_{y_i \in \mathcal{D}} (y_i - y)^2 \right] = \sum_{y_i \in \mathcal{D}} (y_i - \bar{y})^2, \quad \text{where} \quad \bar{y} = \frac{1}{|\mathcal{D}|} \sum_{y_i \in \mathcal{D}} y_i$$

• Can use any reasonable loss (other than the square loss)

 $\bullet\,$ Can even fit a regression model on ${\cal D}$

$$\hat{p}_k = \frac{1}{|\mathcal{D}|} \sum_{y_i \in \mathcal{D}} \llbracket y_i \in k \rrbracket, \qquad \hat{y} := \operatorname*{argmax}_{k=1,\dots,c} \hat{p}_k$$

- Misclassification error: $\ell(\mathcal{D}) := 1 \hat{p}_{\hat{y}}$, reduces to $\hat{p} \wedge (1 \hat{p})$ if c = 2
- Gini index: $\ell(\mathcal{D}) := \sum_{k=1}^{c} \hat{p}_k (1 \hat{p}_k) = 1 \sum_{k=1}^{c} \hat{p}_k^2$, reduces to $2\hat{p}(1 \hat{p})$ if c = 2
- Entropy: $\ell(\mathcal{D}) := -\sum_{k=1}^{c} \hat{p}_k \log \hat{p}_k$, reduces to $-\hat{p} \log \hat{p} (1-\hat{p}) \log(1-\hat{p})$ if c = 2

Decision Stump

- A binary tree with depth 1
- Performs classification based on 1 feature
- Easy to train, interprettable, but underfits (addressed in next lecture)

