
CS480/680: Introduction to Machine Learning
Lec 01: Perceptron

Yaoliang Yu

Jan 09, 2025

Supervised Learning Z hotdog app
dataset

L01 1/26

https://www.youtube.com/watch?v=tWwCK95X6go
https://www.kaggle.com/datasets/yashvrdnjain/hotdognothotdog

Supervised Learning Z hotdog app

L01 1/26

https://www.youtube.com/watch?v=tWwCK95X6go

Supervised Learning Z hotdog app

L01 1/26

https://www.youtube.com/watch?v=tWwCK95X6go

Supervised Learning Z hotdog app
example results

L01 1/26

https://www.youtube.com/watch?v=tWwCK95X6go
https://towardsdatascience.com/hot-dog-or-not-hot-dog-ab9d67f20674

What a Dataset Looks Like

x1 x2 x3 x4 · · · xn x x′

Rd ∋

0 1 0 1 · · · 1 1 0.9
0 0 1 1 · · · 0 1 1.1
...

...
...

...
...

...
1 0 1 0 · · · 1 1 −0.1

y + + – + · · · – ? ?!

• Each column is a data point: n in total; each has d features

• Bottom y is the label vector; binary in this case

• x and x′ are test samples whose labels need to be predicted

L01 2/26

Spam Filtering Example

x1 x2 x3 x4 x5 x6

and 1 0 0 1 1 1
viagra 1 0 1 0 0 0
the 0 1 1 0 1 1
of 1 1 0 1 0 1

nigeria 1 0 0 0 1 0
y + – + – + –

• Training set: X=[x1, . . . ,xn]∈Rd×n, y=[y1, . . . , yn]∈{±1}n

– each column of X is an email xi ∈ Rd, each with d (binary) features

– each entry in y is a label yi ∈ {±1}, indicating spam or not

• Bag-of-words representation of text (email)

L01 3/26

Batch vs. Online

• Batch learning

– interested in performance on test set X ′

– training set (X, y) is just a means

– statistical assumption on X and X ′

• Online learning

– data comes one by one (streaming)

– need to predict y before knowing its true value

– interested in making as few mistakes as possible

– compare against some baseline

L01 4/26

Thought Experiment

• Repeat the following game:

– observe instance xi

– predict its label ŷi (in whatever way you like)

– reveal the true label yi

– suffer a mistake if ŷi ̸= yi

• How many mistakes in the worst-case?

• Predict first, reveal next: no peeking into the future!

L01 5/26

Linear Threshold Function

• Linear function: ∀α, β ∈ R,∀x, z ∈ Rd,

f(αx+ βz) = α · f(x) + β · f(z)
• Equivalently, ∃w ∈ Rd such that f(x) = ⟨x,w⟩ :=

∑
j xjwj

• Affine function: β = 1− α, or equivalently ∃w ∈ Rd, b ∈ R such that
f(x) = ⟨x,w⟩+ b

• Thresholding: sign(t) =

1, t > 0

−1, t < 0

?, t = 0

• Combined together: ŷ = sign(⟨x,w⟩+ b︸ ︷︷ ︸
ŷ

) =

1, ŷ > 0

−1, ŷ < 0

?, ŷ = 0

L01 6/26

Geometrically

+

+

+

–

− b

w2

− b

w1

w

⟨x,w⟩+ b = 0

x1

x2

L01 7/26

Biological Inspiration

W. S. McCulloch and W. Pitts. “A logical calculus of the ideas immanent in nervous activity”. The bulletin of mathematical biophysics,
vol. 5, no. 4 (1943), pp. 115–133.

L01 8/26

https://doi.org/10.1007/BF02478259

sign function

∑
w2x2

...
...

wdxd

w1x1

b1

inputs weights

inner product nonlinear

L01 9/26

OR Dataset

x1 x2 x3 x4

0 1 0 1
0 0 1 1

y – + + +

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

L01 10/26

The Early Hype in AI...

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NEW NAVY DEVICE LEARNS BY DOING: Psychologist Shows Embryo of Computer Designed to Read and Grow ...
New York Times (1923-); Jul 8, 1958; ProQuest Historical Newspapers: The New York Times
pg. 25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NEW NAVY DEVICE LEARNS BY DOING: Psychologist Shows Embryo of Computer Designed to Read and Grow ...
New York Times (1923-); Jul 8, 1958; ProQuest Historical Newspapers: The New York Times
pg. 25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NEW NAVY DEVICE LEARNS BY DOING: Psychologist Shows Embryo of Computer Designed to Read and Grow ...
New York Times (1923-); Jul 8, 1958; ProQuest Historical Newspapers: The New York Times
pg. 25

New York Times, 1958
L01 11/26

http://search.proquest.com.proxy.lib.uwaterloo.ca/historical-newspapers/new-navy-device-learns-doing/docview/114558973/se-2?accountid=14906

...due to Perceptron

Frank Rosenblatt
(1928 – 1971)

L01 12/26

Algorithm 1: Perceptron
Input: Dataset D = *(xi, yi) ∈ Rd × {±1} : i = 1, . . . , n+, initialization w ∈ Rd

and b ∈ R, threshold δ ≥ 0
Output: approximate solution w and b

1 for t = 1, 2, . . . do
2 receive index It ∈ {1, . . . , n} // It can be random
3 if yIt(⟨xIt ,w⟩+ b) ≤ δ then
4 w← w + yItxIt // update after a “mistake”
5 b← b+ yIt

• Typically δ = 0 and w0 = 0, b = 0

– yŷ > 0 vs. yŷ < 0 vs. yŷ = 0, where ŷ = ⟨x,w⟩+ b

• Lazy update: “if it ain’t broke, don’t fix it”

F. Rosenblatt. “The perceptron: A probabilistic model for information storage and organization in the brain”. Psychological Review, vol. 65,
no. 6 (1958), pp. 386–408.

L01 13/26

http://psycnet.apa.org/record/1959-09865-001

Perceptron as an Optimization Problem

find w ∈ Rd, b ∈ R such that ∀i, yi(⟨xi,w⟩+ b)> 0

• Perceptron solves the above optimization problem!

– it is iterative: going through the data one by one

– it converges faster if the problem is “easier”

– it behaves benignly even if no solution exists

• Key insight whenever a mistake happens:

y[⟨x,wk+1⟩+ bk+1] = y[⟨x,wk + yx⟩+ bk + y]

= y[⟨x,wk⟩+ bk] + ∥x∥22 + 1

L01 14/26

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/26

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [0, 0], b = 0, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/26

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [0, 0], b = 0, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/26

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [0, 0], b = −1, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/26

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [0, 0], b = −1, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/26

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [1, 0], b = 0, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/26

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [1, 0], b = 0, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/26

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [1, 0], b = −1, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/26

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [1, 0], b = −1, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/26

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [1, 1], b = 0, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/26

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [1, 1], b = 0, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/26

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [1, 1], b = −1, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/26

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [1, 1], b = −1, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/26

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [2, 1], b = 0, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/26

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [2, 1], b = 0, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/26

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [2, 1], b = −1, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/26

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [2, 1], b = −1, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/26

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [2, 2], b = 0, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/26

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [2, 2], b = 0, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/26

https://github.com/watml/CS794/tree/master/lec-perceptron

Does it work? Z code

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

w = [2, 2], b = −1, ŷ = sign(⟨x,w⟩+ b),

where sign(0) is undefined (e.g., always counted as a mistake).
L01 15/26

https://github.com/watml/CS794/tree/master/lec-perceptron

Spam Filtering Revisited
x1 x2 x3 x4 x5 x6

and 1 0 0 1 1 1
viagra 1 0 1 0 0 0
the 0 1 1 0 1 1
of 1 1 0 1 0 1

nigeria 1 0 0 0 1 0
y + – + – + –

• Recall the update: w← w + yx, b← b+ y
– w0 = [0, 0, 0, 0, 0], b0 = 0 =⇒ ŷ1 = −
– w1 = [1, 1, 0, 1, 1], b1 = 1 =⇒ ŷ2 = +
– w2 = [1, 1,−1, 0, 1], b2 = 0 =⇒ ŷ3 = −
– w3 = [1, 2, 0, 0, 1], b3 = 1 =⇒ ŷ4 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ5 = +
– w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ ŷ6 = −

L01 16/26

Perceptron and the 1st AI Winter

Seymour Papert
(1928 – 2016)

Marvin Minsky
(1927 – 2016)

Seymour Papert
(1928 – 2016)

M. L. Minsky and S. A. Papert. “Perceptron”. MIT press, 1969.

L01 17/26

https://mitpress.mit.edu/books/perceptrons-reissue-1988-expanded-edition-new-foreword-leon-bottou

XOR Dataset

x1 x2 x3 x4

0 1 0 1
0 0 1 1

y – + + –

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

–

+

+

–

• Prove that no line can separate + from –
• What happens if we run Perceptron regardless?

L01 18/26

XOR Dataset

x1 x2 x3 x4

0 1 0 1
0 0 1 1

y – + + –

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

–

+

+

–

• Prove that no line can separate + from –
• What happens if we run Perceptron regardless?

L01 18/26

Notation Simplification
• Padding constant 1 to the (start) end of each x:

⟨x,w⟩+ b =

〈(
x

1

)
︸︷︷︸

x

,

(
w

b

)
︸ ︷︷ ︸

w

〉

• Pre-multiply x with its label y:

y[⟨x,w⟩+ b] =

〈
y

(
x

1

)
︸ ︷︷ ︸

a

,

(
w

b

)
︸ ︷︷ ︸

w

〉

• The problem “simplifies” to:

find w ∈ Rp such that A⊤w > 0, where A = [a1, . . . , an] ∈ Rp×n

L01 19/26

Convergence Theorem

Theorem: (Block, 1962; Novikoff, 1962)

Provided that there exists a (strictly) separating hyperplane, the Perceptron iterate
converges to some w. If each training data is selected infinitely often, then for all i,
⟨yixi,w⟩ > δ.

Corollary:

Let δ = 0 and initial w = 0. Then, Perceptron converges after at most (R/γ)2

mistakes, where

R := max
i
∥xi∥2, γ := max

∥w∥2≤1
min

i
⟨yixi,w⟩

H. D. Block. “The perceptron: A model for brain functioning”. Reviews of Modern Physics, vol. 34, no. 1 (1962), pp. 123–135, A. Novikoff.
“On Convergence proofs for perceptrons”. In: Symposium on Mathematical Theory of Automata. 1962, pp. 615–622.L01 20/26

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.34.123
https://cs.uwaterloo.ca/~y328yu/classics/novikoff.pdf

The Proof
• By assumption:

∃w⋆ s.t. min
i
⟨yixi,w⋆⟩ > 0 ⇐⇒ for some and hence for all s > 0

∃w⋆ s.t. min
i
⟨yixi,w⋆⟩ ≥ s

• Update after a mistake:

⟨wk+1,w
⋆⟩ = ⟨wk + yx,w⋆⟩ = ⟨wk,w

⋆⟩+
≥s︷ ︸︸ ︷

⟨yx,w⋆⟩

∥wk+1∥2 = ∥wk + yx∥2 =
√
∥wk∥22 + ∥x∥22︸︷︷︸

≤R2

+2 ⟨yx,wk⟩︸ ︷︷ ︸
≤δ

• The angle approaches 0 ?

cos∠(wk+1,w
⋆) :=

⟨wk+1,w⋆⟩
∥wk+1∥2 · ∥w⋆∥2

=
Ω(k)

O(
√
k)

?→ 1

L01 21/26

The Margin

√
��

��H
HHH∥w0∥22 + kR2 +���HHH2kδ · ∥w⋆∥2 ≥ ∥wk∥2 · ∥w⋆∥2

≥ ⟨wk,w
⋆⟩ ≥�����XXXXX⟨w0,w

⋆⟩+ ks

• With δ = 0 and w0 = 0: the number of mistakes k ≤ R2∥w⋆∥22
s2

• What is s and w⋆? Can we choose them to our advantage?

γ := max
∥w⋆∥2=1

min
i
⟨yixi,w⋆⟩ = max

∥w⋆∥2≤1
min

i
⟨yixi,w⋆⟩

• The larger the margin γ is, the more (linearly) separable the data is, and hence
the faster Perceptron converges!

L01 22/26

But...Is Perceptron Unique?

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

–

L01 23/26

Beyond Separability

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5

+

+

+

+
–

–

–

–

L01 24/26

When to Stop Perceptron?

• Online setting: never

• Batch setting

– maximum number of iterations reached, e.g. iter == maxiter

– maximum allowed runtime reached

– training error stops changing

– validation error stops deceasing

– weights change falls below tolerance (if using a diminishing step size)

wt+1 ← wt + ηtyItxIt , ηt → 0

L01 25/26

Multiclass Perceptron

• One vs. all

– let class k be positive, and all other classes as negative

– train Perceptron wk; in total c imbalanced Perceptrons

– predict according to highest score: ŷ := argmaxk ⟨x,wk⟩

• One vs. one

– let class k be positive,class l be negative, and discard all other classes

– train Perceptron wk,l; in total
(
c
2

)
balanced Perceptrons

– predict by voting: ŷ := argmax
k

∑
l ̸=k

J⟨x,wk,l⟩ > 0K

L01 26/26

