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The Matching Problem

Individual partner
preferences are
ordered left to right.
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® Matching co-op students with companies, organ donors with patients, etc.



https://tinyurl.com/ej74dbsu

Stable Matching

Definition: Blocking pair

A pair (i, j) and (i’, j') where both i and j" would prefer to swap.

Example: Blocking pair

(a, ©) and (a, 0): everyone is better off after the swap...

® A stable matching is one when there is no blocking pair
® More generally, can define a cost ¢(7, j) for matching i-th man with j-th woman

® A necessary condition: ¢(z,7) + c(7, j') < c(i,7") + c(@', j)

D. Gale and L. S. Shapley. . The American Mathematical Monthly, vol. 69, no. 1 (1962),
pp. 9-15


https://doi.org/10.2307/2312726

Current partner Failed match | iiia) velationahip

|é O O O, O 0 0 9 |é’ O O O  proposals are made
by the women to their
first choice. Men
accept the proposal
from their more highly
ranked choice if they
are proposed to by
more than one
woman.

Rejected——



https://en.wikipedia.org/wiki/Stable_marriage_problem
https://tinyurl.com/ej74dbsu

Previous ——
match

Unmatched women
now propose to their
next choice. Men
accept the new pro-
posal if it comes from
a more preferable
partner, ending their
previous relationship.



https://en.wikipedia.org/wiki/Stable_marriage_problem
https://tinyurl.com/ej74dbsu

The process repeats
® OO O until..
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https://en.wikipedia.org/wiki/Stable_marriage_problem
https://tinyurl.com/ej74dbsu

... everyone is paired
O O 0 O ® O O O;  andnotwo people

prefer each other to

their current partner.



https://en.wikipedia.org/wiki/Stable_marriage_problem
https://tinyurl.com/ej74dbsu

Who Should Propose?

WOMEN PROPOSE

©

Current partner The group making the
O O © O 0 0 proposals is indicated

by the hash pattern.

MEN PROPOSE

On average, the group
making the proposals

will finish with more
desirable matches
than the group receiv-
ing the proposals.



https://tinyurl.com/ej74dbsu
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Linear Assignment

min c(i, T(4))
T:[n]—[n] bijective ‘=

Here T is simply a permutation

c(i,T(7)) is the cost for matching i @ ‘@

with T(i) e

Caz
Want to minimize total cost @ \@
Ca3

Some kind of “stable” permutation

WORKERS JOBS

H. W. Kuhn. . Naval Research Logistics Quarterly, vol. 2, no. 1-2 (1955), pp. 83-97.
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https://doi.org/10.1002/nav.3800020109

Discrete Optimal Transport

min gET( c(i,7)
e Z(p,q) 9

=1 j=1

® Coupling (joint distribution): Z(p,q) :={Il € R7*": 11 =p,1I"1 = q}
— p is the marginal distribution over i =1,...,m
— q is the marginal distribution over j =1,...,n

— m;; is the probability of matching i with j

the total cost > ;" | 77 mije(i, j) = Ele(L, J)], where (I,.J) ~

® letm=nandp=q= % - 1: a “relaxation” of linear assignment

7/25



lterative Proportional Fitting (IPF), a.k.a. Sinkhorn's Alg

m n )\TFU logﬁi%jm
min ;r,c, + A5 lo 7r,-‘- = min  A-KL|II || exp(—C/A
e #(pa) ;;[ 5 Cij ; log ;] NeP(p.q) [ | exp(=C/ )}
® )\ > (0 is a small regularization constant
o I" := exp(—C/\) is an unnormalized ( - ) distribution

e [I € #(p,q) contains two types of constraints that we can treat
— row constraint I11 = p: T' + diag(p./(T'1)) x T
— column constraint II"1 = q: ' < I * diag(q./(I'"1))

R. Sinkhorn.
vol. 35, no. 2 (1964), pp. 876-879, W. E. Deming and F. F. Stephan.
. The Annals of Mathematical Statistics, vol. 11, no. 4 (1940), pp. 427—444.

. The Annals of Mathematical Statistics,

E. Schradinger.

. Annales de l'institut Henri Poincaré,
vol. 2, no. 4 (1932), pp. 269-310.
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https://en.wikipedia.org/wiki/Ludwig_Boltzmann
https://en.wikipedia.org/wiki/Josiah_Willard_Gibbs
https://www.jstor.org/stable/2238545
https://www.jstor.org/stable/2235722
https://www.jstor.org/stable/2235722
http://www.numdam.org/item/AIHP_1932__2_4_269_0

's Problem

min  E[e(X, T(X))], where X ~p

Txp=q

A distribution p of soil and a distribution ¢ of holes to fill

Let X ~ p be a random pile of soil

T(X) moves X to a hole Y
Require T 4p = ¢ to match the mass

— a priori, it is not even clear if such a T exists!

Want to minimize expected cost ¢ (effort)

G. Monge. . In: Histoire de I"’Académie royale des sciences avec les mémoires de
mathématique et de physique tirés des registres de cette Académie. 1781, pp. 666—705


https://en.wikipedia.org/wiki/Gaspard_Monge
https://tinyurl.com/28ue4c5k
https://gallica.bnf.fr/ark:/12148/bpt6k35800/f796

's Relaxation

min  E[¢(X,T(X))] > min E[¢(X,Y)]

Txp=q X~p,Y~q

Definition: Coupling

(X,Y) ~ 7, where the joint coupling 7 has marginals p and ¢

. pairing: x is matched with some y = Tx
o pairing: x is matched to y with probability 7(y|x)

e Surprisingly, at optimality, 7(y|x) could be deterministic anyway!

L. V. Kantorovich. . Journal of Mathematical Sciences, vol. 133, no. 4 (2006). Originally published in
Dokl. Akad. Nauk SSSR, vol. 37, No. 7-8, 227—229 (1942)., pp. 1381-1382, L. V. Kantorovich. . Journal of
Mathematical Sciences, vol. 133, no. 4 (2006). Originally published in Uspekhi Mat. Nauk, vol. 3, No. 2, 225-226 (1948)., pp. 1383—-1383.


https://en.wikipedia.org/wiki/Leonid_Kantorovich
https://doi.org/10.1007/s10958-006-0049-2
https://doi.org/10.1007/s10958-006-0050-9

Back to Discrete

Optimal Transport Solution!

B dirt pile
Il hole



https://tinyurl.com/2n7ujhmd
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Duality

min E[e(X,Y)] | = min /c(x, y)m(x,y)dxdy

XvaYNQV(XvY)Nﬂ- 720

s.t. Vx: /w(x,y) dy = p(x), Vy: /W(XJ) dx = q(y)

min max / el ) )iyl 57 sy o / u(x)p(x) dx + / o(¥)a(y) dy

20 u(-)v(")

= I min / [e(x,y) —u(x)—v(y)]r(x,y) dxdy + / u(x)p(x) dx + / v(y)q(y)dy

— max [ uopeodx+ [oay)dy, st uld o) < cbxy), Yy

= max B [ulX)] + By oY), 5t u(0 +0(y) < e(x.¥), V¥

L. V. Kantorovich and G. S. Rubinshtein. . Dokl. Akad. Nauk SSSR, vol. 115, no. 6
(1957), pp. 1058-1061.


http://mi.mathnet.ru/eng/dan22286

Conjugacy

Vx, Vy, u(x) +o(y) < c(x,y)

* u(x) < [miny ¢(x,y) —v(y)] = v*(x)

* v(y) < [min, c(X,y) —u(x)] =: u(y)

Since we are maximizing E[u(X)] + E[v(Y)], at optimality:

u(x) =v°(x),  o(y)=u(y)

u® > u and u®c = u; similarly for v

w is called c-concave iff u = u® (or equivalently u = v° for some v)
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1-Wasserstein Distance

® ¢(x,y) = d(x,y) for some metric d:

Wi(p,q) := min E[d(X,Y)]

X,Y)~7, X~p,Y ~q
— max Bu(X)] - Ep(Y)], st Wy, u() - oly) < dexy)
® Lipschitz envelope: v°(x) := [inf, d(x,y) — v(y)]

— ¢ is Lipschitz continuous: Vx,z, v°(x) — v%(z) < d(x, z)

— v° is the largest Lipschitz continuous function majorized by —v

® Thus, u = v = v and hence

Wi(p,¢) = max E[u(X)] ~ E[u(Y)], st. vxy, u(x) u(y) <dxy)

15/25


https://en.wikipedia.org/wiki/Metric_space

Wasserstein GAN

m%nWl(q, Tyr) = rr}lin max Eyx.,[u(X)] — Ez..[u(T(Z))], s.t. wis Lipschitz

~ min max Ex.,[u(X)] — Ez..[u(T(Z))], s.t. wuis Lipschitz

T u

r is the noise density, e.g., standard normal

q is the data density: only a training sample is available

T is the generator network: maps noise to data

u is the discriminator network: maps data to a real scalar

— w is Lipschitz iff |Vu|| <1 = penalty on network weights

M. Arjovsky, S. Chintala, and L. Bottou. . In: Proceedings of the 34th International
Conference on Machine Learning. 2017.

16/25


http://proceedings.mlr.press/v70/arjovsky17a.html

Wasserstein vs. JS/KL

® Wasserstein is a bona fide distance; JS/KL is not
e JS/KL enjoys data processing inequality; Wasserstein does not

e Wasserstein difficult to compute; JS/KL can become “flat”

Kantorovich potential (WGAN critic) ||
GAN crific, €=0.2 [
—— density of fake
— density of real
* sample points

0

G. Friesecke. “Optimal transport: A comprehensive introduction to modeling, analysis, simulation, applications”. SIAM, 2024.

17/25


https://doi.org/10.1137/1.9781611978094

2-Wasserstein Distance

* c(x,y) = 5lx—yl* ( ):

W3 = ' E[1[IX - Y3
2(p,g) = min Bl 12]

—  max B +ERY)], st Vxy, ux)+o(y) < Lx—yl?

uU,v

e Conjugate: v°(x) := [miny 5[x — y||* — v(y)]
- 2lx]|? = v¢(x) = maxy (x,y) — [5]ly]|> — v(y)]: convex conjugate

)
1
2

® Thus, u=v"= 1| -|>— (3] - > — v)* and hence

W3(p,q) = g E[IXI* = £*(X)] + E[5I[YI[* = f(Y)], st. [ is convex

q=(Vf)ap|, ie. X~p = Vf(X)~q

Y. Brenier. . Communications on Pure and Applied
Mathematics, vol. 44, no. 4 (1991), pp. 375-417, R. J. McCann. . Duke
Mathematical Journal, vol. 80, no. 2 (1995), pp. 309—-323.

18/25


https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160440402
https://doi.org/10.1215/S0012-7094-95-08013-2

Mirror Mirror on the Wall




Fréchet Inception Distance (FID)

W2 (N (my, 1), M (my, £5)) = [lmy — my|? + tr [ + 25 — 2(51°5,51/%) V2]

e Consider the mapping Tx = 37 /*(21/25, 521252 (x — my) + m,
— T = V[ for some convex function f

® Plug into E||X — TX||* where X ~ N (my, X)

e A valid lower bound on W3 (yuy, ps)

— provided that p; has mean m; and covariance ¥;

M. Heusel et al. . In: Advances in Neural

Information Processing Systems. 2017.

M. Gelbrich.
Nachrichten, vol. 147, no. 1 (1990), pp. 185—-203.

. Mathematische


https://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium
https://onlinelibrary.wiley.com/doi/abs/10.1002/mana.19901470121
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Convolution Input:
AvgPool 299x299x3
MaxPool

Concat

Dropout

Fully connected

Softmax

Input: 299x299x3, Output:8x8x2048

Bx8x2048
- Final part:8x8x2048 -> 1001




Potential GAN

min W;(q, Tyr) = i v E[ IX[I3= ()] + E GIT@)5-F(T2))],

~ mllnmjgx X]Eq[—f (X)] + er[i||T(Z)||%—f(T(Z))]7 s.t. f is convex

r is the noise density, e.g., standard normal

q is the data density: only a training sample is available

T is the generator network: maps noise to data

f is the discriminator network: maps data to a real scalar

T. Salimans, H. Zhang, A. Radford, and D. Metaxas. . In: International Conference on Learning
Representations. 2018, H. Liu, X. Gu, and D. Samaras. . In: IEEE/CVF International
Conference on Computer Vision (ICCV). 2019, pp. 4831-4840.

22/25
22/25


https://openreview.net/forum?id=rkQkBnJAb
https://doi.org/10.1109/ICCV.2019.00493

Potential Flow

mfin ]D(q, (Vf)#r), s.t. [ is convex

r is the noise density, e.g., standard normal

q is the data density: only a training sample is available

V f is the generator network: maps noise to data

— e.g., [ is a Relu network with nonnegative weights

D is some “distance” function, e.g., the KL divergence

C.-W. Huang, R. T. Q. Chen, C. Tsirigotis, and A. Courville.
. In: International Conference on Learning Representations. 2021.


https://openreview.net/forum?id=te7PVH1sPxJ
https://openreview.net/forum?id=te7PVH1sPxJ

Triangular vs. Potential

T : R? — RY, Tup=gq
T is autoregressive

3 T:]Rd—HRd,T#p:q
VT is always triangular !

T = Vf for convex f: R — R
VT = V2f is symmetric PSD
composition fails

rotationally equivariant

composition holds
no rotational equivariance

The two are equivalent iff T is diagonal, in particular, if d =1
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Complementarity

maxmin/[c(x, y)—u(x)—v(y)|r(x,y) dxdy —i—/u(X)p(X) dx +/v(y)q(y) dy

u, v w>0

T(x,y) >0 = u(x)+o(y) =c(x,y)

Recall that u¢ = v, we define the subdifferential:

du(x) := arginin [c(x,y) —u(y)] = {y s u(x) + u(y) = c(x,y)}

— for a c-concave u, ‘y € Ju(x) < x € du‘(y) ‘

® Thus, ‘suppﬁ C gph@u‘

— in particular, if u is differentiable, 7 is deterministic and the Kantorovich relaxation is tight!

L. Riischendorf. . Statistics & Probability Letters, vol. 27, no. 3 (1996), pp. 267—270.


https://doi.org/10.1016/0167-7152(95)00078-X

Cyclic Monotonicity

Definition: Cyclic monotonicity

We call a set ' C X x Y ccyclically monotone if for any n and
(X1,¥1),- -+, (Xn, ¥n) €T, any (cyclic) permutation o : [n| — [n], we always have

i n
Z (%, yi) < Z (X4, Yo(iy)
=il =l

e A kind of stability: any rematch cannot further reduce cost!

Theorem: Optimal coupling

Let c: X XY — [0,00) and m € Z(p, q) is a coupling with finite transport cost. If

supp 7 is c-cyclically monotone, then 7 is optimal.

M. Beiglbdck. . Ergodic Theory and Dynamical Systems, vol. 35, no. 3 (2015), pp. 710-713.


https://doi.org/10.1017/etds.2013.75

K-means Clustering

S. P. Lloyd . IEEE Transactions on Information Theory, vol. 28, no. 2 (1982). orignally appeared in
1957, pp. 129-137.


https://doi.org/10.1109/TIT.1982.1056489

K-means as Wasserstein Projection

® let i, = %Z?:l 0x, be our empirical distribution
- /}rz(A) - %Z;]:] [[Xi S A]]
® Can show k-means solves:
min Wy (v, i)

VEP

— &), denotes all discrete distributions supported on at most & points

° correspond to entropy regularization:

min W3(v, fi,) — A - entropy (v)
vEPy,


https://en.wikipedia.org/wiki/Mixture_model

Wasserstein Barycenter

Consider densities py and py, say two Gaussians with different mean and variance

® How to interpolate between them?

® Exists convex f such that p; = (Vf)4po
e Obviously py = (Id)4xpo
® |nterpolate the push-forward maps!

pe = [(1 — t)Id + tV f]gpo = argmin (1 — t)W3(p, po) + tW3(p, p1)
p

R. J. McCann. . Advances in Mathematics, vol. 128, no. 1 (1997), pp. 153—-179.


https://doi.org/10.1006/aima.1997.1634
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