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Predicting with Confidence

Recall that y = sign((x,w))

How confident are we about the
prediction y?

e Can use | (x,w) | as an indication

— in fact was used in multi-class preceptron
— real-valued: hard to interpret
— many ways to transform into [0, 1]

Better idea: learn confidence directly
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Confidence Game

o Y, K Bernoulli(g) for some ¢ € [0, 1]

— e.g., probability of snowing tomorrow

® How to evaluate a probabilistic forecast p?

o 0 s:Y x[0,1] = R, s(y,p) scores the “fitness”

S :8:00,1] x [0,1] = R, $(¢, p) := Evapernouti(q) [5(Y, P)]
® (Strict) (truthfulness): ¢ = argmin, $(q, p)

o : H(q) := min, $(¢, p), under properness, H(q) = S(q¢, ¢)



Logarithmic Loss

s(y,p) == —ylogp — (1 —y)log(1 — p)
8(q,p) == —qlogp — (1 — q) log(1 — p)
H(q) := —qlogq — (1 — q) log(1 — q)
® Indeed a proper scoring rule (could take oo value)

® The resulting entropy is exactly

. : KL(q,p) :=S(q,p) — H(q) > 0, with equality iff ¢ = p

I. J. Good. . Journal of the Royal Statistical Society. Series B (Methodological), vol. 14, no. 1 (1952), pp. 107-114.
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https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://en.wikipedia.org/wiki/Kullback-Leibler_divergence
https://www.jstor.org/stable/2984087

Introducing X

S(y,p(X)) = —ylog p(x) — (1 —y)log(1 — p(x))
,p(x)) = —q(x)log p(x) — (1 — g(x)) log(1 — p(x))
5(q,p) :== E[—q(X)log p(X) — (1 — ¢(X)) log(1 — p(X))]

® Y | X =x ~ Bernoulli(¢(x))
® Observe that S(q(x), p(x)) = Evix=xs(Y. p(x)), $(¢,p) := E[s(Y, p(X))]
® Parameterizing the probabilistic forecast, e.g. p(x;w) = sgm((x, w))

® Minimum score estimation:

min E[s(Y, p(X;w))]



Max Conditional Likelihood

® Model postulates Y|X = x ~ Bernoulli(p(x;w)), i.e. Pr(Y = 1|X = x) = p(x; w)

® Given (X;,y;),i =1,...,n, assume independence:

Pl"(Yl = WYigooo ,Yn = yn’X1 = 2lgoc ’Xn = Xn) Pl"(YZ = yZ|XZ = Xi)
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® Maximizing the conditional log-likelihood:

max H p(xs; W)Y 1 — p(xs;w)]'



Two Extremes

H‘lljn Z —yilog[p(x;; w)] — (1 —y;) log[1 — p(xi; w)]

i=1

® \What is the solution if p(x;w) = p(w)?
— i.e. use the same confidence p for every data point
® What is the solution if p(x;w) = p(x)?

— i.e. every data point uses its own confidence p(x)
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The Logit Transform

® p(x;w) : X — [0, 1], how to parameterize using w?
- p(x;w) = (x,w)?
— log p(x;w) = (x,w)?

_p(xw)

Tptew) — W)

° . log 1

— ji.e., the odds ratio is an affine function

® Equivalently, the sigmoid transformation: p(x;w) = sgm((x,w)) := m
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Logistic Regression

min Y —y; log[p(xi;w)] — (1 —y;) log[L — p(xi; w)]

i=1

1

® Plug in the parameterization p(x;w) = o)

min > log [1 +exp ((— (x;, w) )] + (1 = yi) (xi, w)
=1
° ; if instead, y; € {£1}, then

H}jn ilog [1 + exp ( — ¥i (Xi, W) )]

=1 \

.
logistic loss



sigmoid function logistic loss
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D. R. Cox. “The Regression Analysis of Binary Sequences’. Journal of the Royal Statistical Society. Series B (Methodological), vol. 20,

no. 2 (1958), pp. 215242
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http://www.jstor.org/stable/2983890

Prediction

1
1+ exp(— (x,w))

p(x;w) = sgn((x,w)) =
e y=1iff p(x;w) =Pr(Y =1X =x) > 1 iff (x,w) >0
® Decision boundary remains to be H := {x: (x,w) =0}

e Can predict y = sign((x,w)) as before, but now with confidence p(x;w)



More than a Classification Algorithm

® |ogistic regression estimates the posterior probability n(x) := Pr(Y = 1|X = x)
under the

— confidence is meaningless if the assumption is way off
e Classification itself only requires comparing 7(x) with 3
® Possible to do the comparison without estimating 1(x) explicitly!

— sufficient but not necessary, ... SVM later
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Beyond Logistic

p(x;w) = F({x,w))

e F':R — [0, 1], increasing: any cumulative distribution function (cdf) would do

J distribution: F(x;pu,s) = ﬁ
Fexp(=5E

— with mean p and variance s?7?/3

— sigmoid is exactly when © =0 and s =1
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Solving Logistic Regression

mvgn ilog [1 + exp ( — ¥i (X;, W) )}
i=1

[\

f(w)

Newton's algorithm:

W w = [VEf(w)] 70 V(w)

The gradient Vf(w) = X(p — YT“) compare prediction p with true label yT“

The Hessian V2f(w) = >, pi(1 — p;)x;x; : weighted by confidence

The confidence p; = sgm((x;, w))



Linear Regression vs. Logistic Regression

least-squares: > ., (y; — §:)?
prediction: §; = (x;,w)

objective: ||y — 2

grad: w+ w —nX(y —y)

Newton: w + w — (XX )"1X(¥ —y)

cross-entropy: > i, — ¥ log p; — 15 log(1—p;)

prediction: §; = sign((x;,w)), p; = sgm((x;,w))
objective: KL(H'Tny’)
grad: w < w —nX(p — HTy)

Newton: w + w — n(XS’XT)_lx(f) — “’Ty)

e Diagonal weight matrix S = diag (f) ©(1- f)))

® [ogistic regression = iteratively weighted linear regression



More than 2 Classes

° parameterization:

exp((x, wy))

PrY = kX =x;W = [wy, ..., w.]) = 211 exp((x, wi))

— nonnegative and sum to 1
® Encodey € {1,...,c}

® Minimizing again the logarithmic loss:

exp({X,w))
211 exp((X, wi))

min E |—log






