
CS480/680: Introduction to Machine Learning
Lec 02: Linear Regression

Yaoliang Yu

Jan 14, 2025

Regression

• Given training data *(xi,yi)+, find f : X → Y such that f(xi) ≈ yi

– xi ∈ X ⊆ Rd: feature vector for the i-th training example

– yi ∈ Y ⊆ Rt: t responses, e.g. t = 1 or even t =∞

L02 1/23

Some Examples

• Prior knowledge on the functional form of f

• Linear vs. nonlinear

L02 2/23

Some Examples

• Prior knowledge on the functional form of f

• Linear vs. nonlinear

L02 2/23

The Difficulty

Theorem: Exact interpolation is always possible

For any* finite training data *(xi,yi) : i = 1, . . . , n+, there exist infinitely many
functions f such that for all i,

f(xi) = yi.

• No amount of training data is enough to decide on a unique f !

• On new data x, our prediction ŷ = f(x) can vary wildly!

• This is where prior knowledge of f comes into play

• Occam’s razor: “the simplest explanation is usually the correct one”

L02 3/23

https://en.wikipedia.org/wiki/Occam_razor

L02 4/23

Statistical Learning

• Training and test data are both iid samples from the same unknown distribution P

– (Xi,Yi) ∼ P and (X,Y) ∼ P

• Least squares regression: min
f :X→Y

E∥f(X)− Y∥22

• Regression function: m(x) = E[Y|X = x]

• Need to know the distribution P, i.e., all pairs (X,Y)!

• Changing the square loss changes the regression function accordingly

L02 5/23

x1 x2 x3

m(x1)

m(x2)

m(x3)

distribution of
Y values

given X = x3

m(x) = E [Y|X = x]

X

Y

L02 6/23

Bias-Variance Decomposition

E∥f(X)− Y∥22 = E∥f(X)−m(X) +m(X)− Y∥22
= E∥f(X)−m(X)∥22 + E∥m(X)− Y∥22

((((((((((((((((hhhhhhhhhhhhhhhh
+2E ⟨f(X)−m(X),m(X)− Y⟩

= E∥f(X)−m(X)∥22︸ ︷︷ ︸
bias2

+E∥m(X)− Y∥22︸ ︷︷ ︸
noise variance

• The noise variance does not depend on our choice of f !

– it is an inherent measure of the difficulty of our problem

• We aim to choose f ≈ m to minimize bias hence squared error

L02 7/23

Sampling → Training

min
f :X→Y

Ê∥f(X)− Y∥22 =
1

n

n∑
i=1

∥f(Xi)− Yi∥22

• Replace expectation with sample average: (Xi,Yi)
i.i.d.∼ P

• Finite training set → exact interpolation paradox!

• Need to restrict the form of f , using prior knowledge

• (Uniform) law of large numbers: as training data size n→∞,

Ê→ E and (hopefully) argmin Ê→ argminE

L02 8/23

https://en.wikipedia.org/wiki/Law_of_large_numbers

Linear Least Squares Regression

• Affine function: f(x) = Wx+ b with W ∈ Rt×d and b ∈ Rt

• Padding: x←
(
x
1

)
, W← [W,b], hence f(x) = Wx

• In matrix form: 1
n

∑
i ∥f(xi)− yi∥22 = 1

n
∥WX− Y∥2F

– X = [x1, . . . , xn] ∈ R(d+1)×n, Y = [y1, . . . ,yn] ∈ Rt×n

– ∥A∥F =
√∑

ij a
2
ij

min
W∈Rt×(d+1)

1
n
∥WX− Y∥2F

S. M. Stigler. “Gauss and the Invention of Least Squares”. The Annals of Statistics, vol. 9, no. 3 (1981), pp. 465–474.

L02 9/23

https://www.jstor.org/stable/2240811

L02 10/23

Calculus Detour

• Let f : Rp → R be a smooth real-valued function

• Fix an inner product ⟨·, ·⟩

• Define the gradient ∇f : Rp → Rp as

df(w + tz)

dt
↾t=0 = ⟨∇f(w), z⟩

– LHS is the usual (scalar) derivative of the univariate function t 7→ f(w + tz)

– w and z are fixed as constants: directional derivative

– gradient ∇f is representation of directional derivative over a chosen inner product

• Chain rule still holds
L02 11/23

https://en.wikipedia.org/wiki/Directional_derivative
https://en.wikipedia.org/wiki/Chain_rule

Example: Univariate functions

Consider f : R → R (i.e., p = 1) and the standard inner product ⟨a, b⟩ := ab. By
chain rule:

df(w + tz)

dt
↾t=0 = f ′(w + tz)z ↾t=0= f ′(w)z = ⟨f ′(w), z⟩ ,

i.e., ∇f(w) = f ′(w). What is the gradient if we choose ⟨a, b⟩ := 2ab?

Example: Partial derivatives

Consider f : Rp → R and the standard inner product ⟨w,x⟩ :=
∑

j wjxj. Choose
the direction z = ej (i.e., 1 at the j-th entry and 0 elsewhere):

df(w + tej)

dt
↾t=0 = ∂jf(w) = ⟨∇f(w), ej⟩ = [∇f(w)]j,

i.e., ∇f(w) = [∂1f(w), . . . , ∂pf(w)].

L02 12/23

Example: Quadratic function

Consider the quadratic function f(w) = ⟨w, Aw + b⟩+ c.

f(w + tz) = ⟨w + tz, A(w + tz) + b⟩+ c

= t2 ⟨z, Az⟩+ t ⟨w, Az⟩+ t ⟨z, Aw + b⟩+ ⟨w, Aw + b⟩+ c

df(w + tz)

dt
↾t=0 = ⟨w, Az⟩+ ⟨z, Aw + b⟩ =

〈
A⊤w + Aw + b, z

〉
,

i.e., ∇f(w) = (A⊤ + A)w + b .

• ⟨a+ b,x+ y⟩ = ⟨a,x⟩+ ⟨a,y⟩+ ⟨b,x⟩+ ⟨b,y⟩

• ⟨a, tb⟩ = ⟨ta,b⟩ = t ⟨a,b⟩

• ⟨w, Az⟩ =
〈
A⊤w, z

〉
, ⟨Aw, z⟩ =

〈
w, A⊤z

〉
L02 13/23

L02 14/23

Optimality Condition

Theorem: Fermat’s necessary condition for extremity

If w is a minimizer (or maximizer) of a differentiable function f over an open set,
then f ′(w) = 0.

−1 −0.5 0.5 1

0.2

0.4

0.6

0.8

1

L02 15/23

https://en.wikipedia.org/wiki/Pierre_de_Fermat

Solving Linear Regression

∥WX− Y∥2F = ⟨WX− Y,WX− Y⟩
=

〈
W,WXX⊤ − 2YX⊤〉+ ⟨Y,Y⟩

• Taking derivative w.r.t. W and setting to zero:

Normal equation WXX⊤ = YX⊤ =⇒W = YX⊤(XX⊤)−1 =: YX†

• X ∈ R(d+1)×n hence XX⊤ ∈ R(d+1)×(d+1): may not be invertible if n ≤ d+ 1, but
a solution always exists
• Even when invertible, never compute the inverse directly!
• Instead, solve the linear system or apply iterative gradient algorithm

L02 16/23

Prediction

• Once solved W on the training set (X,Y), can predict on unseen data Xtest:

Ŷtest = WXtest

• We may evaluate our test error if true labels were available:
1

ntest
∥Ytest − Ŷtest∥2F

• We may compare to the training error:
1
n
∥Y − Ŷ∥2F, where Ŷ := WX

• Minimizing the training error as a means to reduce the test error
• Sometimes we even evaluate the test error using a different loss L(Ytest, Ŷtest)

– leads to a beautiful theory of loss calibration

L02 17/23

Ill-conditioning

X =

[
0 ϵ
1 1

]
, y =

[
1 −1

]
• Solving linear least squares regression:

w = yX−1 =
[
1 −1

] [−1/ϵ 1
1/ϵ 0

]
=

[
−2/ϵ 1

]
• Slight perturbation leads to chaotic behaviour!

• Happens whenever X is ill-conditioned, i.e.,
(close to) rank deficient

L02 18/23

Tikhonov Regularization, a.k.a. Ridge Regression

min
W

1
n
∥WX− Y∥2F + λ∥W∥2F

• Normal equation: W(XX⊤ +λI) = YX⊤

• Regularization const. λ controls trade-off

– λ = 0 reduces to ordinary linear regression
– λ =∞ reduces to W ≡ 0
– intermediate λ restricts output to be 1

λ
proportional to input

• May choose to not regularize offset b

A. N. Tikhonov. “Solution of incorrectly formulated problems and the regularization method”. Soviet Mathematics, vol. 4, no. 4 (1963),
pp. 1035–1038, A. E. Hoerl and R. W. Kennard. “Ridge regression: Biased estimation for nonorthogonal problems”. Technometrics, vol. 12,
no. 1 (1970), pp. 55–67.

L02 19/23

https://en.wikipedia.org/wiki/Andrey_Nikolayevich_Tikhonov
https://archive.org/details/sim_doklady-mathematics_july-august-1963_4_4/page/n159/mode/2up
https://www.tandfonline.com/doi/abs/10.1080/00401706.1970.10488634

Data Augmentation

1
n
∥WX− Y∥2F + λ∥W∥2F = 1

n
∥W

[
X
√
nλI

]︸ ︷︷ ︸
X̃

−
[
Y 0

]︸ ︷︷ ︸
Ỹ

∥2F

• Augment X with
√
nλI, i.e. p data points xj =

√
nλej, j = 1, . . . , p

• Augment Y with zero

• Shrinks W towards origin

regularization = data augmentation

L02 20/23

Sparsity
• Regularization ⇐⇒ constraint:

min
∥W∥F≤γ

1
n
∥WX− Y∥2F

• Ridge regression → dense W
– more computation / communication
– harder to interpret

• Lasso (Tibshirani, 1996):

min
∥W∥1≤γ

1
n
∥WX− Y∥2F

• Regularization ⇐⇒ constraint:

min
W

1
n
∥WX− Y∥2F + λ∥W∥1

w1

w2

ŵ

R. Tibshirani. “Regression Shrinkage and Selection via the Lasso”. Journal of the Royal Statistical Society: Series B, vol. 58, no. 1 (1996),
pp. 267–288.

L02 21/23

https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

Task Regularization

min
W

1
n
∥WX− Y∥2F + λ∥W∥2F ≡ min

wτ

1
n
∥wτX− yτ∥2F + λ∥wτ∥22, ∀τ = 1, . . . , t

• In other words, the tasks are independent and can be solved separately

• Sometimes lumping tasks together (LHS) is computationally more efficient

• If tasks are related, can consider a kind of low-rank regularization:

min
W

1
n
∥WX− Y∥2F + λ∥W∥tr,

where ∥A∥tr is the sum of singular values (i.e., the trace norm).

R. Caruana. “Multitask Learning”. Machine Learning, vol. 28 (1997), pp. 41–75, A. Argyriou, T. Evgeniou, and M. Pontil. “Convex
multi-task feature learning”. Machine Learning, vol. 73 (2008), pp. 243–272.

L02 22/23

https://en.wikipedia.org/wiki/Matrix_norm
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1007/s10994-007-5040-8
https://doi.org/10.1007/s10994-007-5040-8

Cross-validation

Yao-Liang Yu

Cross-val idat ion

2021-09-1319

Training set Test setValidation

L02 23/23

Cross-validation

Yao-Liang Yu

Cross-val idat ion

2021-09-1319

Training set Test setValidation

1 …5 k-1 k2 3 4

L02 23/23

Cross-validation

Yao-Liang Yu

Cross-val idat ion

2021-09-1320

Training set Test set

1 …5 k-1 k2 3 4

For each lambda, perf1

L02 23/23

Cross-validation

Yao-Liang Yu

Cross-val idat ion

2021-09-1321

Training set Test set

1 …5 k-1 k2 3 4

For each lambda, perf1 + perf2

L02 23/23

Cross-validation

Yao-Liang Yu

Cross-val idat ion

2021-09-1322

Training set Test set

1 …5 k-1 k2 3 4

For each lambda, perf1 + perf2 + … + perfk

L02 23/23

Cross-validation

Yao-Liang Yu

Cross-val idat ion

2021-09-1323

Training set Test set

1 …5 k-1 k2 3 4

For each lambda, perf(lambda) = perf1 + perf2 + … + perfk

L02 23/23

Cross-validation

Yao-Liang Yu

Cross-val idat ion

2021-09-1323

Training set Test set

1 …5 k-1 k2 3 4

For each lambda, perf(lambda) = perf1 + perf2 + … + perfk

lambda* = argmaxlambda perf(lambda)

L02 23/23

Cross-validation

Yao-Liang Yu

Cross-val idat ion

2021-09-1323

Training set Test set

1 …5 k-1 k2 3 4

For each lambda, perf(lambda) = perf1 + perf2 + … + perfk

lambda* = argmaxlambda perf(lambda)

L02 23/23

Cross-validation

Yao-Liang Yu

Cross-val idat ion

2021-09-1323

Training set Test set

1 …5 k-1 k2 3 4

For each lambda, perf(lambda) = perf1 + perf2 + … + perfk

lambda* = argmaxlambda perf(lambda)

Wlambda*

L02 23/23

