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Regression

e Given training data {(x;,y;)(, find f : X — Y such that f(x;) = y;
- x; € X C R%: feature vector for the i-th training example

— y; €Y C RY: t responses, e.g. t =1 or even t = o0

® data

linear

== cubic




Some Examples

e o Samples data
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® Prior knowledge on the functional form of f

® Linear vs. nonlinear



Some Examples

Laffer Curve
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The Difficulty

Theorem: Exact interpolation is always possible

For any” finite training data {(x;,y;) : i = 1,...,nf, there exist infinitely many
functions f such that for all 7,

f(Xi) =Y

® No amount of training data is enough to decide on a unique f!

On new data x, our prediction y = f(x) can vary wildly!

This is where prior knowledge of f comes into play

. . “the simplest explanation is usually the correct one”


https://en.wikipedia.org/wiki/Occam_razor




Statistical Learning

Training and test data are both iid samples from the distribution P
— (X3, Yi) ~Pand (X,Y) ~ P

o SEEUERIR E|lf(X) = Y]

o :m(x) = E[Y|X = x]

Need to know the distribution PP, i.e., 2!l pairs (X, Y)!

Changing the square loss changes the regression function accordingly
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Bias-Variance Decomposition

E|lf(X) = Yl = E[f(X) = m(X) + m(X) = Y[}3
= E[|f(X) - mX)|3 + E[m(X) - Y|3

E(f X)— Y)
=1E\|f( m<x>ng+lpnm<x> VI

g

blas noise variance

® The noise variance does not depend on our choice of f!

— it is an inherent measure of the difficulty of our problem

® \We aim to choose f &~ m to minimize bias hence squared error



Sampling — Training

« 1 <&
) , )
Jm B = lE = 5;:1 1f(X:) = Yill3

Replace expectation with sample average: (X;,Y;) “id b

Finite training set — exact interpolation paradox!

Need to restrict the form of f, using prior knowledge

° . as training data size n — oo,

E — E and (hopefully) argmin & — argmin E


https://en.wikipedia.org/wiki/Law_of_large_numbers

Least Squares Regression

e Affine function: f(x) = Wx+ b with W € R™? and b € R’
o x4« (¥), W« [W,b], hence f(x) = Wx

® In matrix form: £ 3" || f(x;) —yill3 = [|WX Y|}

min  1|WX — Y|

WeRtEX (d+1) n

S. M. Stigler. . The Annals of Statistics, vol. 9, no. 3 (1981), pp. 465-474.


https://www.jstor.org/stable/2240811




Calculus Detour

® Let f:R” — R be a smooth real-valued function
e Fix an inner product (-, -)

® Define the gradient Vf : R? — R? as

df(w + tz)
—— li=o = (Vf(w),z)

dt
— LHS is the usual (scalar) derivative of the univariate function ¢t — f(w + tz)

— w and z are fixed as constants:

— gradient Vf is of directional derivative over a chosen inner product

° still holds
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https://en.wikipedia.org/wiki/Directional_derivative
https://en.wikipedia.org/wiki/Chain_rule

Example: Univariate functions

Consider f : R — R (i.e., p = 1) and the standard inner product (a,b) := ab. By
chain rule:
df(w+tz)

T o = fl(w+1t2)z [imo= f'(w)z = (f'(w), 2),

i.e., Vf(w) = f'(w). What is the gradient if we choose (a, b) := 2ab?

Example: Partial derivatives

Consider f : R? — R and the standard inner product (w,x) := > w;z;. Choose
the direction z = e, (i.e., 1 at the j-th entry and 0 elsewhere):




Example: Quadratic function

Consider the quadratic function f(w) = (w, Aw + b) + c.

f(w+tz) = (w+tz, Alw+tz) +b) +c¢
= t* (2, Az) +t (w, Az) + t (z, AW + b) + (w, Aw + b) + ¢
df(w + tz)
dt

e, |Vf(w)=(AT + A)w +b|

* {(at+b.x+y)=(ax) +(ay) +(bx)+(by)
e (a,tb) = (ta,b) =t (a,b)
o (w,Az) = (ATw,z), (Aw,z) = (w, A z)

[i=0 (w, Az) + (z, Aw + b) = (A"w + Aw + b, z)
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Optimality Condition

Theorem: 's necessary condition for extremity

If w is a minimizer (or maximizer) of a differentiable function f over an open set,
then f'(w) = 0.

N
global maximum

local maximum

local minimum

N
global minimum



https://en.wikipedia.org/wiki/Pierre_de_Fermat

Solving Linear Regression

WX — Y|[|2 = (WX - Y, WX —Y)
= (W, WXX" —2YX") +(Y,Y)

Taking derivative w.r.t. W and setting to zero:

(WXXT = YXT | = W = YXT(XXT)"! = YX!

X € READ* hence XX € REFDX(@+D): may not be invertible if n < d + 1, but
a solution always exists

Even when invertible,

Instead, solve the linear system or apply iterative gradient algorithm



Prediction

® Once solved W on the training set (X,Y), can Xiest:
?test = Wxtest

® \We may evaluate our if true labels were available:

|Ytest - ?test |||2:

Ntest
® \We may compare to the

LIY Y|  where Y :=WX

e Sometimes we even evaluate the test error using a different loss L(Y gest, Vtest)

— leads to a beautiful theory of loss calibration



lll-conditioning

ASHTON KUTCHER AMY SMART

X:ﬁ ﬂ y=[1 —1]

® Solving linear least squares regression:

w=yX'=[1 —1] {_1%6 [1)] — [-2/e 1]

® Slight perturbation leads to chaotic behaviour!

® Happens whenever X is ill-conditioned, i.e.,
(close to) rank deficient

TEECNIE (0 ® COMING

18/23



Tikhonov Regularization, a.k.a. Ridge Regression

min WX — Y[ + | A|WIJ?

® Normal equation: W(XX" + ) = YX'

® Regularization const. A controls trade-off

— X = 0 reduces to ordinary linear regression

— X = oo reduces to W =0

— intermediate \ restricts output to be 1
proportional to input

® May choose to not regularize offset b

A. N. Tikhonov. “Solution of incorrectly formulated problems and the regularization method”. Soviet Mathematics, vol. 4, no. 4 (1963),
pp. 1035-1038, A. E. Hoerl and R. W. Kennard. “Ridge regression: Biased estimation for nonorthogonal problems”. Technometrics, vol. 12,
no. 1 (1970), pp. 55-67
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https://en.wikipedia.org/wiki/Andrey_Nikolayevich_Tikhonov
https://archive.org/details/sim_doklady-mathematics_july-august-1963_4_4/page/n159/mode/2up
https://www.tandfonline.com/doi/abs/10.1080/00401706.1970.10488634

Data Augmentation

LIWX — Y| +[AIWIE| = LW [X vadT] - [Y o] |1
—_————  ~——
X Y

® Augment X with vnAl, i.e. p data points x; = vVnle;,j=1,...,p
® Augment Y with zero

® Shrinks W towards origin

regularization = data augmentation




Sparsity

LO2

® Regularization <= constraint:

min  L||WX — Y|}
IW[e<y ™

® Ridge regression — dense W

— more computation / communication
— harder to interpret

® Lasso (Tibshirani, 1996):
min_ L[WX - Y2
<7

® Regularization <= constraint:

mm —||WX Y|+ MW,

R. Tibshirani. “Regression Shrinkage and Selection via the Lasso”.

pp. 267—-288.

)

Journal of the Royal Statistical Society: Series B, vol. 58, no. 1 (1996),
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https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

Task Regularization

min WX —Y[E+AWIE = min JwX —y.[[f+ Nw.[3, 7 =1,...

® |n other words, the tasks are independent and can be solved separately
e Sometimes lumping tasks together (LHS) is computationally more efficient

o |f tasks are related, can consider a kind of

min WX = Y[z + A W],

where ||Al|¢; is the sum of singular values (i.e., the ).

R. Caruana. . Machine Learning, vol. 28 (1997), pp. 41-75, A. Argyriou, T. Evgeniou, and M. Pontil.
. Machine Learning, vol. 73 (2008), pp. 243-272.


https://en.wikipedia.org/wiki/Matrix_norm
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1007/s10994-007-5040-8
https://doi.org/10.1007/s10994-007-5040-8

Cross-validation
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Cross-validation

For each lambda, perf

1




Cross-validation

For each lambda,




Cross-validation

For each lambda, perf, + perf, + ... + perf,




Cross-validation

For each lambda, perf(lambda) = perf, + perf, + ... + perf,




Cross-validation
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For each lambda, perf(lambda) = perf, + perf, + ... + perf,

lambda’ = argmax, ,,,4, Perf(lambda)
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Cross-validation

Wlambda*
‘

-

For each lambda, perf(lambda) = perf, + perf, + ... + perf,

lambda’ = argmax, ,,,4, Perf(lambda)







