CS480/680: Introduction to Machine Learning
Lec 07: Reproducing Kernels

Yaoliang Yu

W UNIVERSITY OF FACULTY OF MATHEMATICS

DAVID R. CHERITON SCHOOL
@ WATE R Loo OF COMPUTER SCIENCE

Jan 28, 2025



OR Dataset

1.5 5
1 1
X1 X X3 Xy
0 1 0 1 0.5
0O 0 1 1
y - + 0
—0.5

205 0 0.5 1 15

1/19



Quadratic Classifier

f(x) = (x,Qx) + V2 (x,p) + b

® Predict as before y = sign(f(x))
® Weights to be learned: Q@ € R™4 p e R¢ be R

e Setting Q = 0 reduces to the linear case



o/

The Power of Lifting %

F(x) = (x,@x) + V2 (x,p) +b
= (xx7,Q) + (V2x,p) +b
= (#(x), w)

o
V2x |, where x € R — ¢(x) € R
1

o

e Weights to be learned: w = [p

® Feature map ¢(x) = {

eR
b

® Nonlinear in x but linear in ¢(x): ¢ must be nonlinear




From Nonlinear to Linear




The Kernel Trick

Feature map ¢ : R = R dXdFdFL pows up the dimension

[
® Do we have to operate in the high-dimensional feature space, explicitly?
e But,
x| [z
<¢(X)7¢(Z>> = < \/§X ] \/§Z > = (<X7 Z>)2 + 2 <X7Z> + ]'
1 1
= ((x,2) +1)°

® Which can still be computed in O(d) time!



Reverse Engineering

Given feature map ¢ : X — H, the resulting inner product

(0(x), 9(2)) =: k(x, 2)

can be computed, albeit inefficiently due to large dimension of H

Conversely, given k : X x X — R, does there exist ¢ : X — H such that
(9(x), ¢(2)) = k(x,2)?

For computational purposes, all we need is the existence of such ¢

Later, neural nets learn ¢ simultaneously with w



(Reproducing) Kernels

We call k: & x X — R a (reproducing) if there exists feature transform
¢ : X — H so that (¢(x),0(z)) = k(x,2).

® Choosing a feature transform ¢ determines the corresponding kernel &
e Choosing a kernel k determines some feature transform ¢ too
— may not be unique; cannonical choice p(x) := k(-,x)
— ¢(x1,12) := [22,V2x122, 23, V211, V213, 1]
— (2, T2) = [23, 120, T1T2, 23, V221, V220, 1]
o cHy = {x = (p(x),w) : weH} CRY
® : <f,k(,X)> :f(X) and <k(',X),l€(',Z)> :k(X,Z)
N. Aronszajn. . Transactions of the American Mathematical Society, vol. 68, no. 3 (1950), pp. 337—404.
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https://en.wikipedia.org/wiki/Reproducing_kernel_Hilbert_space
https://doi.org/10.2307/1990404

Verifying a Kernel

Theorem: Positive Semi-definite (PSD)
k:X x X — R is a kernel iff for any n € IN, for any x;,...,x, € X, the kernel

matrix K;; := k(x;,X;) is symmetric and PSD. In notation: K € 7.

L Symmetric: K’L] = K]z
e PSD: for o € R,

n n

(a, Kax) ZZO&O@K > 0.

=1 j5=1

— if equality is attained only at & = 0, then it is called positive definite or strictly PSD

® (Can think of a kernel as some form of similarity measure



Examples

Polynomial kernel: k(x,z) = ((x,z) + 1)?

— underlying RKHS?

Gaussian kernel: k(x,z) = exp(—||x — z||3/0)

— infinite-dimensional RKHS!

Laplace kernel: k(x,z) = exp(—||x — z||2/0)

Brownian motion: k(s,t) := s At for s,t >0
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A Word About Universality

1-1 correspondence between a kernel k and its RKHS .

RKHS is a linear space of functions from X to R

A kernel is called if its RKHS is large enough to approximate any
continuous function (over a compact domain X’)

Kernel mean embedding: P — E ¢(X) € Hy, 1-1iff k is
X~P

C. A. Micchelli, Y. Xu, and H. Zhang. . Journal of Machine Learning Research, vol. 7, no. 95 (2006), pp. 2651-2667,
B. K. Sriperumbudur, K. Fukumizu, and G. R. Lanckriet. . Journal of
Machine Learning Research, vol. 12, no. 70 (2011), pp. 2389-2410.
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http://jmlr.org/papers/v7/micchelli06a.html
http://jmlr.org/papers/v12/sriperumbudur11a.html

Kernel Calculus

If k is a kernel, so is Ak for any A > 0

— if k has feature map ¢, what could be the feature map of \k?

If &, and ky are kernels, so is k; + ko

— if k; has feature map ¢;, what could be the feature map of k1 + ko?

If £, and ky are kernels, so is ki ks

— if k; has feature map ¢;, what could be the feature map of kqks?

If k; are kernels then the limit lim, k; (when exists) is also a kernel
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Kernel SVM

c>

Z @i % Zi Zj QG 0GY Y5 (x;, xj)

i $iwlf + €30 -y

s.t. gz = <Xi7W> + b,\V/’l

c> Z & % > Z]’ ;oYY k (%, x;5)



Testing

Solve o« € R, and recover

W= Z ;i P(x;)
i=1

We do not know ¢ so cannot compute w explicitly

For testing, only need to compute

f(x) = (p(x), w) = <¢(X)>Z@iYi¢(Xi)> = Z%’WH& X;) € Hi,

=1

Knowing the dual variable a, training set {x;,y;} and the kernel & suffices!



Tradeoff

Previously: training O(nd) and testing O(d)

Kernel (including the linear kernel (x,z)): training O(n"d) and testing O(1d)

Managed to avoid explicit dependence on feature dimension (could even be o)

At the price of n (the training set size) times slower, both in training and test

Also necessary to store the training set (at least the support vectors)



Does It Work?

15 —1 —05 05 1 15

d(x) = [22, V22129, 2, V211, V25, 1]
k(x,z) = ((x,2z) + 1)
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Crunch Crunch

Cc>

s.t. Zaiyi =0

Z @i % Zi Zj aiajyiyjk(xia Xj)

— == O

— = o

_ O = =

O = ==

aq
Qi
a3
Oy



_ _ _ _ 1
061—062—063—054—§

w = ayip(x;) = [0,—,0,0,0,0]

d(x) = [22, V2z120, 22, V221, V20, 1]
f(x) = (p(x),w) = Z@i)’ik(X, X;) = —T1T7
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Logistic Regression Revisited

.1l A
=il

1 « A
m“i/n - Z log(1 + exp(—y; (p(x;), w))) + 5““’”%
i=1

Theorem: Representer Theorem

The optimal w =37 | a;y;é(x;) for some @ € R™.




Orthogonal Decomposition

wl € span{y;o(x;) :i=1,...,n}

Logistic loss only depends on w!

Regularizer is smaller if w- =0

Thus, w = wll = > @;y;0(x;) for some a € R
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