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Course Information

• Instructor: Yao-Liang Yu (yaoliang.yu@uwaterloo.ca)

• Office hours: TTh 14:30-15:30pm at DC3617 or by email appointment

• TA: Ehsan Ganjidoost (eganjido), Zeou Hu (z97hu), Haoye Lu (h229lu), Yiwei Lu
(y485lu) x 2, Argyris Mouzakis (amouzaki)

• Website: cs.uwaterloo.ca/∼y328yu/teaching/480
slides, notes, assignments, policy, etc.

• Piazza: piazza.com/uwaterloo.ca/winter2025/cs480680
announcements, questions, discussions, etc.

• Learn: learn.uwaterloo.ca/d2l/home/1098030
assignments, solutions, grades, etc.
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Prerequisites

• Basic linear algebra, calculus, probability, algorithm
– CM339 / CS341 or SE 240; STAT 206 or 231 or 241

– some relevant books on course website

• Coding

https://www.python.org/ https://julialang.org/

“Coding to programming is like typing to writing. ”
— Leslie Lamport
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https://yaoliangyu.github.io/teaching/480/
https://www.python.org/
https://julialang.org/
https://youtu.be/rkZzg7Vowao
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Textbooks Z links

• No required textbook

• Notes, slides, and code will be posted on the course website

• Some fine textbooks for the ambitious ones:
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https://cs.uwaterloo.ca/~y328yu/teaching/480/
https://cs.uwaterloo.ca/~y328yu/teaching/480/


Workload

• Roughly 24 lectures, each lasting 80 minutes
• Expect 4 assignments, approx. 1 every 3 weeks

– 20 points each; total: 80

• Take-home midterm exam: 5 points

• In-person final exam: 15 points

• Upon approval can substitute exams with a course project

• Small, constant progress every week
• Submit on Crowdmark. Submit early and often

– typeset using LATEX is recommended
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https://www.latex-project.org/


Policy

• Do your work independently and individually

– discussion is fine, but no sharing of text or code

– explicitly acknowledge any source that helps you

• Ignorance is no excuse

– good online discussion, more on course website

• Serious offense will result in expulsion. . .
• NO late submissions!

– except hospitalization, family urgency, . . . notify beforehand

– one-time, two-day short-term absence for CS480: email Yiwei (y485lu)

• Appeal within two weeks
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https://uwaterloo.ca/math/academic-matters/academic-integrity
https://cs.uwaterloo.ca/~y328yu/teaching/480/
y485lu@uwaterloo.ca


Overview



fulltext• Automatic Computers
• How Can a Computer be Programmed to Use a Language
• Neuron Nets
• Theory of the Size of a Calculation
• Self-lmprovement
• Abstractions
• Randomness and CreativityL00 6/27

http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html


MEASURES OF THE VALUE OF INFORMATION

BY JOHN MCCARTHY

DARTMOUTH COLLEGE, HANOVER, NEW HAMPSHIRE

Communicated by Claude Shannon, July 12, 1956

1. Introduction. Our knowledge of a future event may take the form of a set
of probabilities pi, . . , Pn. For example, we might have probabilities of 3/8, 1/8,
and '/2 for rain, snow, and clear as tomorrow's weather. In communication theory
our interest is in the various events only as carriers of a coded message. For this
purpose Shannon's' entropy - Ep, log pi is the appropriate measure of our uncer-
tainty, and a function A Zpi log pi + B is a good measure of what it is worth to be
given these probabilities. In our weather example we care which event occurs.
Furthermore, we may be more interested in whether the sky is clear than in whether
rain or snow occurs if the weather is bad. In this paper we show that any convex
function of a set of probabilities may serve as a measure of the value of information
and that two such functions are equivalent in an appropriate sense if and only if
they differ by a linear function.

2. The Forecaster and His Client.-We get our quantitative measures of the
value of information from a situation in which a client pays a forecaster for pre-
dictions of a future event according to the following rules:

(i) The forecaster gives the client probabilities ql, . . , qn for the events, where
Eqi= 1.

(ii) The client takes action on the basis of these probabilities, and one of the
possible events occurs.

(iii) If the ith event occurs, the client pays the forecaster fi(ql, . . ., qn), which
is abbreviated fi(q).

(iv) We assume that neither the forecaster nor the client can influence the pre-
dicted event, although the forecaster can make experiments to help predict it, and
the client gets an amount which depends on both the action he takes and on the
event which occurs. In what follows, it is assumed that the forecaster and the
client both wish to maximize the expected value of their incomes.
Assuming that to the forecaster the probabilities of the possible events are pi, .

P., his expectation is Epifi(q) if he tells the client the q's. A payoff rule is said to
"keep the forecaster honest" if, regardless of the value of p = (pl, . . . , Pn), the
forecaster's expectation is maximized if and only if he puts q = p, i.e., qi = pi for
each i.
THEOREM 1. A payoff rule keeps the forecaster honest if and only if fi(q) =

(6/1qi)f(q), where f(q) is a convex function of q which is homogeneous of the first degree.
The expectation of an honestforecaster is then Epif2(p) = f(p).
We omit the proof. The derivative has to be taken in a suitable generalized

sense. f(q) is called a "payoff function" if it satisfies the conditions of Theorem 1.
I. J. Good2 considered the problem of paying the forecaster with the restriction

that fi(q) = F(qi), i.e., the payoff depends only on the probability assigned to the
event which actually occurred. He showed that putting F(x) = A log x + B keeps
the forecaster honest, and Gleason (unpublished) showed that this is the only F(x)
which does. The forecaster's expectation is then A Epi log Pi + B, i.e., he is paid
a fixed fee minus the expected uncertainty about the event after his prediction.
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3. The Client's Expectation.-Suppose that on the basis of the forecaster's pre-
diction the client chooses thejth of the actions open to him and that his payoff if the
ith event occurs is a j. His expectation will be g(p) = max aijpi if j is chosen

optimally.
From the theory of convex functions we have
THEOREM 2. Any function g(p) defined for pi > 0, pn > 0 which is convex

and homogeneous of the first degree can be written in the form max E aijpi. Unless

g(p) is piecewise linear, there will have to be an infinite number of actions j.
If we put f(p) = g(p), the client is eliminated from the picture, since under this

condition he turns all his gains over to the forecaster and is reimbursed for all his
losses. This is not a satisfactory solution to the problem, so let us see what payoffs
f are equivalent in their effect on the forecaster's efforts to get information.

4. The Forecaster's Experiments.-Assume that the forecaster has a priori
probabilities ri, . . . , r,, for the events, that he has a choice of m experimental pro-
cedures with expected costs to him of cl, . .,cm, and that the conditional proba-
bility of the kth outcome of the hth experiment given that the ith event will occur
is Skhi. The experiment chosen by the forecaster will depend on the c's, the s's,
and the r's and on the payoff function chosen by the client. We call two payoff
rules equivalent if, for any set of c's, s's, and r's, they lead to the same choice of
experiment by the forecaster.
THEOREM 3. f(q) and f*(q) are equivalent if and only if f(q) = f*(q) + Eaiqi,

i.e., if the two payofffunctions differ by a linear function of the q's.
The proof is omitted. Iff and f* are equivalent, then f1(q) = fi*(q) + aj, so that

the payoff rules differ by an amount which depends only on the event which occurs
and not on the forecaster's prediction. The forecaster's and client's interests will
be identical if we put f(q) = g(q) + Eaiqi. The as's are subject to negotiation be-
tween the client and the forecaster, and they determine both a base level of pay-
ment and also a betting relation between the client and forecaster. If f is normal-
ized so that f(1, O . . . , 0) = f(O, 1, . . , O) = . . . , the payment for a precise cor-
rect prediction is independent of the event predicted.

5. Conclusion.-The foregoing analysis shows that any convex function of a set
of probabilities will, under appropriate circumstances, be a measure of the value of
the information contained in a set of probabilities in the sense that it is an appro-
priate payment to a forecaster who furnishes the probabilities.
The intuitive content of the convexity restriction is that it is always a good idea

to look at the outcome of an experiment if it is free. For suppose that the experi-
ment has two outcomes, A and A *, which would give one probabilities p and p* for
the event in question. Let t be the probability that A is the outcome. If we de-
cide not to look, our expectation is f(tp + (1 - t)p*), while if we decide to look, our
expectation is tf(p) + (1 - t)f(p*).

Finally, we remark that there are yet more general ways of paying the forecaster.
For example, the client may agree to pay a certain fraction a of the costs of ex-
perimentation. Then the payoff function can be scaled down by a factor a with
the identity of interests still preserved. We hope to treat these matters on an-
other occasion.

I C. E. Shannon and W. Weaver, The Mathematical Theory of Communication (Urbana: Uni-
versity of Illinois Press, 1949).

2 I. J. Good, "Rational Decisions," J. Roy. Stat. Soc., B, Vol. 14, No. 1, 1952.
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Claude Shannon (1916–2001)

• Documentary

• Oral history

• Claude E. Shannon: Founder of Information Theory

• A Chess-Playing Machine

• Claude E. Shannon: Unicyclist, juggler and father of
information theory

• Interchange between Kolmogorov and Shannon,
recounted by Vitushkin, page 20...

A. G. Vitushkin. “On Hilbert’s thirteenth problem and related questions”. Russian Mathematical Surveys, vol. 59, no. 1 (2004), p. 11.
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https://en.wikipedia.org/wiki/Claude_Shannon
https://thebitplayer.com/
https://ethw.org/Oral-History:Claude_E._Shannon
https://www.scientificamerican.com/article/claude-e-shannon-founder/
https://www.scientificamerican.com/article/a-chess-playing-machine/
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http://stacks.iop.org/0036-0279/59/i=1/a=R03


What is Machine Learning (ML)?

“Machine learning is the field of study that gives computers the ability to
learn without being explicitly programmed.” — Arthur Samuel (1959)

“A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P , if its performance at tasks
in T , as measured by P , improves with experience E.” — Tom Mitchell (1998)
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https://en.wikipedia.org/wiki/Arthur_Samuel


A. L. Samuel

Some Studies in Machine Learning

Using the Game of Checkers

Abstract: Two machine-learning procedures have been investigated in some detail using the game of

checkers. Enough work has been done to verify the fact that a computer can be programmed so that it will

learn to playa better game of checkers than can be played by the person who wrote the program. Further­

more, it can learn to do this in a remarkably short period of time 18 or 10 hours of machine-playing time)

when given only the rules of the game, a sense of direction, and a redundant and incomplete Jist of

parameters which are thought to have something to do with the game, but whose correct signs and relative

weights are unknown and unspecified. The principles of machine learning verified by these experiments

are, of course, applicable to many other situations.

Introduction

The studies reported here have been concerned with the
programming of a digital computer to behave in a way
which, if done by human beings or animals, would be
described as involving the process of learning. While
this is not the place to dwell on the importance of ma­
chine-learning procedures, or to discourse on the philo­
sophical aspects," there is obviously a very large amount
of work, now done by people, which is quite trivial in its
demands on the intellect but does, nevertheless, involve
some learning. We have at our command computers with
adequate data-handling ability and with sufficient com­
putational speed to make use of machine-learning tech­
niques, but our knowledge of the basic principles of these
techniques is still rudimentary. Lacking such knowledge,
it is necessary to specify methods of problem solution in
minute and exact detail, a time-consuming and costly
procedure. Programming computers to learn from ex­
perience should eventually eliminate the need for much
of this detailed programming effort.

• General methods of approach

At the outset it might be well to distinguish sharply be­
tween two general approaches to the problem of machine
learning. One method, which might be called the Neural­
Net Approach, deals with the possibility of inducing
learned behavior into a randomly connected switching
net (or its simulation on a digital computer) as a result
of a reward-and-punishment routine. A second, and
much more efficient approach, is to produce the equiva­
lent of a highly organized network which has been de­
signed to learn only certain specific things. The first

method should lead to the development of general-pur­
pose learning machines. A comparison between the size
of the switching nets that can be reasonably constructed
or simulated at the present time and the size of the neural
nets used by animals, suggests that we have a long way
to go before we obtain practical devices.f The second
procedure requires reprogramming for each new applica­
tion, but it is capable of realization at the present time.
The experiments to be described here were based on this
second approach.

• Choice of problem

For some years the writer has devoted his spare time to
the subject of machine learning and has concentrated on
the development of learning procedures as applied to
games." A game provides a convenient vehicle for such
study as contrasted with a problem taken from life, since
many of the complications of detail are removed.
Checkers, rather than chess,4-7 was chosen because the
simplicity of its rules permits greater emphasis to be
placed on learning techniques. Regardless of the relative
merits of the two games as intellectual pastimes, it is fair
to state that checkers contains all of the basic characteris­
tics of an intellectual activity in which heuristic proce­
dures and learning processes can playa major role and
in which these processes can be evaluated.

Some of these characteristics might well be enumer­
ated. They are:

(1) The activity must not be deterministic in the prac­
tical sense. There exists no known algorithm which will
guarantee a win or a draw in checkers, and the complete 211
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Figure 2 Simplified diagram showing how the evaluations are backed-up through the "tree" of possible
moves to arrive at the best next move. The evaluation process starts at 0.

rates as being better than the book move and the number
it rates as being poorer. The sides are then reversed and
the process is repeated. At the end of a book game a cor­
relation coefficient is computed, relating the machine's
indicated moves to those moves adjudged best by the
checker masters.l"

It should be noted that the emphasis throughout all of
these studies has been on learning techniques. The
temptation to improve the machine's game by giving it
standard openings or other man-generated knowledge of
playing techniques has been consistently resisted. Even
when book games are played, no weight is given to the
fact that the moves as listed are presumably the best pos­
sible moves under the circumstances.

For demonstration purposes, and also as a means of
avoiding lost machine time while an opponent is think­
ing, it is sometimes convenient to play several simul­
taneous games against different opponents. With the
program in its present form the most convenient num­
ber for this purpose has been found to be six, although
eight have been played on a number of occasions.

Games may be started with any initial configuration
for the board position so that the program may be tested
on end games, checker puzzles, et cetera. For nonstand­
ard starting conditions, the program lists the initial piece
arrangement. From time to time, and at the end of each
game, the program also tabulates various bits of statisti-

cal information which assist in the evaluation of playing
performance.

Numerous other features have also been added to
make the program convenient to operate (for details see
Appendix A), but these have no direct bearing on the
problem of learning, to which we will now turn our
attention.

Rote learning and its variants

Perhaps the most elementary type of learning worth dis­
cussing would be a form of rote learning in which the
program simply saved all of the board positions en­
countered during play, together with their computed
scores. Reference could then be made to this memory
record and a certain amount of computing time might
be saved. This can hardly be called a very advanced
form of learning; nevertheless, if the program then util­
izes the saved time to compute further in depth it will
improve with time.

Fortunately, the ability to store board information at
a ply of 0 and to look up boards at a larger ply provides
the possibility of looking much farther in advance than
might otherwise be possible. To understand this, con­
sider a very simple case where the look-ahead is always
terminated at a fixed ply, say 3. Assume further that the
program saves only the board positions encountered
during the actual play with their associated backed-up 215
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State of Affairs

https://en.wikipedia.org/wiki/Machine_learning
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https://en.wikipedia.org/wiki/Machine_learning


Machine Learning is Everywhere

• Everyone uses ML everyday

• Lots of cool applications

• Excellent for job-hunting
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And More
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A Bit of Everything

System

Optimization

Stats

Magic

Models

L00 14/27



Learning Categories
• Supervised learning: teacher provides labels (answers)

– classification: binary, multiclass, structured
– regression: real-valued, multi-output, functional
– ranking: pointwise, pairwise, listwise

• Unsupervised learning: go explore the world!
– clustering – representation – visualization

• Reinforcement learning: teacher provides incentives
– control – pricing – games

• Semi-supervised / self-supervised / active learning / etc.
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Supervised Learning Z hotdog app
example results
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https://www.youtube.com/watch?v=tWwCK95X6go
https://towardsdatascience.com/hot-dog-or-not-hot-dog-ab9d67f20674


Reinforcement Learning

• Not in this course , but see CS 486/686/885

D. Silver et al. “Mastering the game of Go with deep neural networks and tree search”. Nature, vol. 529, no. 7587 (2016), pp. 484–489.
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https://doi.org/10.1038/nature16961


Unsupervised Learning

D. P. Kingma and P. Dhariwal. “Glow: Generative flow with invertible 1x1 convolutions”. In: Advances in Neural Information Processing
Systems. 2018, A. Radford et al. “Language models are unsupervised multitask learners”. 2019.
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https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf


Generative Adversarial Networks
min
θ

max
φ

Ê logSφ(x) + Ê log(1− Sφ ◦ Tθ(z))

I. Goodfellow et al. “Generative Adversarial Nets”. In: Advances in Neural Information Processing Systems. 2014.
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https://papers.nips.cc/paper/5423-generative-adversarial-nets
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Focus of ML Research

• Representation: how to encode the raw data?

• Generalization: how well can we do on unseen data?

• Interpretation: how to explain the findings?

• Complexity: how much time and space?

• Efficiency: how many samples?

• Privacy: how to respect data privacy?

• Robustness: how to degrade gracefully under (malicious) error?

• Fairness: how to enforce algorithmic equity?

• Applications
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What You Will Achieve

• Formulate ML problems and recognize pros and cons

• Understand and implement foundational ML models

• Develop and apply ML for new problems on real datasets

• Beware of potential ethical and safety issues of ML on society
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Classic
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Neural Nets
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Generative Models
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Nascent
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