
CS480/680: Introduction to Machine Learning
Lec 10: Graph Neural Network

Yaoliang Yu

Feb 11, 2025

Chemical Compound

• Nodes are not necessarily in correspondence
• Output: e.g., function mapping unseen compound to level of activity against

cancel cells
L10 1/31

Collaboration Network

L10 2/31

Social Network

L10 3/31

Biological Network

L10 4/31

Communication Network

L10 5/31

Traffic Network

L10 6/31

Graph Neural Networks (GNN)

• Input: G = (V , E , l)

• State (embedding):

hu = fw(hne[u], lne[u], lco[u])

• Output: ou = gw(hu, lu)

• f, g: neural nets

• Parameters: w, shared
among nodes

F. Scarselli et al. “The Graph Neural Network Model”. IEEE Transactions on Neural Networks, vol. 20, no. 1 (2009), pp. 61–80.

L10 7/31

https://doi.org/10.1109/TNN.2008.2005605

State Update

h1 = fw(hne[1], lne[1], lco[1])

...
hn = fw(hne[n], lne[n], lco[n])

 =⇒ h = Fw(h, l)

• If Fw is a contraction, then exists a unique state h:

∥Fw(h, l)− Fw(z, l)∥ ≤ γ∥h− z∥, for some γ ∈ [0, 1)

• ht+1 ← Fw(h
t, l) converges linearly to the fixed point h

• Upon convergence, output o = Gw(h, l) =: ŷ(l;w)

L10 8/31

https://en.wikipedia.org/wiki/Contraction_mapping

Example

hv =
1

|ne[v]|
∑

u∈ne[v]

φw(hu, lv, l(v,u), lu)

• State hu, node feature lu and the edge feature l(v,u) can all be vectors

• Graph structure is used in the sum: only neighbors contribute

• PageRank:

hv =
∑

v∈ne[u]

avuhu, e.g. avu := 1
|ne[u]| Jv ∈ ne[u]K

• In GNN, the aggregation function φw is learnable through w

L10 9/31

L10 10/31

Learning GNN

• Given a supervised set of graphs and labels (Gi,yi), i = 1, . . . , n

• Learn a predictor ŷ that maps a new test graph G to its label: ŷ(G) ≈ y

– labels could be at the node, edge or graph level

– do not confuse the label y with the feature l

• Choose a loss function L to solve:

min
w

L(ŷ(l;w),y)

– unroll k steps: ŷ(l;w) ≈ Gw(F
[k]
w (h, l), l)

– or apply implicit function theorem to differentiate w

L10 11/31

https://en.wikipedia.org/wiki/Implicit_function_theorem

Training by Backpropagation Through Time (BPTT)

L10 12/31

CNN Recalled

L10 13/31

Spatial Convolution

M. Niepert, M. Ahmed, and K. Kutzkov. “Learning Convolutional Neural Networks for Graphs”. In: Proceedings of The 33rd International
Conference on Machine Learning. 2016, pp. 2014–2023.

L10 14/31

http://proceedings.mlr.press/v48/niepert16.html

L10 15/31

Fourier Transform

f ∗ g = F−1 (F [f] ·F [g])

• Convolution in time domain = multiplication in frequency domain

• Invertible, in fact, orthogonal transform

• Can we do something similar for graphs?

L10 16/31

Graph Laplacian

Auv = J(u, v) ∈ EK , Duv =
∑
n

Aun · Ju = vK

• Laplacian L = D − A

– L1 = 0 · 1: # connected components of G = # multiplicity of λ = 0

– symmetric and PSD for undirected graph: ⟨x, Lx⟩ = 1
2

∑
u,v Auv(xu − xv)

2

• Normalized Laplacian L̄ = I −D−1/2AD−1/2 = D−1/2LD−1/2

L10 17/31

Example

A =

0 1 1
1 0 1
1 1 0

 , D =

2 0 0
0 2 0
0 0 2

 = diag([2, 2, 2])

L = D − A =

 2 −1 −1
−1 2 −1
−1 −1 2

 , L̄ = D−1/2LD−1/2 =

 1 −1
2
−1

2

−1
2

1 −1
2

−1
2
−1

2
1

Å =

1 1 1
1 1 1
1 1 1

 , D̊ =

3 0 0
0 3 0
0 0 3

L10 18/31

Spectral Convolution

• Given two graph signals x,g ∈ R|V|:

x ∗ g := U [(U⊤x)⊙ (U⊤g)], where L = UΛU⊤

• One layer of spectral convolution, with filter weights W k
r to be learned:

xk+1
r := σ(

conv by r-th filter︷ ︸︸ ︷
U [W k

r ⊙ (U⊤Xk)] 1︸ ︷︷ ︸
aggregation along depth

), r = 1, . . . , dk+1, Xk = [xk
1, . . . ,x

k
dk
]

• Can stack to go deep

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. “Spectral Networks and Locally Connected Networks on Graphs”. In: International
Conference on Learning Representations. 2014.

L10 19/31

https://arxiv.org/abs/1312.6203

Chebyshev Net

• Spectral conv requires eigen-decomposition and is not localized
• Rewrite the convolution:

x ∗ g := U [(U⊤x)⊙ (U⊤g)] = U [diag(f(λ;w))(U⊤x)]

= [U diag(f(λ;w))U⊤]x

:= f(L;w)x

• Choosing f to be a polynomial dispenses eigen-decomposition
• Resulting conv is localized: degree k polynomial only reqiures k-hop neighbors

M. Defferrard, X. Bresson, and P. Vandergheynst. “Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering”. In:
Advances in Neural Information Processing Systems 29. 2016, pp. 3844–3852.

L10 20/31

http://papers.nips.cc/paper/6081-convolutional-neural-networks-on-graphs-with-fast-localized-spectral-filtering.html

Graph Convolutional Net (GCN)

• A layer of GCN is defined simply as:

Xk+1 = σ
(
D̊−1/2ÅD̊−1/2XkW k

)
, Xk = [xk

1, . . . ,x
k
s] ∈ R|V|×s, W k ∈ Rs×t

– Å = A+ I (i.e. adding self-cycle)

– D̊ is the usual diagonal degree matrix of Å

– s and t are the number of input and output channels, resp.

• One layer of GCN only aggregates info from 1-hop neighbors

• Can stack to get deep and aggregate info from k-hop neighbors

T. N. Kipf and M. Welling. “Semi-Supervised Classification with Graph Convolutional Networks”. In: International Conference on Learning
Representations. 2017.

L10 21/31

https://openreview.net/forum?id=SJU4ayYgl

Connections

• Rewriting GCN in vector form and identify Xv: = lv:

lk+1
v = σ

([1

dv + 1
lkv +

∑
u∈Nv

avu√
(dv + 1)(du + 1)

lku

]
W k

)

• This is GNN!

• It also resembles the Weisfeiler-Lehman (WL) algorithm!

L10 22/31

WL and Graph Isomorphism

Algorithm 1: Weisfeiler-Lehman iterative color refinement
Input: Graph G = (V , E , l0)
Output: l|V|−1

1 for t = 0, 1, . . . , |V| − 1 do
2 lt+1 ← hash

(
[ltv, l

t
u∈Nv

] : v ∈ V
)

// [·] is a multiset, allowing repetitions

3 Function hash
(
[lv, lu∈Nv] : v ∈ V

)
:

4 for v ∈ V do
5 sort

(
lu∈Nv

)
// sort the neighbors

6 prefix lv to sorted list [lv, lu∈Nv] // lv does not participate in sorting!
7 l+v ← f([lv, lu∈Nv]) // f : L∗ → L lexicographic strictly increasing

B. Weisfeiler and A. Lehman. “The reduction of a graph to canonical form and the algebra which appears therein”. Nauchno-Technicheskaya
Informatsia, vol. 2, no. 9 (1968), pp. 12–16.

L10 23/31

https://en.wikipedia.org/wiki/Graph_isomorphism
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf

L10 24/31

Example

L10 25/31

L10 26/31

L10 27/31

From 1 to 2

• GCN: lv ← σ
(linear layer︷ ︸︸ ︷[1

dv + 1
lv +

∑
u∈Nv

avu√
(dv + 1)(du + 1)

lu︸ ︷︷ ︸
averaged input

]
W
)

• GraphSAGE: lv ← σ
(linear layer︷ ︸︸ ︷[

lv ∨max
u∈Nv

{lu}︸ ︷︷ ︸
max-pooled input

]
W
)

W. Hamilton, Z. Ying, and J. Leskovec. “Inductive Representation Learning on Large Graphs”. In: Advances in Neural Information
Processing Systems 30. 2017, pp. 1024–1034.

L10 28/31

http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.html

Graph Isomorphism Network (GIN)

lv ← MLP
(
(1 + ϵ)lv +

∑
u∈N (v)

lu︸ ︷︷ ︸
summed input

)

Theorem: Representation power of GNNs

GNNs with aggregation function

lv ← σ
(
lv, φ

(
lu : u ∈ N (v)

))
.

are no more discriminative than WL, with equality if φ and σ are injective.

• Compared to WL, GNNs also tend to map similar nodes into similar embeddings

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. “How Powerful are Graph Neural Networks?” In: International Conference on Learning
Representations. 2019.L10 29/31

https://openreview.net/forum?id=ryGs6iA5Km

L10 30/31

L10 31/31

