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The Netflix Challenge

• <user, movie, date of rating, rating>
• ∼1M ratings, .5M users, 20k movies
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1M Prize
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Video Privacy Protection Act of 1988

• Up to $2,500 for then 2M users of Netflix

A. Narayanan and V. Shmatikov. “Robust De-anonymization of Large Sparse Datasets”. In: IEEE Symposium on Security and Privacy.
2008, pp. 111–125.
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https://en.wikipedia.org/wiki/Video_Privacy_Protection_Act
https://doi.org/10.1109/SP.2008.33


Linkage Attack
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Linkage Attack
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Anonymization is not Enough

https://en.wikipedia.org/wiki/Latanya_Sweeney
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https://www.science.org/content/article/we-will-find-you-dna-search-used-nab-golden-state-killer-can-home-about-60-white
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Differencing Attack

• “How many people have disease X?”

• “How many people, not named YY, have disease X?”
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Just Sacrifice A Few?
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Restricted Access
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Example

• Consider a medical study about smoking and cancer

• Should a smoker participate?

• If yes, may lead to higher insurance premium

• But may also benefit from learning health risks

• Has the smoker’s privacy been compromised?

Participate or not, impact on the smoker is likely the same
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Have you cheated in any exam?
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Randomized Response

• Want to estimate the percentage of cheaters

• If ask bluntly, almost certainly will under-estimate

• Toss a coin: head, answer honestly; tail, answer randomly

– cheaters: w.p. 3
4 say yes

– non-cheaters: w.p. 1
4 say yes

– 3
4p+

1
4 (1− p) = 1

4 + 1
2p = percentage of yes

• Plausible deniability for everyone

• What happens if we ask this question repeatedly?

S. L. Warner. “Randomised response: a survey technique for eliminating evasive answer bias”. Journal of the American Statistical
Association, vol. 60, no. 309 (1965), pp. 63–69.
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https://doi.org/10.1080/01621459.1965.10480775


Differential Privacy

• Let M : D → Z be a randomized mechanism

• (ϵ, δ)-DP if for any D,D′ ∈ D differing by one data point, for any event E ⊆ Z,

Pr[M(D) ∈ E] ≤ exp(ϵ) · Pr[M(D′) ∈ E] + δ

– dataset D,D′ fixed; randomness from the mechanism

– the smaller ϵ or δ is, the stricter the privacy requirement

• (ϵ, 0)-DP if δ = 0, a.k.a. ϵ-DP

• ϵ (roughly) bounds log odds ratio: ϵ ≤ 1 often considered “good”

• δ allows rare, possibly catastrophic event (to trade utility): often, δ ≪ 1/|D|

C. Dwork and A. Roth. “The algorithmic foundations of differential privacy”. Foundations and Trends in Theoretical Computer Science,
vol. 9, no. 3-4 (2014), pp. 211–407.
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http://dx.doi.org/10.1561/0400000042


Randomized Response is (log 3, 0)-DP

log
Pr[M(D) ∈ E]

Pr[M(D′) ∈ E]
= log

∫
E
p(x) dx∫

E
q(y) dy

= log

∫
E

p(x)

q(x)
· q(x)∫

E
q(y) dy

dx

(Jensen’s inequality) ≤
∫
E

log

(
p(x)

q(x)

)
· q(x)∫

E
q(y) dy

dx

(mean ≤ max) ≤ max
x

log
p(x)

q(x)
≤ ϵ

• Consider when D has a cheater and D′ has a non-cheater:

– log Pr[M(D)=Yes]
Pr[M(D′)=Yes] = log 3/4

1/4 = log 3

– log Pr[M(D)=No]
Pr[M(D′)=No] = log 1/4

3/4 = − log 3
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DP in Practice

• Apple: reportedly ϵ = 6 in MacOS, ϵ = 14 in iOS10 and ϵ = 2 for health types

• Facebook: e.g., ϵ = 1.453 and δ = 1e− 5

• Google: e.g., ϵ up to 9

• LinkedIn: each query uses ϵ = 0.15 and δ = 1e− 10

• Microsoft: e.g., ϵ = 12 and δ = 5.8e− 6

• US Census Bureau: e.g., ϵ = 13.64 and δ = 1e− 5

https://desfontain.es/blog/real-world-differential-privacy.html
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A Hypothesis Testing View

• Consider null hypothesis H0 : D and alternative hypothesis H1 : D
′

• Or simply two classes Y = 0 vs. Y = 1

• Treat Ŷ := JM(·) ∈ EK

– Pr(M(D) ∈ E) = Pr(Ŷ = 1 | Y = 0): false positive rate; type-1 error

– Pr(M(D′) ∈ E) = Pr(Ŷ = 1 | Y = 1): true positive rate; power

• DP: FPR ≤ exp(ϵ) · TPR+ δ

J. Dong, A. Roth, and W. J. Su. “Gaussian Differential Privacy”. Journal of the Royal Statistical Society Series B: Statistical Methodology,
vol. 84, no. 1 (2022), pp. 3–37.
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https://doi.org/10.1111/rssb.12454


α Rényi-DP

Dα(M(D)∥M(D′)) :=
1

α− 1
log E

X∼q

(
p(X)

q(X)

)α

≤ ϵ

equivalently, E
X∼p

e(α−1)r(X) ≤ e(α−1)ϵ

• p and q are the densities of M(D) and M(D′), respectively
• Log odds ratio: r = log p

q
; a.k.a. privacy loss

• Dα = log
[
EX∼p

(
r(X)

)α−1] 1
α−1 increasing w.r.t. α ≥ 1, in particular

– α ↓ 1 =⇒ Dα → KL

– α→∞ =⇒ Dα → maxx log
p(x)
q(x) , used in (ϵ, 0)-DP (see slide 14)

I. Mironov. “Rényi differential privacy”. In: IEEE 30th computer security foundations symposium. 2017, pp. 263–275.
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https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8049725


The Many Shades of DP

• ϵ-DP: log odds ratio r uniformly bounded by ϵ

• (ϵ, δ)-DP: roughly, with probability 1− δ, we have r ≤ ϵ

– anything can happen for the remaining δ probability

– sacrificing some δ proportion for (much?) better utility

– the smaller ϵ or δ is, the stronger the privacy guarantee

• α-DP: bounds the exponential moment of r

– smoother transition than (ϵ, δ)-DP

– implies (ϵ, δ)-DP by e.g. Markov’s inequality

– the bigger α or the smaller ϵ is, the stronger the privacy guarantee
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https://en.wikipedia.org/wiki/Markov's_inequality


Calculus for DP

• Post-processing: If M is DP, so is T ◦M for any T

• Parallel composition: D = ∪kDk, each Mk is DP, then
M(D) :=

(
M1(D1), . . . ,MK(DK)

)
is DP

• Sequential composition:
(
M(D),N(D,M(D))

)
is (α, ϵN + ϵM)-RDP

– cannot ask too many questions or run ML algorithms for too many epochs!

– often been heavily abused in practice

• Differ by a group of k: (kϵ, 0)-DP

• Subsampling

J. Domingo-Ferrer, D. Sánchez, and A. Blanco-Justicia. “The limits of differential privacy (and its misuse in data release and machine
learning)”. Communications of the ACM, vol. 64, no. 7 (2021), pp. 33–35.
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https://doi.org/10.1145/3433638
https://doi.org/10.1145/3433638


Gaussian Mechanism

M(D) := f(D) + ξ, where ξ ∼ N (0,Σ)

• Sensitivity: ∆2f := supD∼D′ ∥f(D)− f(D′)∥2Σ−1

• (α, ϵ)-RDP with ϵ = α
2
∆2f

• (α, ϵ)-RDP =⇒ (ϵ+ 1
α−1

log 1
δ
, δ
α
)-DP

– note α→∞ =⇒ Dα → maxx log
p(x)
q(x) =⇒ (ϵ, 0)-DP

– to achieve α→∞ with Gaussian mechanism: ϵ = α
2∆2f →∞
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DP-SGD

Algorithm 1: Differentially private stochastic gradient descent
Input: model w; data x1, . . . ,xn; noise σ, gradient bound C, batch size b

1 for t = 0, 1, . . . do
2 sample a random batch Bt with size b
3 for i ∈ Bt do
4 gi ← ∇wℓ(xi;w) // compute grad
5 gi ← gi/max{1, ∥gi∥2/C} // grad clipping

6 g←
[
1
b

∑
i∈Bt

gi

]
+ σCξ // adding noise

7 w← w − η · g // grad descent
8 w← P(w) // projection

M. Abadi et al. “Deep Learning with Differential Privacy”. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. 2016, pp. 308–318.
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https://doi.org/10.1145/2976749.2978318




Application in Generative Models

• Modern generative models are powerful, e.g., ChatGPT, DALLE-2

– We can release the generative model as a proxy of releasing data

– We can conduct data analysis / ML downstream tasks using generated data

• How to protect privacy when sensitive data (medical records, face images) are
used in training?

• One solution: Differentially Private Generative Models - equip generative models
with DP guarantees
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D. Jiang, S. Sun, and Y. Yu. “Functional Rényi differential privacy for generative modeling”. Advances in Neural Information Processing
Systems, vol. 36 (2023).

https://proceedings.neurips.cc/paper_files/paper/2023/file/2f9ee101e35b890d9eae79ee27bcd69a-Paper-Conference.pdf

