CS480/680: Introduction to Machine Learning

Lec 09: Convolutional Neural Network

Yaoliang Yu

W UNIVERSITY OF FACULTY OF MATHEMATICS

DAVID R. CHERITON SCHOOL
@ WATE R Loo OF COMPUTER SCIENCE

Feb 06, 2025

MLP Rearranged

input image

: output feature maps
or input feature map

e Fully connected; say input/output dim m xn xd / p X q

— how many weights are there?

1/24

Weight Sharing

input image

: output feature maps
or input feature map

® Share weights; say input/output dimm xn xd / p X q

— how many weights are there?
— is there any new issue?

Enumerating All Possibilities

h = o((w,x) + b)

Same x, different w: MLP

® Same X, same w

Different x, same w

Different x, different w

Weight Sharing with A Restricted Field

input image

: output feature maps
or input feature map

F\ﬂ N
|

® Share weights; say input/output dim m x n x d / p X q, filter size a X b

— how many weights are there?
— is there any new issue?

4/24

Weight Sharing and Convolution

input image

: output feature maps
or input feature map

L

T

® Share weights; say input/output dim m x n x d / p x q X ¢, filter size a x b

— how many weights are there?

5/24

Layers in Convolutional Neural Networks (CNN)

CONV

'

RELU RELU

CIT T T lvlJ

[IJIIIIIII]

[lJlll&‘llllH

HEFEONEEN

HEEBDEEREEN

LI IST LT

RELU RELU

lCONV\ CONV CONVl CONVl

RELU RELU
co~vl

[IF_IIII‘-IIJ]

'

SADEENEEEEE

6/24

Hierarchical Feature Representation

Linearly
separable
classifier

Low-level Mid-level High-level
features features features

=
'

D

4]

Y '
fa

VGG-16 Convi VGG-16 Conv3_2 " VGG-16 Conv5. |

https://doi.org/10.1007/978-3-319-10590-1_53

Controling the Convolution

. : width x height, e.g. 3 x 3 or 5 x 5;

° c ; determine depth

(channel) of

. . how many pixels to move the filter each time

— typically stride < filter size so as to leave no “gap”

— larger stride makes neighboring outputs less similar due to less overlap in the input window
o . add zeros (or any other value) around boundary of input

— make the output size more standard (e.g. same as input, or 2* for some k)

8/24

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
X[:,:,0] w0[:,:,0 wl[:,:,0] o[z,:,0]
0 0 1 -1 -1 0 1 7

4
0 0 -10 0 1
1 0 0 0 3 0

wlf:,:,1] tpi,1]
-1 0 1 -8 -1

6 2
%])

wil[:,:,2]
1 0

0
0 0 0
1 0 -1

Bias bo(1x1x1) Bias bl (I1x1x1)
bO{:,:,0] bl[:,:,0]
1 0

Size Calculation

Input size: m x n x ¢, filter size: a x b, stride: s x t, padding: p x ¢
® Pad p pixels on left/right and ¢ pixels on top/bottom (typically p = q)

Filter size is a X b x ¢ but we omit the last dimension

Move s pixels horizontally and ¢ pixels vertically

Output size: Ll S %J % U + n+2tq—bJ

With p = {w-‘ and ¢ = [%-‘ output size = input size

Receptive Field

Input size: m x n x ¢, filter size: a x b, stride: s x t, padding: p X ¢

® How many pixels in the input can each output pixel “see” (i.e. depend on)?

— obviously a x b (filter size); again, omitting channels by default and ignoring boundary
® How many pixels in the input can a i X j window in output “see"?

— [(e —1)s+a] x [(j — 1)t + b], assuming stride < filter size and ignoring boundary

® How many pixels in layer k£ can a ¢ x j window in layer [> k “see’?

l l u—1
-4 [[s+ > (aw—54) [v, assuming stride < filter size and ignoring boundary
r=k+1 u=k+1 v=k+1

- ik 4 (a— <s)sl:fkfl and i+ (a—1)(I—k) if s=1, i.e. increase by a — 1 for every layer

11/24

Pooling

Single depth slice

max pool with 2x2 filters
and stride 2

Down-sample input size to reduce computation and memory
Pooling by default is
— hence output depth = input depth
— max-pool, average-pool, (averaged) ¢,-norm pool
Size and stride as in convolution; ; typically no padding
. pooling size = input size

CNN Architecture

Input 3 CCF’{ZL? 3 Pooling L3 II::{Cte -

\ Repeat / Repeat

f

Repeat

e Several standard architectures to choose (examples to follow)

® Try and tweak to fit your problem

13/24

Image Maps

. Fully Connected
Convolutions
Subsamplmg

Conv filters were 5x5, applied at stride 1

Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. . Proceedings of the IEEE,
vol. 86, no. 11 (1998), pp. 2278-2324.

https://doi.org/10.1109/5.726791

AlexNet

128 Max
\ | | 20
NWiStride: Max 1 Max pooling
Uor 4 pooling pooling

A. Krizhevsky, |. Sutskever, and G. E. Hinton. . In: Advances in Neural
Information Processing Systems 25. Ed. by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger. 2012, pp. 1097-1105.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.html

Full (simplified) AlexNet architecture:
[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] 4096 neurons

[4096] 4096 neurons

[1000] 1000 neurons (class scores)

Details/Retrospectives:

- first use of ReLU

- used Norm layers (not common anymore)
- heavy data augmentation

- dropout 0.5

- batch size 128

- SGD Momentum 0.9

- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4

- 7 CNN ensemble: 18.2% -> 15.4%

VGGNet

Small filters, Deeper networks

8 layers (AlexNet)
-> 16 - 19 layers (VGG 16Net)

Only 3x3 CONV stride 1, pad 1
and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC’13
(ZFNet)
->7.3% top 5 errorin ILSVRC’14

o 7xT7 filter vs. 3x3 filter x 3 (stride 1)

— both have receptive field 7x7
— params: O(7 x 7) vs. O(3 x 3 x 3)

® nxn vs. nx1 followed by 1xn ?

K. Simonyan and A. Zisserman.
1| earninc Renrecentatione 20158

AlexNet

VGG16 VGG19

. In: International Conference on

https://arxiv.org/abs/1409.1556

INPUT: [224x224x3] memory: 224*224*3=150K params: 0 not counting biases

CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728 Note:

CONV3-64: [224x224x64] memory: 224*224*64=3.2M s: (3*3"64)*64 = 36,864

POOL2: [112x112x64] memory: 112*112*64=800K params: 0 L
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728 Most memory is in
CONV3-128: [112x112x128] memory: 112*112*128=16M params: (3*3*128)*128 = 147,456 early CONV
POOL2: [56x56x128] memory: 56*56*128=400K params: O

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824

POOL2: [28x28x256] memory: 28*28*256=200K params: 0

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296

POOL2: [14x14x512] memory: 14*14*512=100K params: 0 Most params are
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 in late FC
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296

POOL2: [7x7x512] memory: 7*7*512=25K params: 0 /
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448

FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216

FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

THAT'S NOT ENOUGH
f [

. \ -d)

\

WE HAVETO GO DEEPER

1x1 Convolution

1x1 conv “bottleneck”
layers

1x1
convolution

1x1
convolution

Naive Inception module

Inception module with dimension reduction

C. Szegedy et al. . In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015,
pp. 1-9.

10.1109/CVPR.2015.7298594

naive 3x3 conv

3x3 conv first, 1x1 conv second

1x1 conv first, 3x3 conv second

-> mxnxk

-> mxnxd
1x1xdxk

O(9mncd + mndk)

1 x1xcxd -> mxnxd

O(mncd + 9mndk)

output dim k = intermediate dimd input dim ¢ = output dim k

1x1 conv first, 3x3 pool second

3x3 pool first, 1x1 conv second

1 x1xcxk -=-> mxnxk
3x3xk

O(mnck + mnk)

3 x3xc ->mf3xn/3xc
1 x1 xcxk

O(mnc + mnck/9)

® 1x1 conv allows easy control of the depth (channels)

e Can save computation without affecting output size

GoogleNet

¢ No fully connected (FC) layers

® Deeper but more efficient and better performance

The Deeper, the Better, but More Difficult to Train

o

3t error

S

Pl
P
[43]
(=]
C

=
©
—

-

Te

[terations lterations

® Deeper models are harder to train due to vanishing / exploding gradient

K. He, X. Zhang, S. Ren, and J. Sun . In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2016, pp. 770-778.

https://doi.org/10.1109/CVPR.2016.90

Residual Block

v = [~ I -~ I -~ I -

a residual block

Add a shortcut connection that allows “skipping” one or more layers

Effectively turning the block into learning residual: output - input

Allows more direct backpropogation of the gradient through the “shortcut”

Can also concatenate or add a linear layer if dimensions mismatch

Residual Network (ResNet)

Full ResNet architecture:
Stack residual blocks
Every residual block has
two 3x3 conv layers
Periodically, double # of
filters and downsample
spatially using stride 2
(/2 in each dimension)
Additional conv layer at
the beginning
No FC layers at the end
(only FC 1000 to output
classes)

X
Residual block

X
identity

No FC layers

x\J/ \\/‘

/\

\,\‘ ’/‘ \ |
\\/ \/

\VAV/

besides FC
1000 to
output
classes

Global
average
pooling layer
after last
conv layer

