
Polar Operators for Structured Sparse Estimation

Xinhua Zhang
Machine Learning Research Group
National ICT Australia and ANU
xinhua.zhang@anu.edu.au

Yaoliang Yu and Dale Schuurmans
Department of Computing Science, University of Alberta

Edmonton, Alberta T6G 2E8, Canada
{yaoliang,dale}@cs.ualberta.ca

Abstract

Structured sparse estimation has become an important technique in many areas of
data analysis. Unfortunately, these estimators normally create computational dif-
ficulties that entail sophisticated algorithms. Our first contribution is to uncover a
rich class of structured sparse regularizers whose polar operator can be evaluated
efficiently. With such an operator, a simple conditional gradient method can then
be developed that, when combined with smoothing and local optimization, signif-
icantly reduces training time vs. the state of the art. We also demonstrate a new
reduction of polar to proximal maps that enables more efficient latent fused lasso.

1 Introduction
Sparsity is an important concept in high-dimensional statistics [1] and signal processing [2] that has
led to important application successes by reducing model complexity and improving interpretability
of the results. Standard computational strategies such as greedy feature selection [3] and generic
convex optimization [4–7] can be used to implement simple sparse estimators. However, sophis-
ticated notions of structured sparsity have been recently developed that can encode combinatorial
patterns over variable subsets [8]. Although combinatorial structure greatly enhances modeling ca-
pability, it also creates computational challenges that require sophisticated optimization approaches.
For example, current structured sparse estimators often adopt an accelerated proximal gradient
(APG) strategy [9, 10], which has a low per-step complexity and enjoys an optimal convergence
rate among black-box first-order procedures [10]. Unfortunately, APG must also compute a proxi-
mal update (PU) of the nonsmooth regularizer during each iteration. Not only does the PU require a
highly nontrivial computation for structured regularizers [4]—e.g., requiring tailored network flow
algorithms in existing cases [5, 11, 12]—it yields dense intermediate iterates. Recently, [6] has
demonstrated a class of regularizers where the corresponding PUs can be computed by a sequence
of submodular function minimizations, but such an approach remains expensive.

Instead, in this paper, we demonstrate that an alternative approach can be more effective for many
structured regularizers. We base our development on the generalized conditional gradient (GCG)
algorithm [13, 14], which also demonstrates promise for sparse model optimization. Although GCG
possesses a slower convergence rate than APG, it demonstrates competitive performance if its up-
dates are interleaved with local optimization [14–16]. Moreover, GCG produces sparse intermediate
iterates, which allows additional sparsity control. Importantly, unlike APG, GCG requires comput-
ing the polar of the regularizer, instead of the PU, in each step. This difference allows important
new approaches for characterizing and evaluating structured sparse regularizers.

Our first main contribution is to characterize a rich class of structured sparse regularizers that allow
efficient computation of their polar operator. In particular, motivated by [6], we consider a family
of structured sparse regularizers induced by a cost function on variable subsets. By introducing a
“lifting” construction, we show how these regularizers can be expressed as linear functions, which
after some reformulation, allows efficient evaluation by a simple linear program (LP). Important
examples covered include overlapping group lasso [5] and path regularization in directed acyclic
graphs [12]. By exploiting additional structure in these cases, the LP can be reduced to a piecewise

1

linear objective over a simple domain, allowing further reduction in computation time via smoothing
[17]. For example, for the overlapping group lasso with n groups where each variable belongs to at
most r groups, the cost of evaluating the polar operator can be reduced from O(rn3) to O(rn

√
n/ε)

for a desired accuracy of ε. Encouraged by the superior performance of GCG in these cases, we
then provide a simple reduction of the polar operator to the PU. This reduction makes it possible to
extend GCG to cases where the PU is easy to compute. To illustrate the usefulness of this reduction
we provide an efficient new algorithm for solving the fused latent lasso [18].

2 Structured Sparse Models

Consider the standard regularized risk minimization framework
min
w∈Rn

f(w) + λΩ(w), (1)

where f is the empirical risk, assumed to be convex with a Lipschitz continuous gradient, and Ω is
a convex, positively homogeneous regularizer, i.e. a gauge [19, §4]. Let 2[n] denote the power set of
[n] := {1, . . . , n}, and let R+ := R+ ∪ {∞}. Recently, [6] has established a principled method for
deriving regularizers from a subset cost function F : 2[n] → R+ based on defining the gauge:

ΩF (w)= inf{γ ≥ 0: w∈γ conv(SF)}, where SF =
{
wA : ‖wA‖pp̃ = 1/F (A), ∅ 6=A ⊆ [n]

}
. (2)

Here γ is a scalar, conv(SF) denotes the convex hull of the set SF , p̃, p ≥ 1 with 1
p̃ + 1

p = 1, ‖ · ‖p
throughout is the usual `p-norm, and wA denotes a duplicate of w with all coordinates not in A set
to 0. Note that we have tacitly assumed F (A) = 0 iff A = ∅ in (2). The gauge ΩF defined in (2)
is also known as the atomic norm with the set of atoms SF [20]. It will be useful to recall that the
polar of a gauge Ω is defined by [19, §15]:

Ω◦(g) := supw{〈g,w〉 : Ω(w) ≤ 1}. (3)

In particular, the polar of a norm is its dual norm. (Recall that any norm is also a gauge.) For the
specific gauge ΩF defined in (2), its polar is simply the support function of SF [19, Theorem 13.2]:

Ω◦F (g) = max
w∈SF

〈g,w〉 = max
∅6=A⊆[n]

‖gA‖p /[F (A)]1/p. (4)

(The first equality uses the definition of support function, and the second follows from (2).) By vary-
ing p̃ and F , one can generate a class of sparsity inducing regularizers that includes most current
proposals [6]. For instance, if F (A) = 1 whenever |A| (the cardinality of A) is 1, and F (A) = ∞
for |A| > 1, then Ω◦F is the `∞ norm and ΩF is the usual `1 norm. More importantly, one can encode
structural information through the cost function F , which selects and establishes preferences over
the set of atoms SF . As pointed out in [6], when F is submodular, (4) can be evaluated by a se-
cant method with submodular minimizations ([21, §8.4], see also Appendix B). However, as we will
show, it is possible to do significantly better by completely avoiding submodular optimization. Be-
fore presenting our main results, we first review the state of the art for solving (1), and demonstrate
how the performance of current methods can hinge on efficient computation of (4).

2.1 Optimization Algorithms

A standard approach for minimizing (1) is the accelerated proximal gradient (APG) algorithm [9,
10], where each iteration involves solving the proximal update (PU): wk+1 = arg minw 〈dk,w〉+

1
2sk
‖w − wk‖22 + λΩF (w), for some step size sk and descent direction dk. Although it can be

shown that APG finds an ε accurate solution in O(1/
√
ε) iterations [9, 10], each update can be quite

difficult to compute when ΩF encodes combinatorial structure, as noted in the introduction.

An alternative approach to solving (1) is the generalized conditional gradient (GCG) method [13,
14], which has recently received renewed attention. Unlike APG, GCG only requires the polar
operator of the regularizer ΩF to be computed in each iteration, given by the argument of (4):

P◦F (g) = arg max
w∈SF

〈g,w〉 = F (C)
−1
p arg max

w:‖w‖p̃=1

〈gC ,w〉 for C = arg max
∅6=A⊆[n]

‖gA‖pp /F (A). (5)

Algorithm 1 outlines a GCG procedure for solving (1) that only requires the evaluation of P◦F in
each iteration without needing the full PU to be computed. The algorithm is quite simple: Line 3

2

Algorithm 1 Generalized conditional gradient (GCG) for optimizing (1).
1: Initialize w0 ← 0, s0 ← 0, `0 ← 0.
2: for k = 0, 1, . . . do
3: Polar operator: vk←P◦F (gk), Ak←C(gk), where gk=−∇f(wk) and C is defined in (5).
4: 2-D Conic search: (α, β) := arg minα≥0,β≥0 f(αwk + βvk) + λ(αsk + β).
5: Local re-optimization: {ui}k1 := arg min{ui=uiAi

} f(
∑
i u

i) + λ
∑
i F (Ai)

1
p ‖ui‖p̃

where the {ui} are initialized by ui = α`i for i < k and ui = βvi for i = k.

6: wk+1 ←
∑
i u

i, `i ← ui for i ≤ k, sk+1 ←
∑
i F (Ai)

1
p ‖ui‖p̃.

7: end for

evaluates the polar operator, which provides a descent direction vk; Line 4 finds the optimal step
sizes for combining the current iterate wk with the direction vk; and Line 5 locally improves the
objective (1) by maintaining the same support patterns but re-optimizing the parameters. It has been
shown that GCG can find an ε accurate solution to (1) in O(1/ε) steps, provided only that the polar
(5) is computed to ε accuracy [14]. Although GCG has a slower theoretical convergence rate than
APG, the introduction of local optimization (Line 5) often yields faster convergence in practice [14–
16]. Importantly, Line 5 does not increase the sparsity of the intermediate iterates. Our main goal
in this paper therefore is to extend this GCG approach to structured sparse models by developing
efficient algorithms for computing the polar operator for the structured regularizers defined in (2).

3 Polar Operators for Atomic Norms

Let 1 denote the vector of all 1s with length determined by context. Our first main contribution is
to develop a general class of atomic norm regularizers whose polar operator (5) can be computed
efficiently. To begin, consider the case of a (partially) linear function F where there exists a c ∈
Rn such that F (A) = 〈c,1A〉 for all A ∈ domF (note that the domain need not be a lattice).
A few useful regularizers can be generated by linear functions: for example, the `1 norm can be
derived from F (A) = 〈1,1A〉 for |A| = 1, which is linear. Unfortunately, linearity is too restrictive
to capture most structured regularizers of interest, therefore we will need to expand the space of
functions F we consider. To do so, we introduce the more general class of marginalized linear
functions: we say that F is marginalized linear if there exists a nonnegative linear function M on an
extended domain 2[n+l] such that its marginalization to 2[n] is exactly F :

F (A) = min
B:A⊆B⊆[n+l]

M(B), ∀ A ⊆ [n]. (6)

Essentially, such a function F is “lifted” to a larger domain where it becomes linear. The key
question is whether the polar Ω◦F can be efficiently evaluated for such functions.

To develop an efficient procedure for computing the polar Ω◦F , first consider the simpler case of
computing the polar Ω◦M for a nonnegative linear function M . Note that by linearity the function M
can be expressed as M(B) = 〈b,1B〉 for B ∈ domM ⊆ 2[n+l] (b ∈ Rn+l

+). Since the effective
domain of M need not be the whole space in general, we make use of the specialized polytope:

P := conv{1B : B ∈ domM} ⊆ [0, 1]n+l. (7)
Note P may have exponentially many faces. From the definition (4) one can then re-express the
polar Ω◦M as:

Ω◦M (g) = max
∅6=B∈domM

‖gB‖p /M(B)1/p =

(
max

0 6=w∈P

〈g̃,w〉
〈b,w〉

)1/p

where g̃i = |gi|p ∀i, (8)

where we have used the fact that the linear-fractional objective must attain its maximum at vertices of
P ; that is, at 1B for someB ∈ domM . Although the linear-fractional program (8) can be reduced to
a sequence of LPs using the classical method of [22], a single LP suffices for our purposes. Indeed,
let us first remove the constraint w 6= 0 by considering the alternative polytope:

Q := P ∩ {w ∈ Rn+l : 〈1,w〉 ≥ 1}. (9)
As shown in Appendix A, all vertices of Q are scalar multiples of the nonzero vertices of P . Since
the objective in (8) is scale invariant, we can restrict the constraints to w ∈ Q. Then, by applying
transformations w̃ = w/ 〈b,w〉, σ = 1/ 〈b,w〉, problem (8) can be equivalently re-expressed by:

max
w̃,σ>0

〈g̃, w̃〉 , subject to w̃ ∈ σQ, 〈b, w̃〉 = 1. (10)

3

Of course, whether this LP can be solved efficiently depends on the structure ofQ (and of P indeed).

Finally, we note that the same formulation allows the polar to be efficiently computed for a marginal-
ized linear function F via a simple reduction: Consider any g ∈ Rn and let [g;0] ∈ Rn+l denote g
padded by l zeros. Then Ω◦F (g) = Ω◦M ([g;0]) for all g ∈ Rn because

max
∅6=A⊆[n]

‖gA‖pp
F (A)

= max
∅6=A⊆[n]

‖gA‖pp
minB:A⊆B⊆[n+l]M(B)

= max
∅6=A⊆B

‖gA‖pp
M(B)

= max
B:∅6=B⊆[n+l]

‖[g;0]B‖pp
M(B)

. (11)

To see the last equality, fixing B the optimal A is attained at A = B ∩ [n]. If B ∩ [n] is empty, then
‖[g;0]B‖ = 0 and the correspondingB cannot be the maximizer of the last term, unless Ω◦F (g) = 0
in which case it is easy to see Ω◦M ([g;0]) = 0.

Although we have kept our development general so far, the idea is clear: once an appropriate “lifting”
has been found so that the polytope Q in (9) can be compactly represented, the polar (5) can be
reformulated as the LP (10), for which efficient implementations can be sought. We now demonstrate
this new methodology for the two important structured regularizers: group sparsity and path coding.

3.1 Group Sparsity

For a general formulation of group sparsity, let G ⊆ 2[n] be a set of variable groups (subsets) that
possibly overlap [3, 6, 7]. Here we use i ∈ [n] to index variables and G ∈ G to index groups.
Consider the cost function over variable groups Fg : 2[n] → R+ defined by:

Fg(A) =
∑
G∈G

cG I(A ∩G 6= ∅), (12)

where cG is a nonnegative cost and I is an indicator such that I(·) = 1 if its argument is true, and
0 otherwise. The value Fg(A) provides a weighted count of how many groups overlap with A.
Unfortunately, Fg is not linear, so we need to re-express it to recover an efficient polar operator. To
do so, augment the domain by adding l = |G| variables such that each new variable G corresponds
to a group G. Then define a weight vector b ∈ Rn+l

+ such that bi = 0 for i ≤ n and bG = cG for
n < G ≤ n+ l. Finally, consider the linear cost function Mg : 2[n+l] → R+ defined by:

Mg(B) = 〈b,1B〉 if i ∈ B ⇒ G ∈ B, ∀ i ∈ G ∈ G; Mg(B) =∞ otherwise. (13)

The constraint ensures that if a variable i ≤ n appears in the set B, then every variable G corre-
sponding to a group G that contains i must also appear in B. By construction, Mg is a nonnegative
linear function. It is also easy to verify that Fg satisfies (6) with respect to Mg.

To compute the corresponding polar, observe that the effective domain of Mg is a lattice, hence (4)
can be solved by combinatorial methods. However, we can do better by exploiting problem structure
in the LP. For example, observe that the polytope (7) can now be compactly represented as:

Pg = {w ∈ Rn+l : 0 ≤ w ≤ 1, wi ≤ wG,∀ i ∈ G ∈ G}. (14)

Indeed, it is easy to verify that the integral vectors in Pg are precisely {1B : B ∈ domMg}.
Moreover, the linear constraint in (14) is totally unimodular (TUM) since it is the incidence matrix
of a bipartite graph (variables and groups), hence Pg is the convex hull of its integral vectors [23].
Using the fact that the scalar σ in (10) admits a closed form solution σ = 〈1, w̃〉 in this case, the LP
(10) can be reduced to:

max
w̃

∑
i∈[n]

g̃i min
G:i∈G∈G

w̃G, subject to w̃ ≥ 0,
∑
G∈G

bGw̃G = 1. (15)

Note only {w̃G} appear in the problem as implicitly w̃i = minG:i∈G w̃G, ∀ i ∈ [n]. This is now
just a piecewise linear objective over a (reweighted) simplex. Since projecting to a simplex can
be performed in linear time, the smoothing method of [17] can be used to obtain a very efficient
implementation. We illustrate a particular case where each variable i ∈ [n] belongs to at most r > 1
groups. (Appendix D considers when the groups form a directed acyclic graph.)

Proposition 1 Let h(w̃) denote the negated objective of (15). Then for any ε > 0, hε(w̃) :=
ε

n log r

∑
i∈[n] log

∑
G:i∈G r

−ng̃iw̃G/ε satisfies: (i) the gradient of hε is
(
n
ε ‖g̃‖

2
∞ log r

)
-Lipschitz,

(ii) h(w̃)− hε(w̃) ∈ (−ε, 0] for all w̃, and (iii) the gradient of hε can be computed in O(nr) time.

4

(The proof is given in Appendix C.) With this construction, APG can be run on hε to achieve a 2ε
accurate solution to (15) within O(1

ε

√
n log r) steps [17], using a total time cost of O(nrε

√
n log r).

Note that this is significantly cheaper than the O(n2(l + n)r) worst case complexity of [11, Al-
gorithm 2]. More importantly, we gain explicit control of the trade-off between accuracy ε and
computational cost. A detailed comparison to related approaches is given in Appendix B.1 and E.

3.2 Path Coding

Another interesting regularizer, recently investigated by [12], is determined by path costs in a di-
rected acyclic graph (DAG) defined over the set of variables i ∈ [n]. For convenience, we add two
nodes, a source s and a sink t, with dummy edges (s, i) and (i, t) for all i ∈ [n]. An (s, t)-path (or
simply path) is then given by a sequence (s, i1), (i1, i2), . . . , (ik−1, ik), (ik, t) with k ≥ 1. A non-
negative cost is associated with each edge including (s, i) and (i, t), so the cost of a path is the sum
of its edge costs. A regularizer can then be defined by (2) applied to the cost function Fp : 2[n]→R+

Fp(A) =

{
cost of the path if the nodes in A form an (s, t)-path (unique for DAG)
∞ if such a path does not exist

. (16)

Note Fp is not submodular. Although Fp is not linear, a similar “lifting” construction can be used to
show that it is marginalized linear, hence it supports efficient computation of the polar. To explain
the construction, let V := [n] ∪ {s, t} be the node set including s and t, E be the edge set including
(s, i) and (i, t), T = V ∪ E, and let b ∈ R|T |+ be the concatenation of zeros for node costs and the
given edge costs. Let m := |E| be the number of edges. It is then easy to verify that Fp satisfies (6)
with respect to the linear cost function Mp : 2T → R+ defined by:

Mp(B) = 〈b,1B〉 if B represents a path; ∞ otherwise. (17)
To efficiently compute the resulting polar, we consider the form (8) using g̃i = |gi|p ∀i as before:

Ω◦Mp
(g) = max

0 6=w∈[0,1]|T |

〈g̃,w〉
〈b,w〉

, s.t. wi =
∑

j:(i,j)∈E
wij =

∑
k:(k,i)∈E

wki, ∀i ∈ [n]. (18)

Here the constraints form the well-known flow polytope whose vertices are exactly all the paths in a
DAG. Similar to (15), the normalized LP (10) can be simplified by solving for the scalar σ to obtain:

max
w̃≥0

∑
i∈[n]

g̃i

(∑
j:(i,j)∈E

w̃ij +
∑

k:(k,i)∈E

w̃ki

)
, s.t. 〈b, w̃〉 = 1,

∑
j:(i,j)∈E

w̃ij =
∑

k:(k,i)∈E

w̃ki, ∀i ∈ [n]. (19)

Due to the extra constraints, the LP (19) is more complicated than (15) obtained for group spar-
sity. Nevertheless, after some reformulation (essentially dualization), (19) can still be converted to
a simple piecewise linear objective, hence it is amenable to smoothing; see Appendix F for details.
To find a 2ε accurate solution, the cutting plane method takes O(mnε2) computations to optimize the
nonsmooth piecewise linear objective, while APG needs O(1

ε

√
n) steps to optimize the smoothed

objective, using a total time cost of O(mε
√
n). This too is faster than the O(nm) worst case com-

plexity of [12, Appendix D.5] in the regime where n is large and the desired accuracy ε is moderate.

4 Generalizing Beyond Atomic Norms

Although we find the above approach to be effective, many useful regularizers are not expressed in
form of an atomic norm (2), which makes evaluation of the polar a challenge and thus creates diffi-
culty in applying Algorithm 1. For example, another important class of structured sparse regularizers
is given by an alternative, composite gauge construction:

Ωs(w) =
∑

i
κi(w), where κi is a closed gauge that can be different for different i. (20)

The polar for such a regularizer is given by Ω◦s(g) = inf{maxi κ
◦
i (w

i) :
∑
iw

i = g}, where each
wi is an independent vector and κ◦i corresponds to the polar of κi (proof given in Appendix H).
Unfortunately, a polar in this form does not appear to be easy to compute. However, for some
regularizers in the form (20) the following proximal objective can indeed be computed efficiently:
ProxΩ(g) = minθ

1
2‖g − θ‖

2
2 + Ω(θ), ArgProxΩ(g) = arg minθ

1
2‖g − θ‖

2
2 + Ω(θ). (21)

The key observation is that computing Ω◦ can be efficiently reduced to just computing ProxΩ.
Proposition 2 For any closed gauge Ω, its polar Ω◦ can be equivalently expressed by:

Ω◦(g) = inf{ ζ ≥ 0 : ProxζΩ(g) = 1
2‖g‖

2
2 }. (22)

5

(The proof is included in Appendix I.) Since the left hand side of the inner constraint is decreasing in
ζ, one can efficiently compute the polar Ω◦ by a simple root finding search in ζ. Thus, regularizers in
the form of (20) can still be accommodated in an efficient GCG method in the form of Algorithm 1.

4.1 Latent Fused Lasso

To demonstrate the usefulness of this reduction we consider the recently proposed latent fused lasso
model [18], where for given data X ∈ Rm×n one seeks a dictionary matrix W ∈ Rm×t and
coefficient matrix U ∈ Rt×n that allow X to be accurately reconstructed from a dictionary that has
desired structure. In particular, for a reconstruction loss f , the problem is specified by:

min
W,U∈U

f(WU,X) + Ωp(W), where Ωp(W) =
∑
i

(
λ1 ‖W:i‖p + λ2 ‖W:i‖TV

)
, (23)

such that ‖ · ‖TV is given by ‖w‖TV =
∑m−1
j=1 |wj+1 − wj | and ‖ · ‖p is the usual `p-norm. The

fused lasso [24] corresponds to p = 1. Note that U is constrained to be in a compact set U to avoid
degeneracy. To ease notation, we assume w.l.o.g. λ1 = λ2 = 1.

The main motivation for this regularizer arises from biostatistics, where one wishes to identify DNA
copy number variations simultaneously for a group of related samples [18]. In this case the total
variation norm ‖ · ‖TV encourages the dictionary to vary smoothly from entry to entry while the `p
norm shrinks the dictionary so that few latent features are selected. Conveniently, Ωp decomposes
along the columns ofW , so one can apply the reduction in Proposition 2 to compute its polar assum-
ing ProxΩp can be efficiently computed. Solving ProxΩp appears non-trivial due to the composition
of two overlapping norms, however [25] showed that for p = 1 the polar can be solved efficiently
by computing Prox for each of the two norms successively. Here we extend this results by proving
in Appendix J that the same fact holds for any `p norm.

Proposition 3 For any 1 ≤ p ≤ ∞, ArgProx‖·‖TV+‖·‖p(w) = ArgProx‖·‖p
(
ArgProx‖·‖TV(w)

)
.

Since Prox‖·‖p is easy to compute, the only remaining problem is to develop an efficient algorithm
for computing Prox‖·‖TV . Although [26] has recently proposed an approximate iterative method, we
provide an algorithm in Appendix K that is able to efficiently compute the exact solution. Therefore,
by combining this result with Propositions 2 and 3 we are able to efficiently compute the polar Ω◦p
and hence apply Algorithm 1 to solving (23) with respect to W .

5 Experiments

To investigate the effectiveness of these computational schemes we considered three applications:
group lasso, path coding, and latent fused lasso. All algorithms were implemented in Matlab unless
otherwise noted.

5.1 Group Lasso: CUR-like Matrix Factorization

Our first experiment considered an example of group lasso that is inspired by CUR matrix factor-
ization [27]. Given a data matrix X ∈ Rn×d, the goal is to compute an approximate factorization
X ≈ CUR, such that C contains a subset of c columns from X and R contains a subset of r rows
from X . Mairal et al. [11, §5.3] proposed a convex relaxation of this problem:

minW
1
2 ‖X−XWX‖2+ λ

(∑
i ‖Wi:‖∞+

∑
j ‖W:j‖∞

)
. (24)

Conveniently, the regularizer fits the development of Section 3.1, with p = 1 and the groups defined
to be the rows and columns of W . To evaluate different methods, we used four gene-expression data
sets [28]: SRBCT, Brain Tumor 2, 9 Tumor, and Leukemia2, of sizes 83 × 2308, 50 × 10367,
60×5762, and 72×11225, respectively. The data matrices were first centered columnwise and then
rescaled to have unit Frobenius norm.

Algorithms. We compared three algorithms: GCG (Algorithm 1) with our polar operator which we
call GCG TUM, GCG with the polar operator of [11, Algorithm 2] (GCG Secant), and APG (see
Section 2.1). The PU in APG uses the routine mexProximalGraph from the SPAMS package [29].
The polar operator of GCG Secant was implemented with a mex wrapper of a max-flow package
[30], while GCG TUM used L-BFGS to find an optimal solution {w∗G} for the smoothed version of

6

10
1

10
2

10
3

10
40.05

0.1

0.15

0.2

0.25

CPU time (seconds)

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

(a) SRBCT

10
1

10
2

10
3

10
40.03

0.04

0.05

0.06

0.07

0.08

CPU time (seconds)

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

(b) Brain Tumor 2

10
1

10
2

10
3

10
4

0.04

0.05

0.06

0.07

0.08

CPU time (seconds)

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

(c) 9 Tumor

10
1

10
2

10
3

0.05

0.06

0.07

0.08

0.09

0.1

CPU time (seconds)

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

(d) Leukemia2

Figure 1: Convex CUR matrix factorization results.

10
−1

10
0

10
1

1

1.1

1.2

1.3

CPU time (seconds)

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

(a) Obj vs CPU time (λ = 10−2)

10
−1

10
0

10
1

10
20.2

0.4

0.6

0.8

1

CPU time (seconds)

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

(b) Obj vs CPU time (λ = 10−3)

Figure 2: Path coding results.

(15) given in Proposition 1, with smoothing parameter ε set to 10−3. To recover an integral solution
it suffices to find an optimal solution to (15) that has the form wG = c for some groups and wG = 0
for the remainder (such a solution must exist). So we sorted {w∗G} and set the wG of the smallest k
groups to 0, andwG for the remaining groups set to a common value that satisfies the constraint. The
best k can be recovered from {0, 1, . . . , |G| − 1} in O(nr) time. See more details in Appendix G.
Both GCG methods relinquish local optimization (step 5) in Algorithm 1, but use a totally corrective
variant of step 4, which allows efficient optimization by L-BFGS-B via pre-computingXP◦Fg

(gk)X .

Results. For simplicity, we tested three values for λ: 10−3, 10−4, and 10−5, which led to increas-
ingly dense solutions. Due to space limitations we only show in Figure 1 the results for λ = 10−4

which gives moderately sparse solutions. On these data sets, GCG TUM proves to be an order of
magnitude faster than GCG Secant in computing the polar. As [11] observes, network flow based
algorithms often find solutions in practice far more quickly than their theoretical bounds. Thanks
to the efficiency of totally corrective update, almost all computations taken by GCG Secant were
devoted to the polar operator. Therefore the acceleration proffered by GCG TUM in computing the
polar leads to a reduction of overall optimization time by at least 50%. Finally, APG is always even
slower than GCG Secant by an order of magnitude, with PU taking up the most computation.

5.2 Path Coding

Following [12, §4.3], we consider a logistic regression problem where one is given training examples
xi ∈ Rn with corresponding labels yi ∈ {−1, 1}. For this problem, we formulate (1) with a path
coding regularizer ΩFp and the empirical risk:

f(w) =
∑
i

1
ni

log(1 + exp(−yi 〈w,xi〉)), (25)
where ni is the number of examples that share the same label as yi. We used the breast cancer data
set for this experiment, which consists of 8141 genes and 295 tumors [31]. The gene network is
adopted from [32]. Similar to [12, §4.3], we removed all isolated genes (nodes) to which no edge is
incident, randomly oriented the raw edges, and removed cycles to form a DAG using the function
mexRemoveCyclesGraph in SPAMS. This resulted in 34864 edges and n = 7910 nodes.

Algorithms. We again considered three methods: APG, GCG with our polar operator (GCG TUM),
and GCG with the polar operator from [12, Algorithm 1], which we label as GCG Secant. The PU
in APG uses the routine mexProximalPathCoding from SPAMS, which solves a quadratic network
flow problem. It turns out the time cost for a single call of the PU was enough for GCG TUM and

7

GCG Secant to converge to a final solution, and so the APG result is not included in our plots. We
implemented the polar operator for GCG Secant based on Matlab’s built-in shortest path routine
graphshortestpath (C++ wrapped by mex). For GCG TUM, we used cutting plane to solve a vari-
ant of the dual of (19) (see Appendix F), which is much simipler than smoothing in implementation,
but exhibits similar efficiency in practice. An integral solution can also be naturally recovered in the
course of computing the objective. Again, both GCG methods only used totally corrective updates.

Results. Figure 2 shows the result for path coding, with the regularization coefficient λ set to 10−2

and 10−3 so that the solution is moderately sparse. Again it is clear that GCG TUM is an order of
magnitude faster than GCG Secant.

5.3 Latent Fused Lasso

Finally, we compared GCG and APG on the latent fused lasso problem (23). Two algorithms were
tested as the PU in APG: our proposed method and the algorithm in [26], which we label as APG-
Liu. The synthetic data is generated by following [18]. For each basis (column) of the dictionary,
we use the model W̃ij =

∑Sj
s=1 csI(is ≤ i ≤ is + ls), where Sj ∈ {3, 5, 8, 10} specifies the

number of consecutive blocks in the j-th basis, cs ∈ {±1,±2,±3,±4,±5}, is ∈ {1, . . . ,m− 10}
and ls ∈ {5, 10, 15, 20}, which are the magnitude, starting position, and length of the s-th block,
respectively. Note that we choose cs, is, ls randomly (and independently for each block s) from
their respective sets. The coefficient matrix Ũ are sampled from the Gaussian distribution N(0, 1)
(independently for each entry) and normalized to have unit `2 norm for each row. Finally, we
generate the observation matrix X = W̃ Ũ + ε, with added (zero mean and unit variance) Gaussian
noise ε. We set the dimension m = 300, the number of samples n = 200, and the number of bases
(latent dimension) t̃ = 10.

Since the noise is Gaussian, we choose the squared loss f(WU,X) = 1
2‖X−WU‖2F , but the algo-

rithm is applicable to any other smooth loss as well. To avoid degeneracy, we constrained each row
of U to have unit `2 norm. Finally, to pick an appropriate dictionary size, we tried t ∈ {5, 10, 20},
which corresponds to under-, perfect- and over-estimation, respectively. The regularization con-
stants λ1, λ2 in Ωp were chosen from {0.01, 0.1, 1, 10, 100}.

Note that problem (23) is not jointly convex in W and
U , so we followed the same strategy as [18]; that is,
we alternatively optimizedW and U keeping the other
fixed. For each subproblem, we ran both APG and
GCG to compare their performance. For space limita-
tions, we only report the running time for the setting
λ1 = λ2 = 0.1, t = 20 and p ∈ {1, 2}. In these
experiments we observed that the polar typically only
requires 5 to 6 calls to Prox. As can be seen from Fig-
ure 3, GCG is significantly faster than APG and APG-
Liu in reducing the objective. This is due to the greedy
nature of GCG, which yields very sparse iterates, and
when interleaved with local search achieves fast con-
vergence.

0 20 40 60 80 100
5.2

5.4

5.6

5.8

6

6.2

6.4 x 104

CPU time (sec)

Lo
ss

 +
 R

eg

APG, p=1
GCG, p=1
APG Liu, p=1
APG, p=2
GCG, p=2
APG Liu,p=2

Figure 3: Latent fused lasso.

6 Conclusion
We have identified and investigated a new class of structured sparse regularizers whose polar can
be reformulated as a linear program with totally unimodular constraints. By leveraging smoothing
techniques, we are able to compute the corresponding polars with significantly better efficiency than
previous approaches. When plugged into the GCG algorithm, one can observe significant reductions
in run time for both group lasso and path coding regularization. We have further developed a generic
scheme for converting an efficient proximal solver to an efficient method for computing the polar
operator. This reduction allowed us to develop a fast new method for latent fused lasso. For future
work, we plan to study more general subset cost functions and investigate new structured regularizers
amenable to our approach. It will also be interesting to extend GCG to handle nonsmooth losses.

8

References
[1] P. Bühlmann and S. van de Geer. Statistics for High-Dimensional Data. Springer, 2011.
[2] Y. Eldar and G. Kutyniok, editors. Compressed Sensing: Theory and Applications. Cambridge, 2012.
[3] J. Huang, T. Zhang, and D. Metaxas. Learning with structured sparsity. JMLR, 12:3371–3412, 2011.
[4] S. Kim and E. Xing. Tree-guided group lasso for multi-task regression with structured sparsity. In ICML,

2010.
[5] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for hierarchical sparse coding.

JMLR, 12:2297–2334, 2011.
[6] G. Obozinski and F. Bach. Convex relaxation for combinatorial penalties. Technical Report HAL

00694765, 2012.
[7] P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped and hierarchical

variable selection. Annals of Statistics, 37(6A):3468–3497, 2009.
[8] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with sparsity-inducing penalties. Foun-

dations and Trends in Machine Learning, 4(1):1–106, 2012.
[9] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.

SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.
[10] Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical Programming, 140:

125–161, 2013.
[11] J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Convex and network flow optimization for structured

sparsity. JMLR, 12:2681–2720, 2011.
[12] J. Mairal and B. Yu. Supervised feature selection in graphs with path coding penalties and network flows.

JMLR, 14:2449–2485, 2013.
[13] M. Dudik, Z. Harchaoui, and J. Malick. Lifted coordinate descent for learning with trace-norm regular-

izations. In AISTATS, 2012.
[14] X. Zhang, Y. Yu, and D. Schuurmans. Accelerated training for matrix-norm regularization: A boosting

approach. In NIPS, 2012.
[15] S. Laue. A hybrid algorithm for convex semidefinite optimization. In ICML, 2012.
[16] B. Mishra, G. Meyer, F. Bach, and R. Sepulchre. Low-rank optimization with trace norm penalty. Tech-

nical report, 2011. http://arxiv.org/abs/1112.2318.
[17] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming, 103(1):127–

152, 2005.
[18] G. Nowak, T. Hastie, J. R. Pollack, and R. Tibshirani. A fused lasso latent feature model for analyzing

multi-sample aCGH data. Biostatistics, 12(4):776–791, 2011.
[19] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.
[20] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky. The convex geometry of linear inverse

problems. Foundations of Computational Mathematics, 12(6):805–849, 2012.
[21] F. Bach. Convex analysis and optimization with submodular functions: a tutorial. Technical Report HAL

00527714, 2010.
[22] W. Dinkelbach. On nonlinear fractional programming. Management Science, 13(7), 1967.
[23] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, 1st edition, 1986.
[24] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness via the fused lasso.

Journal of the Royal Statistical Society: Series B, 67:91–108, 2005.
[25] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani. Pathwise coordinate optimization. The Annals of

Applied Statistics, 1(2):302–332, 2007.
[26] J. Liu, L. Yuan, and J. Ye. An efficient algorithm for a class of fused lasso problems. In Conference on

Knowledge Discovery and Data Mining, 2010.
[27] M. Mahoney and P. Drineas. CUR matrix decompositions for improved data analysis. Proceedings of the

National Academy of Sciences, 106(3):697–702, 2009.
[28] URL http://www.gems-system.or.
[29] URL http://spams-devel.gforge.inria.fr.
[30] URL http://drwn.anu.edu.au/index.html.
[31] M. Van De Vijver et al. A gene-expression signature as a predictor of survival in breast cancer. The New

England Journal of Medicine, 347(25):1999–2009, 2002.
[32] H. Chuang, E. Lee, Y. Liu, D. Lee, and T. Ideker. Network-based classification of breast cancer metastasis.

Molecular Systems Biology, 3(140), 2007.

9

http://www.gems-system.or
http://spams-devel.gforge.inria.fr
http://drwn.anu.edu.au/index.html

Appendix of Polar Operators for Structured Sparse Estimation

A Vertices of Q must be scalar multiples of those of P

First note that if 0 6∈ P , we have nothing to prove since P = Q. Thus we assume 0 ∈ P below.

Consider an arbitrary vertex q ∈ Q. Clearly q 6= 0 and q ∈ P , hence q =
∑n
i=1 αi · p(i), where

n ≥ 1, αi > 0, 〈1,α〉 ≤ 1, and p(i) are nonzero vertices of P . Clearly p(i) ∈ Q as p(i) ∈ P and
li :=

〈
1,p(i)

〉
≥ 1. It suffices to show n = 1. To prove by contradiction, suppose n ≥ 2.

(i) If 〈1,α〉 = 1, then q is a convex combination of at least two points in Q, hence it cannot be a
vertex.

(ii) If 〈1,q〉 =
∑
i αili = 1, then q =

∑n
i=1(αili)

p(i)

li
. But p(i)

li
∈ Q as p(i)

li
= 1

li
p(i)+(1− 1

li
)0 ∈

P and
〈
1,p(i)

〉
= li ≥ 1. Again contradiction.

(iii) If 〈1,q〉 > 1 and 〈1,α〉 < 1, then β := 1
〈1,q〉 < 1 < 1

〈1,α〉 =: γ. Clearly βq ∈ Q

because βq = βq + (1 − β)0 ∈ P and 〈1, βq〉 = 1. Also γq ∈ Q as γq =
∑n
i=1 αip

(i)∑n
i=1 αi

∈ P

and 〈1, γq〉 =
∑n
i=1 αi〈1,p(i)〉
〈1,α〉 ≥

∑n
i=1 αi
〈1,α〉 = 1. So q lies between two points in Q: βq and γq.

Contradiction.

Therefore n = 1, which completes the proof.

To summarize, we have proved that if q, a vertex of Q, is not a vertex of P , then it must sum to 1
and be a scalar multiple of some vertex of P .

B Polar Oracle via Secant Method and Submodular Minimization

By (5), the key optimization problem in computing the polar operator is

λ∗ = max
∅6=A⊆[n]

〈g̃,1A〉
F (A)

, where g̃i = |gi|p . (26)

Let A∗ ∈ 2[n]\∅ be a maximizer. The following solution is a slight simplification of [21, §8.4]. Let

h(λ) := max
A⊆[n]

〈g̃,1A〉 − λF (A). (27)

NoteA = ∅ is allowed here. Clearly h(λ) is convex and non-increasing. h(λ) ≥ 〈g̃,1∅〉−λF (∅) =

0. By the definition of λ∗, for all A ∈ 2[n]\∅ we have λ∗ ≥ 〈g̃,1A〉F (A) , i.e. 〈g̃,1A〉 − λ∗F (A) ≤ 0. So

h(λ∗) = max

{
〈g̃,1∅〉 − λ∗F (∅), max

∅6=A⊆[n]
〈g̃,1A〉 − λ∗F (A)

}
= 0. (28)

As a result, h(λ) = 0 for all λ > λ∗. For any λ < λ∗, 〈g̃,1A∗ 〉F (A∗) = λ∗ > λ, and therefore

h(λ) ≥ 〈g̃,1A∗〉 − λF (A∗) > 0. (29)

In summary,

λ∗ = sup {λ : h(λ) > 0} = min {λ : h(λ) = 0} , (30)

i.e. λ∗ is the smallest root of h, which can be easily found by a secant method thanks to the convexity
of h. The details are given in Algorithm 2.

Note if h(λt) > 0 upon termination, then the At returned must be non-empty. But if h(λt) = 0,
then At = ∅ is possible, depending on the solver for the maximization problem in (27). Fortunately,
since λt = λ∗, it can be easily verified that

〈
g̃,1At−1

〉
− λ∗F (At−1) = 0. So we can simply return

At−1 without having to customize the solver.

In terms of computational cost, the bottleneck is clearly Step 2 which solves (27) given λ = λt. This
is deemed as tractable if F is submodular.

10

Algorithm 2 Polar oracle via secant method

1: Pick arbitrary A0 ∈ [n]\∅, and set λ1 =
〈g̃,1A0〉
F (A0) . Clearly λ1 ≤ λ∗ and so h(λ1) ≥ 0.

2: for t = 1, 2, . . . do
3: Compute h(λt) by finding an optimal A in the definition of h(λt) in (27). Call this A as At.
4: if h(λt) ∈ (0, ε) then

5: return At. λ∗ε =
〈g̃,1At〉
F (At)

can be at most ε smaller than the true λ∗.
6: end if
7: if h(λt) = 0 then

8: return At−1. It follows that λ∗ =
〈g̃,1At−1〉
F (At−1) .

9: end if
10: Linearize h(λ) at λt as h̃t(λ) = h(λt)− (λ− λt)F (At).

11: Set λt+1 as the root of h̃t: λt+1 = λt+
h(λt)
F (At)

= λt+
〈g̃,1At〉−λtF (At)

F (At)
=
〈g̃,1At〉
F (At)

. Since h is

convex and hence h̃t must be upper bounded by h, it follows λt+1 ≤ λ∗. Thus h(λt+1) ≥ 0.
12: end for

B.1 Network Min-cut Algorithm for Submodular Minimization with Overlapping Group

Next we show the network max-flow/min-cut algorithm for solving (27) in overlapping group lasso.
Using the notation and setup in Section 3.1, the problem (27) can be written as

min
w∈{0,1}n+l

λ
∑
G∈G

cGwG −
∑
i∈[n]

g̃iwi, s.t. wG ≥ wi, ∀i ∈ G ∈ G. (31)

This is obviously equivalent to

min
w∈{0,1}n+l

∑
G∈G

(λcG)wG +
∑
i∈[n]

g̃i(1− wi), s.t. wG ≥ wi, ∀i ∈ G ∈ G. (32)

Now we show this is exactly a min-cut problem on a directed graph. Let us construct a directed
graph with source node s, sink node t, and all nodes wG and wi. There is a directed edge from s
to each node wG (G ∈ G), and the weight is ηG := λcG. In addition, there is a directed edge from
each node wi (i ∈ [n]) to the sink t, with weight ηi := g̃i. Finally, for each i ∈ G ∈ G, there is a
edge from node wG to wi, and the weight is ηG,i :=∞.

The min-cut problem essentially divides all nodes in a graph into two groups S and T with s ∈ S
and t ∈ T , and minimizes the sum of the weight of all edges from u to v where u ∈ S and v ∈ T .
Note edges with u ∈ T and v ∈ S are not counted into the cut-edge by the definition of min-cut. Let
us fix ps = 0, pt = 1, and use pi, pG = 0 (or 1) if the node belongs to S (or T). Then the min-cut
objective for this directed graph can be written as

min
pi,pG∈{0,1}

∑
i∈G∈G:pG=0,pi=1

ηG,i +
∑

i∈[n]:pi=0

ηi +
∑

G∈G:pG=1

ηG. (33)

Since ηG,i =∞, we have to exclude the solutions where pG = 0 and pi = 1. This can be compactly
enforced by adding constraints pG ≥ pi. Moreover, it is obvious from pi, pG ∈ {0, 1} that∑

i∈[n]:pi=0

ηi =
∑
i∈[n]

ηi(1− pi), and
∑

G∈G:pG=1

ηG =
∑
G∈G

ηGpG. (34)

Substituting them back into (33) and noting the definition of ηi and ηG, it is straightforward to
observe the equivalence between (32) and (33), with pG and pi corresponding to wG and wi respec-
tively.

Finally, by using the well-known equivalence between max-flow and min-cut (problem (33)), it is
trivial to write out the max-flow formulation for the graph defined above, which exactly recovers
the solution proposed by [11, Algorithm 2]. In comparison, our min-cut formulation is clearly
more straightforward because it completely eliminates the dualization step and directly provides the
solution to (27).

11

C Proof of Proposition 1

The proof is based on the well-known duality between strong convexity and smoothness (Lipschitz
continuous gradient) [17]. Note that we assume that r, the upper bound on the number of groups
each variable can belong to, is greater than 1 since otherwise the problem is trivial.

Proof: Note that there are n variables which we index by i and there are ` groups (subsets of
variables) which we index by G. The input vector w̃ ∈ Rn × R`.

Let li be the number of groups that contain variable i, and Si := {s ∈ Rli+ : 〈1, s〉 = 1} be the
(li − 1)-dimensional simplex. Using the well-known variational representation of max function, we
rewrite the (negated) objective h in (15) as

h(w̃) =
∑
i∈[n]

g̃i max
α(i)∈Si

{
−
∑
G:i∈G

α
(i)
G w̃G

}
= max

α(i)∈Si

∑
i∈[n]

∑
G:i∈G

−g̃iw̃Gα(i)
G , (35)

which is to be minimized. Here the second equality follows from the separability of the variables
α(i). Fix ε > 0 and denote c := ε

n log r . Consider

hε(w̃) = max
α(i)∈Si

∑
i∈[n]

∑
G:i∈G

(
−g̃iw̃Gα(i)

G − c · α
(i)
G logα

(i)
G

)
,

i.e., we add to h the scaled entropy function −c
∑
i∈[n],G:i∈G α

(i)
G logα

(i)
G whose negation is known

to be strongly convex on the simplex (w.r.t. the `1-norm) [17]. Since the entropy is nonnegative, we
have for any w̃, h(w̃) ≤ hε(w̃) and moreover

hε(w̃)− h(w̃) ≤ c max
α(i)∈Si

∑
i∈[n]

∑
G:i∈G

−α(i)
G logα

(i)
G ≤ c · n log r = ε,

where the last inequality is due to the well-known upper bound of the entropy over the probability
simplex, i.e. entropy attains its maximum when all odds are equally likely. Therefore h(w̃) −
hε(w̃) ∈ (−ε, 0], and we have proved part (ii) of Proposition 1.

By straightforward calculation

hε(w̃) =
∑
i∈[n]

max
α(i)∈Si

∑
G:i∈G

(
−g̃iw̃Gα(i)

G − c · α
(i)
G logα

(i)
G

)
= c

∑
i∈[n]

log
∑
G:i∈G

exp

(
− g̃iw̃G

c

)
, (36)

∂

∂w̃G
hε(w̃) = −

∑
i:i∈G

g̃ipi(G), where pi(G) :=
exp

(
− g̃iw̃Gc

)
∑
G̃:i∈G̃ exp

(
− g̃iw̃G̃c

) . (37)

Hence hε(w̃) can be computed in O(nr) time (since the second summation in (36) contains at most
r terms). Similarly all {pi(G) : i ∈ [n], i ∈ G} can be computed in O(nr) time. Therefore part (iii)
of Proposition 1 is established.

Finally, to bound the Lipschitz constant of the gradient of hε, we observe that hε(w̃) = η∗(Aw̃),
where η∗ is the Fenchel conjugate of the scaled negative entropy

η(α) = c
∑
i∈[n]

∑
G:i∈G

α
(i)
G logα

(i)
G ,

and A is defined as the matrix satisfying

〈α, Aw̃〉 =
∑
i∈[n]

∑
G:i∈G

−α(i)
G g̃iw̃G.

It is known that the scaled negative entropy η is strongly convex with modulus c (w.r.t. the `1-norm).
Furthermore, employing `1 norm on α and `2 norm on w̃, the operator norm of the matrix A can be

12

bounded as

‖A‖2,1 := max
α:‖α‖1=1

max
w̃:‖w̃‖2=1

〈α, Aw̃〉 = max
w̃:‖w̃‖2=1

max
α:‖α‖1=1

∑
i∈[n]

∑
G:i∈G

−α(i)
G g̃iw̃G (38)

≤
(

max
i∈[n]

g̃i

)
· max
w̃≥0:‖w̃‖2=1

max
α≥0:‖α‖1=1

∑
i∈[n]

∑
G:i∈G

α
(i)
G w̃G (39)

≤
(

max
i∈[n]

g̃i

)
· max
α≥0:‖α‖1=1

∑
i∈[n]

∑
G:i∈G

α
(i)
G = max

i∈[n]
g̃i = ‖g̃‖∞ . (40)

The equality is obviously attainable. Therefore by Theorem 1 of [17], hε(w̃) = η∗(Aw̃) has Lips-
chitz continuous gradient w.r.t. `2 norm, and the Lipschitz constant is

1

c
‖A‖22,1 =

1

ε
‖g̃‖2∞ n log r.

This completes our proof of part (i) of Proposition 1.

D DAG Groups

We discuss here another interesting special case of the group sparse model formulated in Section 3.1.

Suppose the variables {1, 2, . . . , n} form the nodes of a directed acyclic graph (DAG), and each
node i corresponds to a group consisting of all nodes j that are reachable from i by transversing
the DAG. For simplicity we assign unit cost to each group. Since a node in this model may belong
to n groups, i.e. r = Θ(n) (recall that r is the upper bound on the number of groups that any
variable may belong to), hence a naive application of Proposition 1 results in the overall complexity
for computing the polar as O(1

ε

√
n5 log n). Fortunately this can be reduced to O(1

εm
√
n), where

m is the number of edges (in the worst case on the order of n2).

We recall from the main paper the polar of the general group sparse regularizer

min
w̃≥0

∑
i∈[n]

g̃i · max
G:i∈G∈G

(−w̃G), s.t.
∑
G∈G

bG · w̃G = 1.

In the DAG case, each variable i corresponds to a group that consists of all descendants of i. Let us
denote the group as Gi. For simplicity, assume the costs bG = 1 for all groups G. By symmetry,
if there is an edge from i to j then at optimum w̃Gi ≥ w̃Gj , because otherwise we can swap their
values without increasing the objective or violating the constraint. To lighten notation, we just write
w̃Gi as w̃i. Thus we simplify the above problem into

min
w̃≥0
−
∑
i∈[n]

g̃iw̃i, s.t.
∑
i∈[n]

w̃i = 1, and w̃i ≥ w̃j ∀ (i, j) ∈ E. (41)

Here we use the pair (i, j) to denote an edge from i to j, andE is the set of all edges. Next introduce
the dual variables αij ≥ 0 for the constraint w̃i ≥ w̃j and ξ for the constraint

∑
i∈[n] w̃i = 1.

Consider the Lagrangian dual

min
ξ,α≥0

ξ +
∑
i∈[n]

max
w̃i≥0

w̃i

g̃i − ξ +
∑

j:(i,j)∈E

αij −
∑

k:(k,i)∈E

αki

 ,

which, after taking into account w̃i ≤ 1, simplifies to

min
ξ,α≥0

ξ +
∑
i∈[n]

g̃i − ξ +
∑

j:(i,j)∈E

αij −
∑

k:(k,i)∈E

αki


+

, (42)

where (x)+ := max{x, 0}. As in Appendix C we can easily smooth the function (·)+ and therefore
solve (42) using APG. To summarize, a 2ε accurate solution can be found in O(1

ε

√
n) iterations

13

with O(m) cost per iteration. Overall this is faster than the complexity O(mn2 log 1
ε) of [6] (which

involves a binary search). See Appendix E for details.

Moreover, if the DAG is a rooted tree, i.e., each node can only be pointed to by at most one edge, we
can further reduce the overall cost to O(n log 1

ε). Indeed, let the root be node 1, and denote as pa(i)
and ch(i) the parent and children nodes of i, respectively. Note that by the definition of rooted tree,
|pa(i)| = 1 for any node i that is not the root. Again, for any non-root node i > 1, we introduce a
dual variable αi for the constraint xpa(i) ≥ xi. For convenience let α1 = 0. Then the Lagrangian
dual of (41) in the rooted tree case is

min
ξ,α≥0

ξ +
∑
i∈[n]

g̃i − ξ +
∑

j∈ch(i)

αj − αi


+

. (43)

At the optimum, there cannot be two summands that are positive, because then the subgradient of ξ
would be negative. If only one summand is positive, we can increase ξ to make it 0 without changing
the objective value. Thus we can assume all summands are 0, and solve

min
ξ,α≥0

ξ, s.t. ∀ i, αi ≥ g̃i − ξ +
∑

j∈ch(i)

αj . (44)

In effect, we search for the smallest ξ that makes the feasible region nonempty. For any ξ > 0, its
feasibility can be checked by propagating towards the root via

αi = max

0, g̃i − ξ +
∑

j∈ch(i)

αj

 . (45)

Note that for all leaf nodes, that is {j : ch(j) = ∅}, their dual variables αj = 0. At the root if
α1 = 0 ≥ g̃1 − ξ +

∑
j∈ch(1) αj is met, then we claim that ξ is feasible. Clearly ξ ∈ [g̃1,maxi g̃i],

hence using binary search an ε accurate solution can be found in O(n log 1
ε). Finally, given ξ, the

optimal primal variable w̃ can be easily recovered using KKT conditions. Overall our approach is
faster than the O(nd) complexity in [5], where d is the depth of the tree and in the worst case can be
Θ(n).

E Comparisons for Group Sparse Models

In this section we compare the complexity of our approach (under the group sparse model developed
in Section 3.1) with two related methods in literature, namely, [11] and [6].

Consider first [11]. The Algorithm 2 there proceeds in loops, with each iteration involving a max-
flow problem on the canonical graph. The loop can take at most n iterations, while each max-flow
problem can be solved with O(|V | |E|) cost where |V | and |E| are the number of nodes and edges
in the canonical graph, respectively. By construction, |V | = n+ l, and |E| ≤ nr since each pair of
(G, i) with the node i belong to the group G contributes an edge. Therefore the total cost is upper
bounded by O(n2(n + l)r). Note that in the worst case ` = Θ(nr). In contrast, the approach we
developed in Section 3.1 for bounded degree groups costs O(nrε

√
n log r), significantly cheaper in

the regime where n is big and ε is moderate.

For the DAG groups considered in Appendix D, again Algorithm 2 in [11] can take Θ(n) iterations,
while |V | = 2n and |E| ≤ mn (since in the worst case each node can belong to Θ(n) groups). Thus
overall [11, Algorithm 2] costs O(n3m) for DAG groups, worse than the complexity O(1

εm
√
n) we

obtained in Appendix D.

Next consider [6] which developed a line search scheme to compute the polar. The major computa-
tional step there is to solve

w̃σ = arg max
w̃∈Q

〈g̃, w̃〉 − σ 〈b, w̃〉 , (46)

recursively, each time with a updated σ > 0. In the case of bounded degree groups, this is again a
max-flow problem which costsO(n(n+ l)r), and therefore the overall cost isO(n(n+ l)r log 1

ε). In
the case of DAG groups (Appendix D), the max-flow problem costs O(n2m), and hence the overall
cost is O(n2m log 1

ε). In both cases, [6] improves over [11] but is still worse than our approach.

14

F Path Coding: Efficient Linear Programming

We show in this section how to efficiently solve the LP for the path coding regularizer discussed in
Section 3.2. First recall that we have arrived at the following LP in Section 3.2:

max
w̃

∑
i

g̃i

 ∑
j:(i,j)∈E

w̃ij +
∑

k:(k,i)∈E

w̃ki

 , (47)

s.t. w̃ ≥ 0,
∑

(i,j)∈E

bijw̃ij = 1,
∑

j:(i,j)∈E

w̃ij =
∑

k:(k,i)∈E

w̃ki, ∀i. (48)

This LP appears to be more complicated than the one in Section 3.1, due to the two extra constraints
in the end. We start with removing these constraints by introducing dual variables.

Denote zi =
∑
j:(i,j)∈E w̃ij . Since w̃ij ≥ 0, we can parameterize w̃ij as w̃ij = ziτ

(i)
j , where

zi ≥ 0 and τ (i) belongs to the simplex Si := {τ (i) ≥ 0 :
〈
1, τ (i)

〉
= 1}. Introduce Lagrange

multipliers ϑ = (λ, αi) for the three constraints in (47), respectively. For convenience also let
αs = αt = g̃s = g̃t = 0. Denote

dij(ϑ) = g̃i + g̃j − αi + αj − λbij .
After some tedious algebra we obtain the Lagrangian

min
α,λ

λ+
∑

(i,j)∈E

max
w̃ij≥0

w̃ijdij(ϑ)

 = min
α,λ

λ+
∑

i∈[n]∪{s}

max
zi≥0

zi max
τ (i)∈Si

∑
j:(i,j)∈E

τ
(i)
j dij(ϑ)

 (49)

= min
α,λ

λ+
∑

i∈[n]∪{s}

max
zi≥0

zi

(
max

j:(i,j)∈E
dij(ϑ)

) . (50)

Our key observation is that zi can be upper bounded. Note the constraints
∑

(i,j)∈E bijw̃ij = 1 and
w̃ ≥ 0 in (48). Let C be the lowest cost of all (s, t)-paths, and naturally C > 0 by assumption.
Then trivially any path will satisfy zi ≤ ρ := 1

C . A more conservative upper bound on zi is

zi ≤ ρ :=

(
min

(i,j)∈E
bij

)−1

, (51)

assuming all bij > 0. Taking into account these upper bounds, we arrive at our final objective

min
λ
{λ+ ρf(λ)} , where f(λ) := min

α

∑
i∈[n]∪{s}

(
max

j:(i,j)∈E
dij(ϑ)

)
+

. (52)

As before (x)+ = max{x, 0}. Note given λ, the inner optimization overα has a closed form thanks
to the absence of cycles. Specifically, let αt(λ) = 0 and define for any i ∈ [n] ∪ {s}

αi(λ) = max
j:(i,j)∈E

{αj(λ) + g̃i + g̃j − bijλ} . (53)

Since the graph is a DAG, we can always find a topological ordering of the indices i, such that before
computing αi(λ) for node i, all its descendants αj(λ) have been computed. It is not hard to see

f(λ) = max{αs(λ), 0}, (54)

and the optimal α in the definition of f in (52) is attained at {αi = αi(λ) : i ∈ [n]}, because, as can
be easily verified, 0 is a subgradient. This relationship allows us to compute a subgradient of f at λ
via recursion

∂αi(λ)=

∑
j∈J

γj (vj − bij) : J = (set of) arg max in (53), vj ∈∂αj(λ), γj ≥ 0, 〈1,γ〉=1

. (55)

Obviously, the recursion in both (53) and (55) can be accomplished in O(m) time. Indeed a trivial
subgradient of αs(λ) is the negative cost of the path that is induced by the arg max in (53) (breaking

15

tie arbitrarily). Finally we solve (52) over λ by cutting plane method, which can find an ε accurate
solution in O(nε2) iterations, i.e. with O(mnε2) total computation.

Further reducing the computational cost to O(m
√
n

ε) is possible by smoothing the max function in

min
α,λ

λ+ ρ
∑

i∈[n]∪{s}

(
max

j:(i,j)∈E
dij(ϑ)

)
+

 . (56)

This cost is potentially better than the O(mn) worst case complexity in [12, Algorithm 1]. Algo-
rithmically, this can be done in exactly the same way as in Appendix C. After that we run APG
on the smoothed problem. To summarize, following exactly the same argument as in the proof of
Proposition 1 we have

Proposition 4 Denote the objective in (56) as h(ϑ), For any ε > 0, there exists a convex function
hε such that (i) ∀ ϑ, h(ϑ) − hε(ϑ) ∈ (−ε, 0], (ii) hε has L = O(nε) Lipschitz continuous gradient,
and (iii) the gradient of hε can be computed in O(m) time.

G Recovery of Integral Solutions to Polar Oracle

Recall our ultimate goal in polar oracle is to find integral solutions to (8) which we copy here for
convenience

λ∗ := max
0 6=w∈P

〈g̃,w〉
〈b,w〉

. (57)

As we showed in Section 3, the optimal objective value is exactly equal to that of (10), which we
also copy here

max
w̃,σ>0

〈g̃, w̃〉 , subject to w̃ ∈ σQ, 〈b, w̃〉 = 1. (58)

We have shown how to smooth this objective and find an ε accurate solution for it. That means we
have obtained a λε (smooth objective function value) with the guarantee that λε ∈ [λ∗− ε, λ∗]. With
this λε in hand, we now show how to find an ε accurate solution for (8), i.e. a wε ∈ P\{0} such that

〈g̃,wε〉
〈b,wε〉

≥ λ∗ − ε. (59)

Indeed, this is simple according to Proposition 5.

Proposition 5 Given λε ∈ [λ∗ − ε, λ∗], find

wε := arg max
w∈P\{0}

{〈g̃,w〉 − λε 〈b,w〉} . (60)

Then wε must satisfy (59).

Proof: By the definition of λ∗, maxw∈P\{0}{〈g̃,w〉 − λ∗ 〈b,w〉} = 0. As λε ≤ λ∗, so
maxw∈P\{0}{〈g̃,w〉 − λε 〈b,w〉} ≥ 0. This implies 〈g̃,wε〉〈b,wε〉 ≥ λε ≥ λ

∗ − ε.

Note (60) is exactly the submodular minimization problem that the secant method is based on (step
3 of Algorithm 2). This step is computationally expensive and has to be solved for multiple values
of λt in that method. In contrast, our our strategy needs to solve this problem only once.

In group sparsity, it leads to a max-flow problem as in Appendix B.1 which is again expensive.
Fortunately, by exploiting the structure of the problem it is possible to design a heuristic solution.
For convenience let us copy (15) to here, the linear programming for group sparsity.

max
w̃

∑
i∈[n]

g̃i min
G:i∈G∈G

w̃G, subject to w̃ ≥ 0,
∑
G∈G

bGw̃G = 1. (61)

16

A solution w̃ corresponds to an integral solution to the polar oracle if and only if w̃G ∈ {0, c}
where c ensures

∑
G∈G bGw̃G = 1. By solving the smoothed objective, we obtain a solution w̃∗

which does not necessarily satisfy this condition. However, a smaller value of the component w̃∗G
does suggest a higher likelihood for w̃G to be 0. Therefore, we sorted {w∗G} and set the wG of the
smallest k groups to 0 (k ranging from 0 to |G| − 1), and the wG for the remaining groups were set
to a common value that satisfies the constraint. Given k, this leads to an objective value, and the k
that maximizes this value can be selected by enumerating k ∈ {0, 1, . . . , |G|− 1}. By exploiting the
structure of the objective, it is easy to design an algorithm which accomplishes the enumeration in
O(nr) time.

The optimal objective value over all k also allows us to compute its distance to the optimal objective
value of the smoothed objective. If the gap (used as a certificate) is below ε, this integral solution is
exactly ε sub-optimal. Otherwise we fall back on (60), and this case rarely happens in practice.

In path coding, the path can be simply recovered by following the arg max in (53), with λ set to an
optimal solution to (52).

H Polar of Ωs(w) =
∑

i ‖w‖(i)

The polar of Ωs(w) =
∑
i ‖w‖(i) follows from the following proposition by taking φ(α) =

∑
i αi.

We note that Proposition 6 itself is a slight generalization of [19, Theorem 15.3].

Proposition 6 Let κi : Rd → R̄+, 1 ≤ i ≤ n be closed gauges, φ : R̄n+ → R̄+ be closed,
convex, non-constant in each coordinate1 with φ(0) = 0, and ∃x ∈ ∩i ri domκi such that
(κ1(x), . . . , κn(x)) ∈ ri domφ, then the Fenchel conjugate of h := φ(κ1, . . . , κn) is

h∗(x) = min∑
i x

i=x
φ+(κ◦1(x1), . . . , κ◦n(xn)), (62)

where κ◦i is the polar of κi and φ+(y) := maxx≥0 〈x,y〉 − φ(x) is the monotone conjugate of φ.
Moreover, if φ is a gauge so is h whose polar

h◦(x) = min∑
i x

i=x
φ◦(κ◦1(x1), . . . , κ◦n(xn)), (63)

where φ◦ is the polar of φ.

Proof: Let us define the diagonal operator A : R̄d → (R̄d)n,x 7→ (x, . . . ,x). Then h(x) =
H(A(x)), where

H(x1, . . . ,xn) := φ(κ1(x1), . . . , κn(xn)).

The Fenchel conjugate of G is

H∗(y1, . . . ,yn) = sup
xi

∑
i

〈
xi,yi

〉
−H(x1, . . . ,xn)

= sup
xi

∑
i

〈
xi,yi

〉
− φ(κ1(x1), . . . , κn(xn))

= sup
κi(xi)≤λi

∑
i

〈
xi,yi

〉
− φ(λ1, . . . , λn)

= sup
λi≥0

∑
i

〈
κ◦i (y

i), λi
〉
− φ(λ1, . . . , λn)

= φ+(κ◦1(y1), . . . , κ◦n(yn)),

where the third equality is due to the monotonicity of φ (since φ ≥ 0 and φ(0) = 0). Since both
φ and κi are closed, H is closed. Also by assumption ∃x such that Ax ∈ ri domH . Therefore we
can apply [19, Theorem 16.3] to conclude that h∗ = (HA)∗ = A∗H∗, where A∗ is the adjoint of
A. Expanding the last expression we get (62).

1This assumption allows us to interpret φ(∞, . . .) as ∞.

17

The second claim follows from the relations

κ∗ = δ(κ◦ ≤ 1) (64)
κ◦ = δ∗(κ ≤ 1), (65)

where κ is any gauge and δ(·) = 0 if · is true otherwise δ(·) =∞. Indeed, when φ is a gauge, so is
h, and

h∗(x) = min∑
i x

i=x
φ+(κ◦1(x1), . . . , κ◦n(xn))

= min∑
i x

i=x
δ(φ◦(κ◦1(x1), . . . , κ◦n(xn) ≤ 1)

= δ

([
min∑
i x

i=x
φ◦(κ◦1(x1), . . . , κ◦n(xn)

]
≤ 1

)
= δ(h◦(x) ≤ 1),

due to (64). Since both functions (inside δ) are positively homogeneous, we must have (63).

I Proof of Proposition 2

Since the polar Ω◦ is closed, we have

0 = min
θ:Ω◦(θ)≤ζ

1
2‖θ − g‖22

if and only if Ω◦(g) ≤ ζ, therefore

Ω◦(g) = inf

{
ζ ≥ 0 : 0 = min

θ:Ω◦(θ)≤ζ
1
2‖θ − g‖22

}
. (66)

Recall Moreau’s identity [19, Theorem 31.5], that is,

Proxf (g) + Proxf∗(g) = 1
2‖g‖

2
2, (67)

where f∗ denotes the Fenchel conjugate of f . Setting f(g) = δ(Ω◦(g) ≤ ζ) we obtain f∗(g) =
ζΩ(g), hence

min
θ:Ω◦(θ)≤ζ

1
2‖θ − g‖22 = Proxf (g) = 1

2‖g‖
2
2 − Proxf∗(g),

which plugged into (66) completes the proof of Proposition 2.

J Proof of Proposition 3

The proof is quite straightforward. Let

u := arg minθ
1
2‖w − θ‖

2
2 + ‖θ‖TV (68)

v := arg minθ
1
2‖u− θ‖

2
2 + ‖θ‖p (69)

z := arg minθ
1
2‖w − θ‖

2
2 + ‖θ‖TV + ‖θ‖p, (70)

then Proposition 3 amounts to claiming that z = v.

Indeed, by the first order optimality conditions for convex programming [19], we must have

0 ∈ u−w + ∂‖u‖TV (71)
0 ∈ v − u + ∂‖v‖p, (72)

where ∂‖x‖ denotes the subdifferential of the norm ‖ · ‖ at point x. It is easy to argue from (72) that
ui ≥ uj =⇒ vi ≥ vj , therefore exploiting the special structure of ‖ · ‖TV we can conclude that
∂‖u‖TV ⊆ ∂‖v‖TV. Adding (71) and (72) we obtain

0 ∈ v −w + ∂‖v‖p + ∂‖v‖TV, (73)

which implies that v minimizes (70). Thus v = z, since both are optimal while the minimizer is
unique.

18

Algorithm 3 Exact algorithm for the proximal map (74).
1: h1(−1) = w1 − 1, h1(1) = w1 + 1. K1 ← {(−1, h1(−1)); (1, h1(1))}.
2: for j = 2, . . . ,m− 1 do
3: hj(z) = z + wj −Median(−1, 1, (hj−1 + I)−1(wj + z)) for z ∈ {−1, 1}.
4: Kj ← {(−1, hj(−1)), (1, hj(1))}.
5: for all (αi, βi) ∈ Kj−1 do
6: if −1 < α′i := αi + βi − wj < 1 then
7: Kj ← Kj ∪ {(α′i, βi)}
8: end if
9: end for

10: end for

K Fused Lasso: An Efficient Exact Algorithm for Computing Prox‖·‖TV

Given a vector w, the problem of computing Prox‖·‖TV(w) amounts to solving

minθ
1
2‖w − θ‖

2
2 + ‖θ‖TV. (74)

Applying Moreau’s identity [19, Theorem 31.5] we see that θ minimizes (74) iff for some z ∈ Rm−1

that solves

min
z∈[−1,1]m−1

(z1+w1)2+(zm−1−wm)2+
∑

j
(zj−zj−1 + wj)

2, (75)

we have θ1 = w1 + z1, θm = wm − zm−1, and θj = wj + zj − zj−1 for all 2 ≤ j ≤ m− 1.

For z ∈ [−1, 1], define H1(z) = 1
2 (z + w1)2 and recursively for 2 ≤ j ≤ m− 1 define

Hj(z)= min
|zj−1|≤1

Hj−1(zj−1) + 1
2 (z − zj−1 + wj)

2. (76)

It is readily verified that solving (75) amounts to minimizing Hm−1(z) + 1
2 (z −wm)2. Inductively,

we infer that Hj is a convex piecewise quadratic univariate function. Therefore its derivative, de-
noted as hj , is increasing and piecewise linear. Denote subdifferential ∂hj(1) = [limz↑1 hj(z),∞)
and ∂hj(−1) = (−∞, limz↓−1 hj(z)]. Moreover, for all 2 ≤ j ≤ m− 1

hj(zj) = zj + wj − zj−1, (77)

where zj−1 = arg min
−1≤z≤1

Hj−1(z) + 1
2 (zj − z + wj)

2 (78)

= Median(−1, 1, (hj−1 + I)−1(zj + wj)). (79)

Therefore if hj−1 has k (linear) pieces, hj has at most k + 1 (linear) pieces (taking into account the
end points z = ±1). Using dynamic programming we can recursively identify all the “kink points”
of hj (denoted as Kj) for j = 1, . . . ,m − 1, and hence easily find the minimizer of Hm−1(z) +
1
2 (z − wm)2, that is, (74).

Thus we can summarize the procedure in Algorithm 3.

Note the space cost is O(m) and upon completion of Algorithm 3, we only have Km−1, based
on which the optimal z∗m−1 can be found. To recover the optimal z∗1 , . . . , z

∗
m−2, we backtrack the

values of z∗j and hj(z∗j). By (77), it is obvious that for 2 ≤ j ≤ m− 1

z∗j−1 = z∗j + wj − hj(z∗j). (80)

Then by (79), we have three cases:

• z∗j−1 = −1⇒ hj−1(z∗j−1) = hj−1(−1) which we have recorded in Algorithm 3.

• z∗j−1 = 1⇒ hj−1(z∗j−1) = hj−1(1) which we have also recorded in Algorithm 3.

• z∗j−1 = (hj−1 + I)−1(z∗j + wj)⇒ hj−1(z∗j−1) = z∗j + wj − z∗j−1 = hj(z
∗
j).

19

K.1 More Experiments on Fused Lasso with Comparison to Liu et. al. [26]

We compared two algorithms that solve the proximal operator Prox‖·‖TV in fused lasso. One is our
dynamic programming (DP) Algorithm 3, and one is from Liu et. al. [26] whose implementation
was extracted from the SLEP package2. In particular, we randomly generated an m-dimensional
vector w and used the two methods to solve

minθ
1
2‖w − θ‖

2
2 + λ‖θ‖TV. (81)

The components of w were drawn independently from unit Gaussians, and the dimension m ranged
from 104 to 106. We varied λ ∈ {0.01, 0.1, 1, 10, 100} and the resulting run time is shown in Figure
4 to 8 respectively. For each combination of m and λ, 50 random samples of w were drawn which
allowed us to plot the error bar.

It is clear that the run time of both algorithms is linear in m. However, our DP algorithm is 2 to 6
times faster than [26], and the margin grows wider as the values of λ increase.

Figure 9 shows the total number of kinks generated along the execution of our DP algorithm. It is
also linear in m and the slope is 2 to 12 depending on λ.

0 10000 200000 400000 600000 80000010000000.1

0

0.1

0.2

0.3

0.4

0.5

0.6
DP vs. Liu et. al on the prox, lambda=0.01

problem size m

ru
nn

in
g

tim
e

Ours
Liu et. al

Figure 4: Running time (in seconds) of our DP
algorithm vs [26] for λ = 0.01.

0 10000 200000 400000 600000 80000010000000.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
DP vs. Liu et. al on the prox, lambda=0.1

problem size m

ru
nn

in
g

tim
e

Ours
Liu et. al

Figure 5: Running time (in seconds) of our DP
algorithm vs [26] for λ = 0.1.

0 10000 200000 400000 600000 80000010000000.2

0

0.2

0.4

0.6

0.8

1

1.2
DP vs. Liu et. al on the prox, lambda=1

problem size m

ru
nn

in
g

tim
e

Ours
Liu et. al

Figure 6: Running time (in seconds) of our DP
algorithm vs [26] for λ = 1.

0 10000 200000 400000 600000 80000010000000.5

0

0.5

1

1.5

2
DP vs. Liu et. al on the prox, lambda=10

problem size m

ru
nn

in
g

tim
e

Ours
Liu et. al

Figure 7: Running time (in seconds) of our DP
algorithm vs [26] for λ = 10.

2http://www.public.asu.edu/˜jye02/Software/SLEP/index.htm

20

http://www.public.asu.edu/~jye02/Software/SLEP/index.htm

0 10000 200000 400000 600000 80000010000000.5

0

0.5

1

1.5

2

2.5

3
DP vs. Liu et. al on the prox, lambda=100

problem size m

ru
nn

in
g

tim
e

Ours
Liu et. al

Figure 8: Running time (in seconds) of our DP
algorithm vs [26] for λ = 100.

0 10000 200000 400000 600000 8000001000000
0

2

4

6

8

10

12
x 10

6 DP for the prox of fused lasso

problem size m

nu
m

be
r

of
 p

ie
ce

s

lambda = 0.01
lambda = 0.1
lambda = 1
lambda = 10
lambda = 100

Figure 9: Number of pieces in our DP

21

