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Abstract

Robust regression and classification are often thought to require non-convex loss
functions that prevent scalable, global training. However, such a view neglects
the possibility of reformulated training methods that can yield practically solvable
alternatives. A natural way to make a loss function more robust to outliers is
to truncate loss values that exceed a maximum threshold. We demonstrate that
a relaxation of this form of “loss clipping” can be made globally solvable and
applicable to any standard loss while guaranteeing robustness against outliers. We
present a generic procedure that can be applied to standard loss functions and
demonstrate improved robustness in regression and classification problems.

1 Introduction

Robust statistics is a well established field that analyzes the sensitivity of common estimators to out-
liers and provides alternative estimators that achieve improved robustness [11, 13, 17, 23]. Outliers
are understood to be observations that have been corrupted,incorrectly measured, mis-recorded,
drawn under different conditions than those intended, or soatypical as to require separate model-
ing. The main goal of classical robust statistics is to make estimators invariant, or nearly invariant,
to arbitrary changes made to a non-trivial fraction of the sample data—a goal that is equally rele-
vant to machine learning research given that data sets are often collected with limited or no quality
control, making outliers ubiquitous. Unfortunately, the state-of-the-art in robust statistics relies on
non-convex training criteria that have yet to yield efficient global solution methods [13, 17, 23].

Although many robust regression methods have been proposedin the classical literature,M-
estimatorscontinue to be a dominant approach [13, 17]. These correspond to the standard machine
learning approach of minimizing a sum of prediction errors under a given loss function (assuming
a fixed scaling). M-estimation is reasonably well understood, analytically tractable, and provides
a simple framework for trading off between robustness against outliers and data efficiency on in-
liers [13, 17]. Unfortunately, robustness in this context comes with a cost: when minimizing a
convex loss, even a single data point can dominate the result. That is,any (non-constant) convex
loss function exhibits necessarilyunboundedsensitivity to even a single outlier[17, §5.4.1]. Al-
though unbounded sensitivity can obviously be mitigated byimposing prior bounds on the domain
and range of the data [5, 6], such is not always possible in practice. Instead, the classical literature
achieves bounded outlier sensitivity by consideringredescendingloss functions (see [17,§2.2] for a
definition), or more restrictively,boundedloss functions, both of which are inherently non-convex.
Robust regression has also been extensively investigated in computer vision [2, 26], where a similar
conclusion has been reached that bounded loss functions arenecessary to counteract the types of
outliers created by edge discontinuities, multiple motions, and specularities in image data.

Forclassificationthe story is similar. The attempt to avoid outlier sensitivity has led many to propose
bounded loss functions [8, 15, 18, 19, 25] to replace the standard convex, unbounded losses deployed
in support vector machines and boosting [9] respectively. In fact, [16] has shown that minimizing
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anyconvex margin loss cannot achieve robustness to random misclassification noise. The conclusion
reached in the classification literature, as in the regression literature, is therefore that non-convexity
is necessaryto ensure robustness against outliers—creating an apparentdilemma: one can achieve
global training via convexity or outlier robustness via boundedness, but not both.

In this paper we present a counterpoint to these pessimisticconclusions. In particular, we present a
general model for bounding any convex loss function, via a process of “loss clipping”, that ensures
bounded sensitivity to outliers. Although the resulting optimization problem is not, by itself, con-
vex, we demonstrate an efficient convex relaxation and rounding procedure that guarantees bounded
response to data—a guarantee that cannot be established for any convex loss minimization on its
own. The approach we propose is generic and can be applied to any standard loss function, be it
for regression or classification. Our work is inspired by a number of studies that have investigated
robust estimators in computer vision and machine learning [2, 26, 27, 30]. However, these previ-
ous attempts were either hampered by local optimization or restricted to special cases; none had
guarantees of global training and outlier insensitivity.

Before proceeding it is important to realize that there are many alternative conceptions of “robust-
ness” in the literature that do not correspond to the notion we are investigating. For example, work on
“robust optimization” [28, 29] considers minimizing the worst case loss achieved given prespecified
bounds on the maximum data deviation that will be considered. Although interesting, these results
do not directly bear on the question at hand since we explicitly do not bound the magnitude of the
outliers (i.e. the degree of leverage [23,§1.1], nor the size of response deviations). Another notion
of robustness is algorithmic stability under leave-one-out perturbation [3]. Although loosely related,
algorithmic stability addresses the analysis of given learning procedures rather than describing how
a stable algorithm might be generally achieved in the presence of arbitrary outliers. We also do not
focus on asymptotic or infinitesimal notions from robust statistics, such as influence functions [11],
nor impose boundedness assumptions on the domain and range of the data or the predictor [5, 6].

2 Background

We consider the standard supervised setting where one is given an input matrixX and output targets
y, with the goal of learning a predictorh :ℜm→ℜ. Each row ofX gives the feature representation
for one training example, denotedXi:, with corresponding targetyi. We will assume the predictor
can be written as a generalized linear model; that is, the predictions are given bŷyi = f(Xi:θ) for
a fixed transfer functionf (possibly identity) and a vector of parametersθ. For training, we will
consider the standardL2 regularized loss minimization problem

min
θ

γ

2
‖θ‖22 +

n
∑

i=1

L(yi, ŷi) = min
θ

γ

2
‖θ‖22 +

n
∑

i=1

L(yi, f(Xi:θ)) (1)

whereL denotes the loss function,γ is the regularization constant, andn denotes the number of
training examples. Normally the loss functionL is chosen to be convex inθ so that the minimization
problem can be solved efficiently. Although convexity is important for computational tractability, it
has the undesired side-effect of causing unbounded outliersensitivity, as mentioned. Obviously, the
severity of the problem will range from minimal to extreme depending on the nature of the distribu-
tion over(x, y). Nevertheless, our goal in this paper will be to eliminate unbounded sensitivity for
convex loss functions while retaining a scalable computational approach.1

Standard Convex Loss Functions: Our general construction applies to arbitrary convex losses,
but we will demonstrate our methods on standard loss functions employed in regression and clas-
sification. A standard example isBregman divergences, which are defined by taking a strongly
convex differentiable potentialΦ then taking the difference between the potential and its first
order Taylor approximation, obtaining a lossLΦ(ŷ‖y) = Φ(ŷ) − Φ(y) − φ(y)(ŷ − y), where
φ(y) = Φ′(y) [1, 14]. Several natural loss functions can be defined this way, including least squares
LΦ(ŷ‖y) = (ŷ − y)2/2, using the potentialΦ(y) = y2/2, and forward KL-divergenceLΦ(ŷ‖y) =
ŷ ln ŷ

y
+ (1 − ŷ) ln 1−ŷ

1−y
, using the potentialΦ(y) = y ln y + (1 − y) ln(1 − y) for 0 ≤ y ≤ 1.

1All results in this paper extend to reproducing kernel Hilbert spaces via the representer theorem [24], but
for clarity of presentation we will use an explicit feature representationX even though it is not a requirement.
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A related construction ismatching losses[14], which are determined by taking a strictly increasing
differentiable transfer functionf to be used in prediction viây = f(z) wherez = x⊤θ. Then, given
a transferf , a loss can be defined byLF (ẑ‖z) =

∫ ẑ

z
f(ζ)− f(z) dζ = F (ẑ)−F (z)− f(z)(ẑ− z)

such thatF satisfiesF ′(z) = f(z). By definition, matching losses are also Bregman divergences,
sinceF is differentiable and the assumptions onf imply thatF is strongly convex. These two loss
constructions are related by the equalityLΦ(y‖ŷ) = LF (ẑ‖z) whereF is the Legendre-Fenchel
conjugate ofΦ [4, §3.3], z = f−1(y) = φ(y) and ẑ = f−1(ŷ) = φ(ŷ) [1, 14]. For example, the
post-prediction KL-divergencey ln y

ŷ
+ (1 − y) ln 1−y

1−ŷ
is equal to the convex pre-prediction loss

LF (ẑ‖z) = ln(eẑ + 1)− ln(ez + 1)− σ(z)(ẑ − z) via the transfer̂y = σ(ẑ) = (1 + e−ẑ)−1. Such
losses are prevalent in regression and probabilistic classification settings.

For discrete classification it is also natural to work with a continuous pre-prediction spaceẑ = x⊤θ,
recovering discrete post-predictionsŷ ∈ {−1, 1} via a step transfer̂y = sign(z). Although a step
transfer does not admit the matching loss construction, a surrogatemargin losscan be obtained by
taking a nonincreasing functionl such thatlimm→∞ l(m) = 0, then definingLl(ŷ, y) = l(yŷ).
Hereyŷ is known as theclassification margin. Standard examples include misclassification loss,
Ll(ŷ, y) = 1(yŷ<0), support vector machine (hinge) loss,Ll(ŷ, y) = max(0, 1 − yŷ), binomial
deviance loss,Ll(ŷ, y) = ln(1 + e−yŷ) [12], and Adaboost loss,Ll(ŷ, y) = e−yŷ [9]. If the margin
loss is furthermore chosen to be convex, efficient minimization can be attained.

To unify our presentation below we will simply denote all loss functions byℓ(y,x⊤θ), with the
understanding thatℓ(y,x⊤θ) = LΦ(x

⊤θ‖y) if the loss is Bregman divergence on potentialΦ;
ℓ(y,x⊤θ) = LF (x

⊤θ‖f−1(y)) if the loss is a matching loss with transferf ; and ℓ(y,x⊤θ) =
l(yx⊤θ) if the loss is a margin loss with margin functionl. In each case, the loss is convex in the
parametersθ. Note that by their very convexity these losses cannot be robust: all admit unbounded
sensitivity to a single outlier (the same is also true forL1 loss when applied to regression).

Bounded loss functions: As observed, non-convex loss functions are necessary to bound the ef-
fects of outliers [17]. Black and Rangarajan [2] provide a useful catalog of bounded and redescend-
ing loss functions for robust regression, of which a representative example is theGeman and Mc-
Clure lossL(y, ŷ) = (ŷ − y)2/(τ + (ŷ − y)2) for τ > 0; see Figure 1. Unfortunately, as Figure 1
makes plain, boundedness implies non-convexity (for any non-constant function). It therefore ap-
pears that bounded loss functions achieve robustness at thecost of losing global training guarantees.
Our goal is to show that robustness and efficient global training are not mutually exclusive. Despite
extensive research on regression and classification, almost no work we are aware of (save perhaps
[30] in a limited way) attempts to reconcile robustness to outliers with global training algorithms.

3 Loss Clipping

Adapting the ideas of [2, 27, 30], given any convex lossℓ(y,x⊤θ) define theclipped lossas

ℓc(y,x
⊤θ) = min(1, ℓ(y,x⊤θ)). (2)

Figure 1 demonstrates loss clipping for some standard loss functions. Given a clipped loss, a robust
form of training problem (1) can be written as

min
θ

γ

2
‖θ‖22 +

n
∑

i=1

ℓc(yi, Xi:θ). (3)

Clearly such a training objective bounds the influence of anyone training example on the final re-
sult. Unfortunately, the formulation (3) is not computationally convenient because the optimization
problem it poses is neither convex nor smooth. To make progress on the computational question
we exploit a key observation: for any loss function, its corresponding clipped loss can be indirectly
expressed by an auxiliary optimization of a smooth objective (if the original loss function itself was
smooth). That is, given a lossℓ(y,x⊤θ) define the correspondingρ-relaxed lossto be

ℓρ(y,x
⊤θ) = ρℓ(y,x⊤θ) + 1− ρ (4)

for 0 ≤ ρ ≤ 1; see Figure 1. This construction is an instance of an outlierprocess as described
in [2] and is motivated by a special case hinge-loss construction originally proposed in [30]. The
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Figure 1: Comparing standard losses (dashed) with corresponding “clipped” losses (solid),ρ-relaxed losses
(dotted), and non-convex robust losses (dash-dotted).Left : squared loss (dashed), clipped (solid),1/3-relaxed
(dotted), robust Geman and McClure loss [2] (dash-dotted).Center: SVM hinge loss (dashed), clipped [27, 30]
(solid),1/2-relaxed (upper dotted), robust1− tanh(yŷ) loss [19] (dash-dotted).Right: Adaboost exponential
loss (dashed), clipped (solid),1/2-relaxed (upper dotted), robust1− tanh(yŷ) loss [19] (dash-dotted).

ρ-relaxation provides a convenient characterization of anyclipped loss, since it can be shown in
general that minimizing a correspondingρ-relaxed loss is equivalent to minimizing the clipped loss.

Proposition 1 For any loss functionℓ(y,x⊤θ), we haveℓc(y,x⊤θ) = min0≤ρ≤1 ℓρ(y,x
⊤θ).

(The proof is straightforward, but it is given in the supplement for completeness.) Proposition 1
now allows us to reformulate (3) as a smooth optimization using the fact that the optimization is
completely separable between theρi variables:

(3) = min
θ

min
0≤ρ≤1

γ

2
‖θ‖22 +

n
∑

i=1

ρiℓ(yi, Xi:θ) + 1− ρi. (5)

Unfortunately, the resulting problem is not jointly convexin ρ andθ even though it is convex in each
given the other. Such marginal convexity might suggest thatan alternating minimization strategy,
however the proof of Proposition 1 shows that each minimization overρ will result in ρi = 0 for
losses greater than 1, orρi = 1 for losses less than 1. Such discrete assignments immediately causes
the search to get trapped in local minima, requiring a more sophisticated approach to be considered.

4 A Convex Relaxation

One contribution of this paper is to derive an exact reformulation of (5) that admits a convex re-
laxation and rounding scheme that retain bounded sensitivity to outliers. We first show how the
relaxation can be efficiently solved by a scalable algorithmthat eliminates any need for semidefinite
programming, then provide a guarantee of bounded outlier sensitivity in Section 5.

Reformulation: To ease the notational burden, let us rewrite (5) in matrix-vector form

(5) = min
0≤ρ≤1

min
θ

R(ρ,θ) (6)

where R(ρ,θ) =
γ

2
‖θ‖2 + ρ⊤ℓ(y, Xθ) + 1⊤(1− ρ). (7)

Here1 denotes the vector of all1s, and it is understood thatℓ(y, Xθ) refers to then × 1 vector
of individual training losses. Given thatℓ(·, ·) is convex in its second argument we will be able to
exploit Fenchel duality to re-express the min-min form (6) into a min-max form that will serve as
the basis for the subsequent relaxation. In particular, consider the definition

ℓ∗(y, α) = sup
θ

αx⊤θ − ℓ(y,x⊤θ). (8)

By construction,ℓ∗(y, α) is guaranteed to be convex inα since it is a pointwise maximum over
linear functions [4,§3.2].

Lemma 1 For any convex differentiable loss functionℓ(y,x⊤θ) such that the level sets ofℓα(v) =
αx⊤(θ − v) + ℓ(y,x⊤v) are bounded, we have

ℓ(y,x⊤θ) = sup
α

αx⊤θ − ℓ∗(y, α). (9)
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(This is a standard result, but a proof is given in the supplement for completeness.) For standard
lossesℓ∗(y, α) can be computed explicitly [1, 7]. For example, ifℓ(y,x⊤θ) = (y − x⊤θ)2/2 then
ℓ∗(y, α) = α2/2+αy. Now let∆(α) denote puttingα in the main diagonal of a square matrix and
let ℓ∗(y,α) refer to then× 1 vector of dual values over training examples. We can then express the
main reformulation as follows.

Theorem 1 LetK = XX⊤ denote the kernel matrix over input data. Then

(6) = min
− 1

√

n+1
1≤ν≤ 1

√

n+1
1, ν1=

1
√

n+1
, ‖ν‖=1

sup
α

−(n+ 1) ν⊤T (α)ν (10)

whereν is an(n+ 1)× 1 variable,α is ann× 1 variable, and the matrixT (α) is given by

T (α) =
1

8γ

[

1⊤

I

]

∆(α)K∆(α) [1 I ] +
1

4

[

2(1⊤ℓ∗(y,α)− n) (ℓ∗(y,α) + 1)⊤

ℓ∗(y,α) + 1 0

]

. (11)

The proof consists in first dualizingθ in (6) via Lemma 1, which establishes the key relationship

θ = − 1
γ
X⊤∆(ρ)α. (12)

The remainder of the proof is merely algebra: given a solution ν to (10), the corresponding solution
ρ to (6) can be recovered viaρ = 1

2 (1+ ν2:n+1

√
n+ 1). See the supplement for full details.

Note that the formulation (10) given in Theorem 1 is exact. Noapproximation to the problem (6)
has been introduced to this point. Unfortunately, as in (6),the formulation (10) is still not directly
amenable to an efficient algorithm: the objective is concavein α, conveniently, but it is not convex
in ν. The advantage attained by (10) however is that we can now derive an effective relaxation.

Relaxation: Let δ(M) denote the main diagonal vector of the square matrixM and let tr(M)
denote the trace. Consider the following relaxation

(10) ≥ min
M�0, δ(M)= 1

n+1
1

sup
α

−(n+ 1) tr(MT (α)) (13)

= sup
α

min
M�0, δ(M)= 1

n+1
1

−(n+ 1) tr(MT (α)) (14)

where we used strong minimax duality to obtain (14) from (13): since the constraint region onM
is compact and the inner objective is concave and convex inα andM respectively, Sion’s mini-
max theorem is applicable [22,§37]. Next enforce the constraintδ(M) = 1

n+11 with a Lagrange
multiplier λ:

(14) = sup
α,λ

min
M�0, tr(M)=1

−(n+ 1) tr(MT (α)) + λ⊤ (1− (n+ 1)δ(M)) (15)

= sup
α,λ

λ⊤
1− (n+ 1) max

M�0, tr(M)=1
tr
[

M (T (α) + ∆(λ))
]

. (16)

This relaxed formulation (16) is now amenable to efficient global optimization: The outer problem
is jointly concave inα andλ, since it is a pointwise minimum of concave functions. The inner
optimization with respect toM can now be simplified by exploiting the well known result [21]:

max
M�0, tr(M)=1

tr
[

M (T (α) + ∆(λ))
]

= max
‖ν‖=1

ν⊤
[

T (α) + ∆(λ)
]

ν. (17)

Therefore, givenα andλ, the inner problem is solved by the maximum eigenvector ofT (α)+∆(λ).

Optimization Procedure: Given training data, an outer maximization can be executed jointly over
α andλ to maximize (16). This outer problem is concave inα andλ hence no local maxima exist.
Although the outer problem is not smooth, many effective methods exist for nonsmooth convex
optimization [20, 31]. Each outer function evaluation (andsubgradient calculation) requires the
inner problem (17) to be solved. Fortunately, a simple powermethod [10] can be used to efficiently
compute a maximum eigenvector solution to the inner problemby only performing matrix-vector
multiplications on the individual factors of the two low rank matrices making upT (α), meaning the
inner problem can be solved without ever forming a largen×n matrixT (α). That is, ifX isn×m
each inner iteration requires at mostO(nm) computation.
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Solution Recovery: At a solution, the values of (13)–(16) are equal, and all provide a lower bound
on the original objective (6). Ideally, given a maximizerα∗ for (14) one would recover a prediction
modelθ via (12). However, (12) requiresρ to be acquired first, which could be obtained from a
ν that solves (10). Unfortunately, the relaxation step takenin (13) means that the solution to (14)
(recovered from theν that solves (17)) does not necessarily solve (10): the innersolutionν in (17)
might not be unique. If it is unique, we immediately have the optimal solution to (10) hence an
exact solution to the original problem (6). More typically,however, the maximum eigenvector is
not unique at(α∗,λ∗), meaning that a gap has been introduced—this occurs if and only if the inner
solutionM∗ to (14) is not rank 1. In such cases we need to use a rounding procedure to recover an
effective rank 1 approximation.

Rounding Method: Given the inner maximizer(α∗,λ∗) of (16) we do not need to explicitly
construct the outer minimizerM∗. Instead, it suffices to construct a basis forM∗ by collecting the
set of maximum eigenvectors̃V = {ν̃1, ..., ν̃k} of T (α∗) + ∆(λ∗) in (17) (note thatk is usually
much smaller thann+1). A solution can then be indirectly obtained by solving a small semidefinite
program to recover ak × k matrixC∗ that satisfiesC∗ � 0 andδ(Ṽ C∗Ṽ ⊤) = 1

n+11. Note that

C∗ = Q∗Σ∗Q∗⊤ for some orthonormalQ∗ and diagonalΣ∗ whereσ∗
j ≥ 0 and

∑k

j=1 σ
∗
j = 1, hence

M∗ = V ∗Σ∗V ∗⊤ such thatV ∗ = {ν∗
1, ...,ν

∗
k} = Ṽ Q∗. GivenV ∗ andΣ∗ a rounded solution for̂ρ

can be recovered simply by computingν̄∗ =
∑k

j=1 σ
∗
jν

∗
j then settinĝρ = 1

2

(

1+ ν̄∗
2:n+1

√
n+ 1

)

.
From the constraints onC∗ it follows that −1√

n+1
≤ ν̄∗j ≤ 1√

n+1
hence0 ≤ ρ̂j ≤ 1 ∀j (details in

the supplement). Finally, instead of relying on (12) to recover the model parameterŝθ from ρ̂, we
explicitly minimize theρ̂-relaxed loss (7) given̂ρ to recover̂θ via θ̂ = argminθ R(ρ̂,θ).

Although the rounding step has introduced an approximation, we establish that bounded outlier sen-
sitivity can still be retained, even after the above relaxation and rounding processes, and demonstrate
experimentally that the gap from optimality is generally not too large.

5 Bounding Outlier Sensitivity

Thus far we have proposed a robust training objective, provided an efficient convex relaxation that
establishes a lower bound, and proposed a simple rounding method for recovering an approximate
solution. The question remains as to whether the approximate solution retains bounded sensitivity
to outliers (or to leverage points [23,§1.1]). Let (ρ∗,θ∗) denote the joint minimizer of (6) and let
(ρ̂, θ̂) denote the approximate solution obtained from the procedure above.

First, observe that an upper bound on the approximation error can be easily computed by subtract-
ing the lower bound value obtained in (14)–(16) fromR(ρ̂, θ̂). Our experiments below show that
reasonable gaps are obtained in this way. Nevertheless one would still like to guarantee that the gap
stays bounded in the presence of arbitrary outliers and leverage points.

Theorem 2 R̂(ρ̂,α∗) ≤ 2R(ρ∗,θ∗) ≤ 2n, whereR̂(ρ̂,α∗) is the value of (10) at the rounded
solutionρ̂. Furthermore, if the unclipped lossℓ(y, ŷ) is b-Lipschitz inŷ for b < ∞ and eithery or
K remains bounded, then there exists ac < ∞ such thatR(ρ̂, θ̂) ≤ c.

That is, theρ-relaxed loss obtained by the rounded solution stays bounded in this case, even when
accounting for the proposed relaxation and rounding procedure and data perturbation. The complete
proof takes some space, however the key steps are to show that−(n+1)tr(M∗T (α∗)) ≤ R(ρ∗,θ∗),
and then use this to establish thatR̂(ρ̂,α∗) ≤ 2R(ρ∗,θ∗) andR(ρ̂, θ̂) ≤ c, respectively (full details
in the supplement). Thus,(ρ̂, θ̂) will not chase outliers or leverage points arbitrarily in this situation.
Note that the proposed method cannot be characterized by minimizing a fixed convex loss. That is,
the tightest convex upper bound for any convex loss functionis simply given by the function itself,
which corresponds to settingρi = 1 for every training example. By contrast, our approximation
method does not choose a constantρi = 1 for every training example, but insteadadaptivelychooses
ρi values, closer to1 for inliers and closer to0 for outliers. The resulting upper bound on the clipped
loss (hence on the misclassification error in the margin losscase) is much tighter than that achieved
by simply minimizing a convex loss. This outcome is demonstrated clearly in our experiments.
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Figure 2:Comparison on three demonstration data sets.

outlier probability
Loss p = 0.0 p = 0.2 p = 0.4
L2 2.53± 0.0015 25.11 ± 13.78 19.04 ± 15.62

L1 2.53± 0.0015 26.52 ± 16.09 27.14 ± 22.40

HuberM 2.52± 0.0015 12.02 ± 5.33 12.30 ± 5.87

GM (local) 2.53± 0.0015 2.60± 0.10 2.62± 0.09

ClipAlt (local) 2.53± 0.0019 2.75 ± 0.27 2.81 ± 0.27

ClipRelax 2.53± 0.0016 2.68± 0.12 2.53± 0.87

OptimGap 1.65%± 0.31% 0.10%± 0.22% 0.70%± 1.31%

Table 1: Synthetic experiment withn = 200, m = 5, and t = 500. Test error rates (RMSE) on clean
data (average± standard deviations) at different outlier probabilitiesp, 20 repeats. The bottom row shows the
relative gap obtained between theρ-relaxed loss of the rounded solution and the computed lower bound (16).

6 Experimental Results

In this section, we experimentally evaluate the preceding technical developments on synthetic and
real data for both regression and classification.

Regression:We first illustrate the behavior of the various regression techniques by a simple demon-
stration. In Figure 2 (a) and (b), we generate a cluster of linearly related datay = x in a small interval
about the origin, then add outliers. In Figure 2 (c) the target linear model is mixed with another more
dispersed model. We compare the behaviours of standard regression losses: least-squares (L2),L1

(L1), the Huber minimax loss (HuberM) [13, 17], and the robust Geman and McClure loss (GM) [2].
To these we compare the proposed relaxed method (ClipRelax), along with an alternating minimizer
of the clipped loss (ClipAlt). (In this problem the value ofγ has little effect, and is simply set to 0.1.)
Figure 2 demonstrates that the three convex losses, L2, L1 and HuberM, are dominated by outliers.
By contrast, ClipRelax successfully found the correct linear model in each case. Note that the robust
GM loss finds two different minima, corresponding to that of L2 and ClipRelax respectively, hence
it was not depicted in the plot. ClipAlt also gets trapped in local minima as expected: it finds the
correct model in Figure 2 (a) but incorrect models in Figure 2(b) and (c).

In our second synthetic regression experiment we consider larger problems. Here a target weight
vectorθ is drawn fromN(0, I), with inputsXi: sampled uniformly from[0, 1]m, m = 5. The
outputsyi are computed asyi = Xi:θ + ǫi, ǫi ∼ N(0, 1

4 ). We then seed the data set with outliers
by randomly re-sampling eachyi (andXi:) from N(0, 105) andN(0, 102) respectively, governed
by an outlier probabilityp. Here 200 of the 700 examples are randomly chosen as the training set
and the rest used for testing. We compare the same six methods: L2, L1, HuberM, GM, ClipAlt and
ClipRelax. The regularization parameterγ was set on a separate validation set. These experiments
are repeated 20 times and average (Huber loss) test errors onclean data are reported (with standard
deviations) in Table 1. Clearly, the outliers significantlyaffect the performance of least squares. In
this case the proposed relaxation performs comparably to the the non-convex GM loss. Interestingly,
this experiment shows that the relative gap between theρ-robust loss obtained by the proposed
method and the lower bound on the optimalρ-robust loss (16) remains remarkably small, indicating
our robust relaxation (almost) optimally minimizes the original non-convex clipped loss.
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Astronomy Cal-housing Pumadyn
Loss (1, 46, 46) (8, 100, 1000) (32, 500, 1000)

L2 2.484 804.5± 892.5 1.300× 105 ± 68.29
L1 0.170 0.325± 0.046 5.133± 0.056
HuberM 0.149 0.306± 0.050 5.377± 0.007
GM (local) 0.166 0.329± 0.048 4.399± 0.003
ClipAlt (local) 0.176 0.329± 0.048 4.075± 1× 10−6

ClipRelax 0.131 0.136± 0.155 4.075± 1× 10−6

Table 2: Error rates (average root mean squared error,± standard deviations) for the different regression
estimators on various data sets. The values of (m, n, tt) are indicated for each data set, wherem is the number
of features,n is the number of training examples, andtt the number of testing samples.

Loss p = 0.02 p = 0.05 p = 0.1 p = 0.2
Logit 4.88± 6.17 1.61± 7.23 17.67± 4.00 19.53± 2.91
1-tanh (local) 0.91± 1.93 2.30± 2.85 6.49± 4.32 13.96± 3.38
ClipAlt (local) 0.46± 0.64 1.51± 1.45 4.27± 2.57 11.32± 3.48
ClipRelax 0.26± 0.34 0.78± 0.78 2.49± 3.38 10.10± 8.21

Table 3:Misclassification error rates on clean data (average error,± standard deviations) on the Long-Servedio
problem [16] with increasing noise levelsp.

Finally, we investigated the behavior of the regression methods on a few real data sets. We chose
three data sets: astronomy data containing outliers from [23], and two UCI data sets, seeding the
the UCI data sets with outliers. Test results are reported onclean data to avoid skewing the reported
results. For UCI data, outliers were added by resamplingXi: andyi from N(0, 1000), with 5%
outliers. The regularization parameterγ was chosen through 10-fold cross validation on the training
set. Note that in real regression problems one needs to obtain an estimate for the the scale, given
by the true standard deviation of the noise in the data. Here we estimated the scale using themean
absolute deviation, a robust approach commonly used in the robust statistics literature [17]. In
Table 2, one can see that on both data sets, ClipRelax clearlyoutperformed the other methods. L2 is
clearly skewed by the outliers. Unsurprisingly, the classical robust loss functions, L1 and HuberM,
perform better than L2 in the presence of outliers, but not aswell as ClipRelax.

Classification: We investigated the well known case study from [16] and compared the proposed
method to logistic regression (i.e. the logit, or binomial deviance loss [12]) and the robust1− tanh
loss [19] in a classification context. Here 200 examples weredrawn from the target distribution with
label noise applied at various levels. The experiment was repeated 50 times to obtain average results
and standard deviations. Table 3 shows the test error performance in clean data of the different
methods. From these results one can conclude that ClipRelaxis more robust than standard logit
training. Training with logit loss is slightly better than thetanh loss algorithm in terms of training
loss, but not very significantly. It is interesting to see that when the prediction error is measured on
clean labels ClipRelax generalizes significantly better than the robust1−tanh loss. This implies that
the classification model produced by ClipRelax is closer to the true model despite of the presence of
outliers, demonstrating that the proposed method can be robust in a simple classification context.

7 Conclusion

We have proposed a robust estimation method for regression and classification based on a notion
of “loss-clipping”. Although the method is not as fast as standard convex training, it is scalable to
problems of moderate size. The key benefit is competitive (orbetter) estimation quality than the
state-of-the-art in robust estimation, while ensuring provable robustness to outliers and computable
bounds on the optimality gap. To the best of our knowledge these two properties have never been
previously achieved simultaneously. It would be interesting to investigate whether the techniques
developed can also be applied to other forms of robust estimators from the classical literature, includ-
ing GM, MM, L, R and S estimators [11, 13, 17, 23]. Connectionswith algorithmic stability [3] and
influence function based analysis [5, 6, 11] merit further investigation. Obtaining tighter bounds on
approximation quality that would enable a proof of consistency also remains an important challenge.
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Relaxed Clipping: A Global Training Method
for Robust Regression and Classification

(Supplementary Material)

Proof Details

For Proposition 1, recall the definitions from the main body of the paper (using the same equation
numbers as in the main body)

ℓc(y,x
⊤θ) = min(1, ℓ(y,x⊤θ)) (2)

ℓρ(y,x
⊤θ) = ρℓ(y,x⊤θ) + 1− ρ. (4)

Proposition 1 For any loss ℓ(y,x⊤θ), we have ℓc(y,x
⊤θ) = min0≤ρ≤1 ℓρ(y,x

⊤θ).

Proof of Proposition 1

Notice that d
dρ
ℓρ(y,x

⊤θ) = ℓ(y,x⊤θ) − 1. Hence if ℓ(y,x⊤θ) > 1, then ρ = 0 will be the

optimizer, obtaining a minimum objective value of 1. Otherwise if ℓ(y,x⊤θ) < 1, then ρ = 1 will
be the optimizer, obtaining a minimum objective value of ℓ(y,x⊤θ). If ℓ(y,x⊤θ) = 1, then all
feasible values of ρ yield the same objective value of 1.

To prove Lemma 1, recall the definition from the main body of the paper

ℓ∗(y, α) = sup
θ

αx⊤θ − ℓ(y,x⊤θ). (8)

Lemma 1 For any convex differentiable loss function ℓ(y,x⊤θ) such that the level sets of ℓα(v) =
αx⊤(θ − v) + ℓ(y,x⊤v) are bounded

ℓ(y,x⊤θ) = sup
α

αx⊤θ − ℓ∗(y, α). (9)

Proof of Lemma 1

First note that
sup
α

αx⊤θ − ℓ∗(y, α) = sup
α

αx⊤θ − sup
v

αx⊤v − ℓ(y,x⊤v) (18)

= sup
α

min
v

αx⊤(θ − v) + ℓ(y,x⊤v) (19)

by the definition (8).2 Since the inner objective has bounded level sets in v for all α by assumption,
strong maximin duality holds in this case. [4, pp.281-2]. Hence

(19) = min
v

sup
α

αx⊤(θ − v) + ℓ(y,x⊤v) (20)

Finally, notice that the inner supremum in (20) always achieves +∞ unless v = θ (or θ⊤x = 0),
therefore the outer minimization in v must select v = θ, yielding the final objective value ℓ(y,x⊤θ).

For the proof of Theorem 1, first recall the main optimization objective and its equivalents that were
formulated in the main body of the paper (using the same equation numbers as the main body)

min
θ

γ

2
‖θ‖22 +

n
∑

i=1

ℓc(yi, Xi:θ) (3)

= min
θ

min
0≤ρ≤1

γ

2
‖θ‖22 +

n
∑

i=1

ρiℓ(yi, Xi:θ) + 1− ρi (5)

= min
0≤ρ≤1

min
θ

ρ⊤ℓ(y, Xθ) + 1⊤(1− ρ) +
γ

2
‖θ‖2 (6)

2We are using the fact that the inner objective is convex and has bounded level sets to note that the inner
infimum can always be acheived, hence it can be re-expressed as a min.
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Theorem 1 Let K = XX⊤ denote the kernel matrix over input data. Then

(6) = min
− 1√

n+1
1≤ν≤ 1√

n+1
1, ν1=

1√
n+1

, ‖ν‖=1

sup
α

−(n+ 1) ν⊤T (α)ν (10)

where ν is an (n+ 1)× 1 vector, α is an n× 1 vector, and the matrix T (α) is given by

T (α) =
1

8γ

[

1⊤

I

]

∆(α)K∆(α) [1 I ] +
1

4

[

2(1⊤ℓ∗(y,α)− n) (ℓ∗(y,α) + 1)⊤

ℓ∗(y,α) + 1 0

]

. (11)

Proof of Theorem 1

First note that applying (9) from Lemma 1 to the main objective (6) yields

(6) = min
0≤ρ≤1

min
θ

ρ⊤ℓ(y, Xθ) + 1⊤(1− ρ) +
γ

2
‖θ‖2

= min
0≤ρ≤1

min
θ

sup
α
−ρ⊤ℓ∗(y,α) +α⊤∆(ρ)Xθ + 1⊤(1− ρ) +

γ

2
θ⊤θ (21)

where ℓ∗(y,α) denotes the n × 1 vector of dual values over training examples and ∆(ρ) denotes
putting ρ on the main diagonal of a square matrix.

Next, observe that the inner minimization and maximization can be exchanged since the inner objec-
tive has bounded level sets in θ, meaning that strong minmax duality holds [4, pp.281-2]. Making
the exchange then solving for the critical point in θ yields

θ = − 1

γ
X⊤∆(ρ)α (12)

(the objective is convex in θ). Substituting this result back into (21) yields

(6) = min
0≤ρ≤1

sup
α
−ρ⊤ℓ∗(y,α) + 1⊤(1− ρ)− 1

2γ
ρ⊤∆(α)XX⊤∆(α)ρ. (22)

From here, deriving the reformulated objective merely involves algebraic manipulation. Consider

R = −ρ⊤ℓ∗(y,α)− 1⊤(ρ− 1)− 1

2γ
ρ⊤∆(α)K∆(α)ρ (23)

= −
(

a+ ρ⊤b+ ρ⊤Cρ
)

(24)

where a = −n, b = ℓ∗(y,α) + 1, C = 1

2γ
∆(α)K∆(α), and K = XX⊤. Now let η = 2ρ − 1,

which implies ρ = 1

2
(η + 1). Therefore, one can rewrite the objective as

R = −
(

a+ 1

2
η⊤b+ 1

2
1⊤b+ 1

4
η⊤Cη + 1

2
η⊤C1+ 1

4
1⊤C1

)

(25)

= −
(

p+ η⊤s+ η⊤Sη
)

(26)

where p = a+ 1

2
1⊤b+ 1

4
1⊤C1, s = 1

2
b+ 1

2
C1, and S = 1

4
C. Now note that if we let

v =

[

1
η

]

(27)

the objective can be rewritten as

R = −v⊤T (α)v (28)

where

T (α) =

[

p 1

2
s⊤

1

2
s S

]

(29)

=
1

4

[

1⊤

I

]

C [ 1 I ] +
1

4

[

4a+ 21⊤b b⊤

b 0

]

(30)

= (11).
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Finally, introduce the rescaling ν = 1√
n+1

v, so that the objective becomes

R = −(n+ 1) ν⊤T (α)ν (31)

which gives the objective used in (10).

Next, to derive the transformed constraints, notice that − 1√
n+1

1 ≤ ν ≤ 1√
n+1

1 and ν1 = 1√
n+1

in (10) simply follow from the original constraints 0 ≤ ρ ≤ 1 in (6) plus the additional constraint
v1 = 1 introduced in (27), via the substitution chain ρ 7→ η 7→ v 7→ ν given above.

The introduction of the final constraint ‖ν‖ = 1 requires an additional argument. Recall from the
proof of Proposition 1 that the solution to (6) always has the property that ρ ∈ {0, 1}n, hence adding
this constraint to (6) does not change its optimal objective value. Given the above substitutions, im-
posing this discreteness constraint on ρ is equivalent to asserting νi ∈ {± 1√

n+1
} for all i. However,

given the box constraints that have already been established on ν, this reduces to enforcing ‖ν‖ = 1.

Before proving Theorem 2 we need to establish some useful relationships between the translated
versions of the vectors and matrices introduced above.

Lemma 2 Let M∗ denote the matrix that participates in the optimal solution of (16). Consider the
rescaling M = (n + 1)M∗. If we define m = M:1 (i.e. the first column of M ), and m̂ = m2:n+1

(i.e. the subvector of m such that m⊤ = [1 m̂⊤]), then from the feasibility constraints M∗ � 0 and
δ(M∗) = 1

n+1
1 it follows that M � 0, δ(M) = 1, −1 ≤ Mij ≤ 1, m1 = 1, and −1 ≤ mi ≤ 1

for all i, j.

From the definitions M∗ =
∑k

j=1
σ∗jν

∗
jν
∗
j
⊤ and ν̄∗ =

∑k

j=1
σ∗jν

∗
j given at the end of Section 4,

and the fact that M∗ satisfies the constraints in (16), if one defines vj = 1

ν∗
1j

ν∗j and σj = σ∗j , it

follows that v1j = 1, σj ≥ 0,
∑

j σj = 1, and therefore M =
∑

j σjvjv
⊤
j .

We will also use the definitions ηj = v2:n+1,j and η̄ =
∑

j σjηj , so that vj = [1 η⊤j ]
⊤, as in (27).

Finally, consider the definition of the rounded solution ρ̂ = 1

2
(1+ν̄∗2:n+1

√
n+ 1) given at the end of

Section 4. Furthermore, define ρj =
1

2
(1+ηj) and ρ̄ =

∑

j σjρj . From the collection of definitions

and properties above, one can determine that ρ̂ = 1

2
(1 + ν̄∗2:n+1

√
n+ 1) = 1

2
(1 + m2:n+1) =

1

2
(1+ m̂) = 1

2
(1+ η̄) = ρ̄. It also follows that 0 ≤ ρ̂i ≤ 1 for all i.

Theorem 2 (Part 1) R̂(ρ̂,α∗) ≤ 2R(ρ∗,θ∗) ≤ 2n, where R̂(ρ̂,α∗) is the value of (10) at the
rounded solution ρ̂ = 1

2
(1+ ν̄∗2:n+1

√
n+ 1).

Proof of Theorem 2 (Part 1)

Let (α∗,M∗) denote the optimal solution to the relaxation (15) and let (ρ∗,θ∗) denote the optimal
solution to the target problem (6). Consider the rescaling M = (n + 1)M∗ discussed in Lemma 2
above, so that M � 0 and δ(M) = 1. Define

R̂(M,α∗) = −tr(MT (α∗)) (32)

which gives the value of the relaxed objective achieved by (M∗,α∗) in (15) where M∗ = M/(n+
1). Recall that R(ρ∗,θ∗) denotes the optimum objective value obtained in (6). It then immediately
follows that

R̂(M,α∗) ≤ R(ρ∗,θ∗) ≤ n. (33)

since the optimal relaxed objective value is a lower bound by construction (13), and the second
inequality follows trivially from the observation that R(0,0) = n. Our goal is to analyze the relaxed
objective R̂(M,α∗) at the saddle point (M,α∗) to bound the effects of rounding the solution to ρ̂.

We need some preliminary definitions to make things clearer. From the definition given in (11)
rewrite T (α) as

T (α) = D(α) +G(α)− P (34)
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where

D(α) =
1

4

[

21⊤ℓ∗(y,α) ℓ∗(y,α)⊤

ℓ∗(y,α) 0

]

(35)

G(α) =
1

4

[

1⊤

I

]

C(α) [ 1 I ] (36)

C(α) =
1

2γ
∆(α)K∆(α) (37)

P =
1

4

[

2n −1⊤
−1 0

]

. (38)

One can then obtain a straightforward decompostion

R̂(M,α∗) = −tr(MT (α∗)) (39)

= tr (M(−D(α∗)−G(α∗) + P )) (40)

= tr (M(−D(α∗)− 2G(α∗))) + tr(MG(α∗)) + tr(MP ). (41)

They key property of this decomposition is that each term must be nonnegative. That is, note that

tr(MP ) ≥ 0 (42)

tr(MG(α∗)) ≥ 0 (43)

since, in the first case, M11 = 1 and −1 ≤ Mij ≤ 1, and in the second case, G(α∗) � 0. Also, by
Lemma 3 below we have

tr (M(−D(α∗)− 2G(α∗))) ≥ 0. (44)

Therefore, since each term in (41) is nonnegative and their sum is at most R(ρ∗,θ∗) (established in
(33)), it must follow that each individual term in (41) is upper bounded by R(ρ∗,θ∗). In particular

tr(MG(α∗)) ≤ R(ρ∗,θ∗). (45)

Finally, to bound the objective value obtained by ρ̂, we will work instead with its translation m =
[1 (2ρ̂− 1)⊤] = M:1, defined in Lemma 2 above. In particular, using the definition (32) let

R̂(ρ̂,α∗) = R̂(mm⊤,α∗) = −m⊤T (α∗)m (46)

where m = [1 (2ρ̂ − 1)⊤] = M:1 (the latter equality follows from Lemma 2 above). Note that by
the special structure of D(α∗) and P we have

tr(MD(α∗)) = m⊤D(α∗)m (47)

tr(MP ) = m⊤Pm (48)

Also since m⊤T (α∗)m ≤ tr(MT (α∗)) by the optimality of M∗ = M/(n+1) (see (13)) we must
also have

0 ≤ m⊤G(α∗)m ≤ tr(M∗G(α∗)) ≤ R(ρ∗,θ∗). (49)

From (47)–(49) we conclude

R̂(ρ̂,α∗) = −m⊤T (α∗)m (50)

= −m⊤ (D(α∗) +G(α∗)− P )m (51)

≤ −m⊤ (D(α∗)− P )m (52)

= −tr (M(D(α∗)− P )) (53)

= −tr (M(T (α∗)−G(α∗))) (54)

= −tr(M(T (α∗)) + tr(MG(α∗)) (55)

≤ 2R(ρ∗,θ∗). (56)
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Lemma 3 tr (M(−D(α∗)− 2G(α∗))) ≥ 0.

Proof of Lemma 3

The proof of this lemma uses the definitions and properties from Lemma 2 above. Note that by the
special structure of D(α∗) and G(α∗) we have

tr(M(D(α∗) + 2G(α∗)) (57)

=
∑

j

σjv
⊤
j (D(α∗) + 2G(α∗))vj (58)

= 1

2
1⊤ℓ∗(y,α∗) + 1

2
η̄⊤ℓ∗(y,α∗) + 1

2
1⊤C(α∗)1+ η̄⊤C(α∗)1+ 1

2

∑

j

σjη
⊤
jC(α∗)ηj (59)

= ρ̄⊤ℓ∗(y,α∗) + 2
∑

j

σjρ
⊤
j C(α∗)ρj (60)

= ρ̄⊤ℓ∗(y,α∗) +
1

γ

∑

j

σjρ
⊤
j ∆(α∗)K∆(α∗)ρj (61)

= ρ̄⊤ℓ∗(y,α∗) +
1

γ

∑

j

σjα
∗⊤∆(ρj)K∆(ρj)α

∗ (62)

= ρ̄⊤ℓ∗(y,α∗) +
1

γ
α∗⊤K̄α∗ (63)

where

K̄ =
∑

j

σj∆(ρj)K∆(ρj) (64)

Note that K̄ � 0 since σj ≥ 0.

It remains to show (63) is nonpositive. Recall that α∗ was assumed to maximize (14), which means

−ρ̄⊤ℓ∗(y,α∗)− 1

2γ
α∗⊤K̄α∗ (65)

= max
α
−ρ̄⊤ℓ∗(y,α)− 1

2γ
α⊤K̄α (66)

= max
α

min
θ

ρ̄⊤ℓ(y, Xθ)−α⊤∆(ρ̄)Xθ − 1

2γ
α⊤K̄α (67)

= min
θ

max
α

ρ̄⊤ℓ(y, Xθ)−α⊤∆(ρ̄)Xθ − 1

2γ
α⊤K̄α (68)

= min
θ

ρ̄⊤ℓ(y, Xθ) +
γ

2
θ⊤X⊤∆(ρ̄)K̄+∆(ρ̄)Xθ (69)

≥ 0

where we have used the fact that ρ̂ ≥ 0 and

−ρ̄⊤ℓ∗(y,α) = min
θ

ρ̄⊤ℓ(y, Xθ)−α⊤∆(ρ̄)Xθ (70)

K̄α∗ = −γ∆(ρ̄)Xθ∗. (71)

Unfortunately, (65) is not quite the same as (63) (note the γ verus 2γ difference in the denominators).
However, given the above results for (65) we can now return to (63) and observe

−ρ̄⊤ℓ∗(y,α∗)− 1

γ
α∗⊤K̄α∗ (72)

= −ρ̄⊤ℓ∗(y,α∗) +α∗⊤∆(ρ̄)Xθ∗ by (71) (73)

= ρ̄⊤ℓ(y, Xθ∗)−α∗⊤∆(ρ̄)Xθ∗ +α∗⊤∆(ρ̄)Xθ∗ by (70) (74)

= ρ̄⊤ℓ(y, Xθ∗) (75)

≥ 0.
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Theorem 2 (Part 2) If the unclipped loss ℓ(y, ŷ) is b-Lipschitz in ŷ for b < ∞ and either y or K
remains bounded, then there exists a c <∞ such that R(ρ̂, θ̂) ≤ c.

Proof of Theorem 2 (Part 2)

For simplicity we will show the proof for the case when ℓ(y, ŷ) is strictly convex in ŷ. Recall that
(M∗,α∗) solves the saddle point problem (14). Therefore, given M∗, the resulting objective must
be at equilibrium in α∗, hence

∇αR̂(M∗,α∗) = −∆(ρ̂)ℓ∗(y,α∗)′ − 1

γ
K̄α∗ = 0 (76)

where ℓ∗(y,α∗)′ denotes the vector of derivatives of ℓ∗(yi, α∗i )
′ with respect to αi at α∗i , and K̄

is defined in (64). Therefore we have that −∆(ρ̂)ℓ∗(y,α∗)′ = K̄α∗/γ. (The strict convexity of
ℓ(y, ŷ) in ŷ ensures that ℓ∗(y, α) is smooth in α, hence the derivative exists at α∗ [22, Section 26].)

Now consider the definition

b∗ = −∆(ρ̂)ℓ∗(y,α∗)′ =
1

γ
K̄α∗. (77)

Note that under the assumptions of the theorem, there must exist a constant c < ∞ such that
‖b∗‖∞ ≤ c. We prove this fact in two cases. First, consider the case where y is bounded.
Since ℓ(y, ŷ) is b-Lipschitz in ŷ by assumption, it follows that ‖α∗‖∞ ≤ b [22, Corollary 13.3.3].
Since both y and α∗ are bounded, ℓ∗(y,α∗)′ must be bounded (since it was determined above
that ℓ∗(y, α) is smooth in α). Finally, 0 ≤ ρ̂ ≤ 1 was established in Lemma 2 above; therefore
b∗ is bounded. Second, consider the case where K is bounded. Then K̄ must be bounded, since
both σj and ρj are bounded. Finally, since α∗ is bounded (as established above) it follows that
b∗ = K̄α∗/γ is bounded.

Finally, consider the objective value obtained by fixing ρ̂ and re-optimizing θ

R(ρ̂, θ̂) = min
θ

R(ρ̂,θ) (78)

= min
θ

ρ̂⊤ℓ(y, Xθ) +
γ

2
‖θ‖2 + 1⊤(1− ρ̂) (79)

= max
‖α‖∞≤b

−ρ̂⊤ℓ∗(y,α)− 1

2γ
α⊤∆(ρ̂)K∆(ρ̂)α+ 1⊤(1− ρ̂) (80)

≤ max
‖α‖∞≤b

−ρ̂⊤ℓ∗(y,α) + 1⊤(1− ρ̂) (81)

≤ max
‖α‖∞≤b

−ρ̂⊤ℓ∗(y,α∗) + (α−α∗)⊤b∗ + 1⊤(1− ρ̂) (82)

= max
‖α‖∞≤b

−ρ̂⊤ℓ∗(y,α∗)− 1

γ
α∗⊤K̄α∗ +α⊤b∗ + 1⊤(1− ρ̂) (83)

Note that by Lemma 3 and the observation after (44) we have that the two first terms in (83) are
bounded by 0 ≤ −ρ̂⊤ℓ∗(y,α∗)− 1

γ
α∗⊤K̄α∗ ≤ R(ρ∗,θ∗). Therefore

(83) ≤ max
‖α‖∞≤b

R(ρ∗,θ∗) +α⊤b∗ + 1⊤(1− ρ̂) (84)

≤ max
‖α‖∞≤b

2n+α⊤b∗ (85)

Since it was established above that b∗ is bounded, it follows that R(ρ̂, θ̂) is bounded.
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