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Abstract

Robust regression and classification are often thoughtofoine non-convex loss
functions that prevent scalable, global training. Howggeich a view neglects
the possibility of reformulated training methods that caid/practically solvable
alternatives. A natural way to make a loss function more sola outliers is
to truncate loss values that exceed a maximum threshold. aveudstrate that
a relaxation of this form of “loss clipping” can be made glipaolvable and
applicable to any standard loss while guaranteeing robastagainst outliers. We
present a generic procedure that can be applied to stanossdunctions and
demonstrate improved robustness in regression and otasiifi problems.

1 Introduction

Robust statistics is a well established field that analyzesensitivity of common estimators to out-
liers and provides alternative estimators that achieveorga robustness [11, 13, 17, 23]. Outliers
are understood to be observations that have been corruptegdrectly measured, mis-recorded,
drawn under different conditions than those intended, aatgpical as to require separate model-
ing. The main goal of classical robust statistics is to maktarators invariant, or nearly invariant,
to arbitrary changes made to a non-trivial fraction of the sample data—a&tbat is equally rele-
vant to machine learning research given that data sets tene aédllected with limited or no quality
control, making outliers ubiquitous. Unfortunately, thats-of-the-art in robust statistics relies on
non-convex training criteria that have yet to yield effigiglobal solution methods [13, 17, 23].

Although many robust regression methods have been proposéuke classical literatureM-
estimatorscontinue to be a dominant approach [13, 17]. These corresjuotine standard machine
learning approach of minimizing a sum of prediction errangler a given loss function (assuming
a fixed scaling). M-estimation is reasonably well underdtamalytically tractable, and provides
a simple framework for trading off between robustness againtliers and data efficiency on in-
liers [13, 17]. Unfortunately, robustness in this conteatnes with a cost: when minimizing a
convex loss, even a single data point can dominate the reBdit is,any (non-constant) convex
loss function exhibits necessarilymboundedsensitivity to even a single outli¢t7, §5.4.1]. Al-
though unbounded sensitivity can obviously be mitigatedngyosing prior bounds on the domain
and range of the data [5, 6], such is not always possible ictipe Instead, the classical literature
achieves bounded outlier sensitivity by considermagescendingpss functions (see [132.2] for a
definition), or more restrictivei\houndedoss functions, both of which are inherently non-convex.
Robust regression has also been extensively investigatahputer vision [2, 26], where a similar
conclusion has been reached that bounded loss functiongeaessary to counteract the types of
outliers created by edge discontinuities, multiple maticand specularities in image data.

Forclassificatiorthe story is similar. The attempt to avoid outlier sendiyitias led many to propose
bounded loss functions [8, 15, 18, 19, 25] to replace thedstahconvex, unbounded losses deployed
in support vector machines and boosting [9] respectiveiyfatt, [16] has shown that minimizing



anyconvex margin loss cannot achieve robustness to randonasegiication noise. The conclusion
reached in the classification literature, as in the regoed#erature, is therefore that non-convexity
is necessaryo ensure robustness against outliers—creating an appditemma: one can achieve

global training via convexity or outlier robustness via hdadness, but not both.

In this paper we present a counterpoint to these pessinsticlusions. In particular, we present a
general model for bounding any convex loss function, viasess of “loss clipping”, that ensures
bounded sensitivity to outliers. Although the resultindimization problem is not, by itself, con-
vex, we demonstrate an efficient convex relaxation and riogngtocedure that guarantees bounded
response to data—a guarantee that cannot be establishedyfopavex loss minimization on its
own. The approach we propose is generic and can be appliet/tstandard loss function, be it
for regression or classification. Our work is inspired by anber of studies that have investigated
robust estimators in computer vision and machine learr@¢, 27, 30]. However, these previ-
ous attempts were either hampered by local optimizatiorestricted to special cases; none had
guarantees of global training and outlier insensitivity.

Before proceeding it is important to realize that there asmyralternative conceptions of “robust-
ness” in the literature that do not correspond to the notierawe investigating. For example, work on
“robust optimization” [28, 29] considers minimizing the igbcase loss achieved given prespecified
bounds on the maximum data deviation that will be considefdithough interesting, these results
do not directly bear on the question at hand since we eXplidd not bound the magnitude of the
outliers (i.e. the degree of leverage [33,1], nor the size of response deviations). Another notion
of robustness is algorithmic stability under leave-onepauturbation [3]. Although loosely related,
algorithmic stability addresses the analysis of givendeay procedures rather than describing how
a stable algorithm might be generally achieved in the peseharbitrary outliers. We also do not
focus on asymptotic or infinitesimal notions from robustistas, such as influence functions [11],
nor impose boundedness assumptions on the domain and riaihgedata or the predictor [5, 6].

2 Background

We consider the standard supervised setting where oneaB givinput matrixX and output targets
y, with the goal of learning a predictar: R™ — R. Each row ofX gives the feature representation
for one training example, denotey;., with corresponding targef;. We will assume the predictor
can be written as a generalized linear model; that is, théigtiens are given by); = f(X,.0) for

a fixed transfer functiorf (possibly identity) and a vector of parametérsFor training, we will
consider the standatfd, regularized loss minimization problem

7y . A 7y .
min [|6)|3 + Y L(yi,9:) = min[6]3+ > Ly, f(Xi.6) &
i=1 =1

where L denotes the loss function, is the regularization constant, anddenotes the number of
training examples. Normally the loss functidris chosen to be convex thso that the minimization
problem can be solved efficiently. Although convexity is omjant for computational tractability, it
has the undesired side-effect of causing unbounded osdigsitivity, as mentioned. Obviously, the
severity of the problem will range from minimal to extremgdading on the nature of the distribu-
tion over(x,y). Nevertheless, our goal in this paper will be to eliminatbaunded sensitivity for
convex loss functions while retaining a scalable compoieaii approach.

Standard Convex Loss Functions: Our general construction applies to arbitrary convex lssse
but we will demonstrate our methods on standard loss funsteamployed in regression and clas-
sification. A standard example Bregman divergencesvhich are defined by taking a strongly
convex differentiable potentiab then taking the difference between the potential and it$ firs
order Taylor approximation, obtaining a 108s (9|ly) = ®(9) — ®(y) — ¢(v)(§ — y), where
o(y) = ’(y) [1, 14]. Several natural loss functions can be defined this imaluding least squares
La(9|ly) = (9 — v)?/2, using the potentiab(y) = 32 /2, and forward KL-divergencé ¢ (9||y) =
g2 + (1 - §)In =%, using the potentiab(y) = yIny + (1 — y)In(1 —y) for 0 < y < 1.

LAl results in this paper extend to reproducing kernel Hilbert spaces eiagjpresenter theorem [24], but
for clarity of presentation we will use an explicit feature representakiceven though it is not a requirement.



A related construction imatching lossefl4], which are determined by taking a strictly increasing
differentiable transfer functioyi to be used in prediction vig = f(z) wherez = x' 6. Then, given
atransferf, aloss can be defined iyq (2| 2) = [ f(¢) — f(2) d( = F(2) — F(z) — f(2)(2 — 2)
such thatF" satisfiesF’(z) = f(z). By definition, matching losses are also Bregman diverggnce
sinceF is differentiable and the assumptions pimply that F' is strongly convex. These two loss
constructions are related by the equallty (y||j) = Lr(Z||z) whereF is the Legendre-Fenchel
conjugate ofb [4, §3.3], 2 = f~1(y) = ¢(y) andz = f~1(9) = ¢(9) [1, 14]. For example, the
post-prediction KL-divergence ln% +(1-9y)n }:—Z is equal to the convex pre-prediction loss
Lr(2]|z) =In(e® +1) —In(e* + 1) — o(2)(2 — z) viathe transfe) = o(2) = (1 +e~*)~L. Such
losses are prevalent in regression and probabilisticifilzetion settings.

For discrete classification it is also natural to work wittoatinuous pre-prediction spaé¢e= x ' 9,
recovering discrete post-predictiofiss {—1,1} via a step transfej = sign(z). Although a step
transfer does not admit the matching loss constructionrragatemargin losscan be obtained by
taking a nonincreasing functiansuch thatlim,,, .~ [(m) = 0, then definingL;(y,y) = (yy).
Hereyy is known as theclassification margin Standard examples include misclassification loss,
Li(9,y) = 1yg<0), support vector machine (hinge) loss;(7,y) = max(0,1 — yg), binomial
deviance lossL;(7,y) = In(1 + e~¥¥) [12], and Adaboost losd,; (7, y) = e~ [9]. If the margin
loss is furthermore chosen to be convex, efficient mininnratan be attained.

To unify our presentation below we will simply denote allsdsinctions by/(y,x"8), with the
understanding that(y,x'0) = Lg(x'8|y) if the loss is Bregman divergence on potential
((y,x"0) = Lp(x"0||f(y)) if the loss is a matching loss with transfér and ¢(y,x"0) =
I(yx"0) if the loss is a margin loss with margin functiénin each case, the loss is convex in the
parameter®. Note that by their very convexity these losses cannot bestolall admit unbounded
sensitivity to a single outlier (the same is also trueffigrioss when applied to regression).

Bounded loss functions: As observed, non-convex loss functions are necessary taoduthie ef-
fects of outliers [17]. Black and Rangarajan [2] provide afuscatalog of bounded and redescend-
ing loss functions for robust regression, of which a repnestere example is th&eman and Mc-
Clure lossL(y,§) = (§ — y)?/(7 + (§ — y)?) for T > 0; see Figure 1. Unfortunately, as Figure 1
makes plain, boundedness implies non-convexity (for amycanstant function). It therefore ap-
pears that bounded loss functions achieve robustness@&tshef losing global training guarantees.
Our goal is to show that robustness and efficient globalitrgiare not mutually exclusive. Despite
extensive research on regression and classification, almosork we are aware of (save perhaps
[30] in a limited way) attempts to reconcile robustness ttieis with global training algorithms.

3 Loss Clipping

Adapting the ideas of [2, 27, 30], given any convex l6gs x ' 8) define theclipped lossas
le(y,x"0) = min(L,((y,x"9)). @)

Figure 1 demonstrates loss clipping for some standard loggibns. Given a clipped loss, a robust
form of training problem (1) can be written as

min 2 16]3+ D Ce(y:, Xi0). @3)
i=1

Clearly such a training objective bounds the influence of @my training example on the final re-
sult. Unfortunately, the formulation (3) is not computatidly convenient because the optimization
problem it poses is neither convex nor smooth. To make pssgoa the computational question
we exploit a key observation: for any loss function, its esponding clipped loss can be indirectly
expressed by an auxiliary optimization of a smooth objectif/the original loss function itself was
smooth). That is, given a loggy, x ' ) define the correspondingrelaxed losgo be

‘ep(ya XTG) = pg(y7 XTO) +1- P (4)

for 0 < p < 1; see Figure 1. This construction is an instance of an oytliecess as described
in [2] and is motivated by a special case hinge-loss contmuoriginally proposed in [30]. The
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Figure 1: Comparing standard losses (dashed) with corresponding “clippes&dasolid) po-relaxed losses
(dotted), and non-convex robust losses (dash-dottexf): squared loss (dashed), clipped (solid)3-relaxed
(dotted), robust Geman and McClure loss [2] (dash-doti@dhter: SVM hinge loss (dashed), clipped [27, 30]
(solid), 1/2-relaxed (upper dotted), robust- tanh(y7) loss [19] (dash-dottedRight: Adaboost exponential
loss (dashed), clipped (solid)/2-relaxed (upper dotted), robukt- tanh(yg) loss [19] (dash-dotted).

p-relaxation provides a convenient characterization of eipped loss, since it can be shown in
general that minimizing a correspondipgelaxed loss is equivalent to minimizing the clipped loss.

Proposition 1 For any loss functio(y, x " 8), we have/.(y, x " 0) = ming<,<1 {,(y,x' ).

(The proof is straightforward, but it is given in the supprthfor completeness.) Proposition 1
now allows us to reformulate (3) as a smooth optimizatiomgishe fact that the optimization is
completely separable between thevariables:

n
— min min L9|2 Ol X Y
(3) = mn orgnpngll 9 16115 + ; pil(yi, Xi:0) + 1 — p;. (5)

Unfortunately, the resulting problem is not jointly convexp and@ even though it is convex in each
given the other. Such marginal convexity might suggest a@inadlternating minimization strategy,
however the proof of Proposition 1 shows that each mininorabver p will result in p; = 0 for
losses greater than 1, pr = 1 for losses less than 1. Such discrete assignments immigdiateses
the search to get trapped in local minima, requiring a mopaisticated approach to be considered.

4 A Convex Relaxation

One contribution of this paper is to derive an exact refoatiah of (5) that admits a convex re-
laxation and rounding scheme that retain bounded semgitwioutliers. We first show how the

relaxation can be efficiently solved by a scalable algorithat eliminates any need for semidefinite
programming, then provide a guarantee of bounded outliesitéty in Section 5.

Reformulation: To ease the notational burden, let us rewrite (5) in mategtor form

(5) = olgnglgllmem R(p,0) (6)
where  R(p,0) = 2[0]>+p "y, X6) +17(1 - p). ™

Here1 denotes the vector of alls, and it is understood théty, X 0) refers to then x 1 vector

of individual training losses. Given thé(-, -) is convex in its second argument we will be able to
exploit Fenchel duality to re-express the min-min form (@pia min-max form that will serve as
the basis for the subsequent relaxation. In particularsicen the definition

*(y,a) = sup ax'@—L(y,x'8). (8)
0

By construction,£*(y, «) is guaranteed to be convex insince it is a pointwise maximum over
linear functions [453.2].

Lemma 1 For any convex differentiable loss functiéfy, x " @) such that the level sets f (v) =
ax' (0 —v) + ((y,x " v) are bounded, we have

Uy, x"0) = sup ax'0 —(*(y,q). C)]



(This is a standard result, but a proof is given in the supplanfor completeness.) For standard
losses’*(y, ) can be computed explicitly [1, 7]. For examplef(f,x"0) = (y — x'6)2/2 then
*(y,a) = a?/2+ ay. Now let A(a) denote puttingx in the main diagonal of a square matrix and
let£*(y, ) refer to then x 1 vector of dual values over training examples. We can thenessthe
main reformulation as follows.

Theorem 1 Let K = X X T denote the kernel matrix over input data. Then

(6) = min sup —(n+1) v T(a)y (10)
_\/ﬁlﬁufx/ﬁle:\/ﬁJ‘UH:l o

wherev is an(n + 1) x 1 variable,acis ann x 1 variable, and the matri€’(«) is given by

T() = ¢ {ﬂ]A(a)KA(a)[l 14+ 22 EG e n @+ T

:@ I 4 C(y,a) +1 - (11)

The proof consists in first dualiziryin (6) via Lemma 1, which establishes the key relationship
6 = —%XTA(p)a. (12)

The remainder of the proof is merely algebra: given a sautido (10), the corresponding solution
p to (6) can be recovered via= %(1 + va.11v/n + 1). See the supplement for full details.

Note that the formulation (10) given in Theorem 1 is exact. dgproximation to the problem (6)
has been introduced to this point. Unfortunately, as int{@,formulation (10) is still not directly
amenable to an efficient algorithm: the objective is condawe, conveniently, but it is not convex
in v. The advantage attained by (10) however is that we can nowedan effective relaxation.

Relaxation: Let (M) denote the main diagonal vector of the square mauixand let t{ /)
denote the trace. Consider the following relaxation

(10) > min sup —(n+ 1) r((MT(«x)) (13)
M>0,6(M)=7211 «

= sup min —(n+1)tr(MT(cx)) (14)
a 1\/150,5(]\/[):%“1
where we used strong minimax duality to obtain (14) from {(&3)ce the constraint region oW
is compact and the inner objective is concave and convex and M respectively, Sion’s mini-
max theorem is applicable [2237]. Next enforce the constraif{ /) = —1-1 with a Lagrange

n+1
multiplier A:
p— 3 —_ T p—
(14) = ¢qu}>)\ Mzol,rtlrl(rzl\@:l (n+1)tr(MT(a)) + X (1 —(n+1)6(M)) (15)
— g Ty _
= Zug Al-(n+1) Mtorﬁr%\%:ltr [M (T(ax) + A(X)) ] (16)

This relaxed formulation (16) is now amenable to efficiemtogll optimization: The outer problem
is jointly concave ina and A, since it is a pointwise minimum of concave functions. Theein
optimization with respect td/ can now be simplified by exploiting the well known result [21]

i U[M(T@)+AN) | = max vT[T@) T AN A

Therefore, giverax andA, the inner problem is solved by the maximum eigenvectdr(@f)+A(\).

Optimization Procedure: Given training data, an outer maximization can be execuiety over

«a and to maximize (16). This outer problem is concavedirand A hence no local maxima exist.
Although the outer problem is not smooth, many effectivehods exist for nonsmooth convex
optimization [20, 31]. Each outer function evaluation (asubgradient calculation) requires the
inner problem (17) to be solved. Fortunately, a simple pawethod [10] can be used to efficiently
compute a maximum eigenvector solution to the inner prolgnonly performing matrix-vector
multiplications on the individual factors of the two low kamatrices making uff’(«), meaning the
inner problem can be solved without ever forming a laigen matrix T'(«). Thatis, if X isn x m
each inner iteration requires at mastnm) computation.



Solution Recovery: At a solution, the values of (13)—(16) are equal, and all gl®a lower bound
on the original objective (6). Ideally, given a maximizer for (14) one would recover a prediction
model 8 via (12). However, (12) requires to be acquired first, which could be obtained from a
v that solves (10). Unfortunately, the relaxation step takefi3) means that the solution to (14)
(recovered from the that solves (17)) does not necessarily solve (10): the isokettiony in (17)
might not be unique. If it is unique, we immediately have tiptiroal solution to (10) hence an
exact solution to the original problem (6). More typicalhgwever, the maximum eigenvector is
not unique afa*, A*), meaning that a gap has been introduced—this occurs if agdfdhk inner
solutionM* to (14) is not rank 1. In such cases we need to use a roundirgqhuce to recover an
effective rank 1 approximation.

Rounding Method: Given the inner maximizeta*, \*) of (16) we do not need to explicitly
construct the outer minimizev/*. Instead, it suffices to construct a basis fdi* by collecting the

set of maximum eigenvectol§ = {1, ..., o} of T(a*) + A(X*) in (17) (note that: is usually
much smaller than + 1). A solution can then be indirectly obtained by solving a Bsemidefinite

program to recover & x k matrix C* that satisfie<"* = 0 andé(VC*V") = —11. Note that

C* = Q*>*Q* " for some orthonorma)* and diagonakL* whereo’ > 0 andZ i_10; =1,hence

= V*3*V*T suchthat’™* = {v},....v}} = VQ* GivenV* andx* a rounded solution fop
can be recovered simply by computifiy = 23 L J % then settingg = 3 (1+ 5, .,Vn +1).
From the constraints o™ it follows that ﬁ <vr < \/7 p; < 1Vj (details in
the supplement). Finally, instead of relying on (12) to rexahe model paramete&sfrom p, we
explicitly minimize thep-relaxed loss (7) givep to recoverd via 6 = arg ming R(p, 0).

Although the rounding step has introduced an approximati@establish that bounded outlier sen-
sitivity can still be retained, even after the above relexeand rounding processes, and demonstrate
experimentally that the gap from optimality is generally o large.

5 Bounding Outlier Sensitivity

Thus far we have proposed a robust training objective, deavian efficient convex relaxation that
establishes a lower bound, and proposed a simple rounditigoochéor recovering an approximate
solution. The question remains as to whether the approris@ttion retains bounded sensitivity
to outliers (or to leverage points [281.1]). Let(p*, 8") denote the joint minimizer of (6) and let

(p, 9) denote the approximate solution obtained from the proeedhove.

First, observe that an upper bound on the approximatiom eaio be easily computed by subtract-
ing the lower bound value obtained in (14)—(16) frddp, 9). Our experiments below show that
reasonable gaps are obtained in this way. Nevertheless aule gtill like to guarantee that the gap
stays bounded in the presence of arbitrary outliers anddgespoints.

Theorem 2 R(p,a*) < 2R(p*,6") < 2n, whereR(p, ") is the value of (10) at the rounded
solutionp. Furthermore, if the unchpped lodgy, ) is b- L|psch|tz ing for b < oo and eithery or

K remains bounded, then there exists & oo such thatR(p, 8) < c.

That is, thep-relaxed loss obtained by the rounded solution stays balimdthis case, even when
accounting for the proposed relaxation and rounding praeednd data perturbation. The complete
proof takes some space, however the key steps are to show(thatl )tr(M*T'(a*)) < R(p*,0"),

and then use this to establish thp, a*) < 2R(p*,0") andR(p, B) < ¢, respectively (full details

in the supplement). Thusp, ) will not chase outliers or leverage points arbitrarily irstkituation.
Note that the proposed method cannot be characterized hbignining a fixed convex loss. That is,
the tightest convex upper bound for any convex loss fundi@mply given by the function itself,
which corresponds to setting = 1 for every training example. By contrast, our approximation
method does not choose a constant 1 for every training example, but insteadaptivelychooses

p; values, closer ta for inliers and closer t0 for outliers. The resulting upper bound on the clipped
loss (hence on the misclassification error in the margindasg) is much tighter than that achieved
by simply minimizing a convex loss. This outcome is dematstt clearly in our experiments.
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Figure 2:Comparison on three demonstration data sets.

outlier probability
Loss p=20.0 p=20.2 p=04
L2 2.5340.0015 25.11 £13.78  19.04 + 15.62
L1 2.5340.0015 26.52 +£16.09  27.14 +22.40
HuberM 2.52+0.0015 12.02 £5.33 12.30 £ 5.87
GM (local) 2.53+00015 2.60+0.10 2.62+0.09
ClipAlt (local) | 2.53+0.0019  2.75 +0.27 2.81 +0.27
ClipRelax 2.53+0.0016  2.68+0.12 2.53+ 087
OptimGap 1.65%+0.31% 0.10%+0.22% 0.70%=+ 1.31%

5, andt = 500. Test error rates (RMSE) on clean

data (average- standard deviations) at different outlier probabilitie20 repeats. The bottom row shows the
relative gap obtained between theelaxed loss of the rounded solution and the computed lower bound (16)

6 Experimental Results

In this section, we experimentally evaluate the precedichnical developments on synthetic and
real data for both regression and classification.

Regression:We first illustrate the behavior of the various regressiehméques by a simple demon-
stration. In Figure 2 (a) and (b), we generate a cluster e#lily related data = « in a small interval
about the origin, then add outliers. In Figure 2 (c) the teligear model is mixed with another more
dispersed model. We compare the behaviours of standarelssagn losses: least-squares (L2),
(L1), the Huber minimax loss (HuberM) [13, 17], and the rdlfBeman and McClure loss (GM) [2].
To these we compare the proposed relaxed method (ClipRelaxig with an alternating minimizer
of the clipped loss (ClipAlt). (In this problem the valuephas little effect, and is simply setto 0.1.)
Figure 2 demonstrates that the three convex losses, L2, d HaberM, are dominated by outliers.
By contrast, ClipRelax successfully found the correctdin@odel in each case. Note that the robust
GM loss finds two different minima, corresponding to that @fand ClipRelax respectively, hence
it was not depicted in the plot. ClipAlt also gets trappeddodl minima as expected: it finds the
correct model in Figure 2 (a) but incorrect models in Figuge)2and (c).

In our second synthetic regression experiment we consiigel problems. Here a target weight
vector @ is drawn fromN (0, I), with inputs X;. sampled uniformly fromo0, 1]™, m = 5. The
outputsy; are computed ag;, = X;.0 + ¢;, ¢; ~ N(0, %). We then seed the data set with outliers
by randomly re-sampling eaaf (and X;.) from N (0, 10%) and N (0, 10?) respectively, governed
by an outlier probabilityp. Here 200 of the 700 examples are randomly chosen as thingaat
and the rest used for testing. We compare the same six meth®dsl, HuberM, GM, ClipAlt and
ClipRelax. The regularization parametewas set on a separate validation set. These experiments
are repeated 20 times and average (Huber loss) test errofeamdata are reported (with standard
deviations) in Table 1. Clearly, the outliers significardffect the performance of least squares. In
this case the proposed relaxation performs comparablyetththnon-convex GM loss. Interestingly,
this experiment shows that the relative gap betweenpthebust loss obtained by the proposed
method and the lower bound on the optirpalbbust loss (16) remains remarkably small, indicating
our robust relaxation (almost) optimally minimizes thegaral non-convex clipped loss.
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Loss (1, 46, 46) (8, 100, 1000) (32, 500, 1000)

L2 2.484 804.5+ 892.5 1.300 x 10° £ 68.29
L1 0.170 0.325+ 0.046 5.133+ 0.056
HuberM 0.149 0.306+ 0.050 5.377% 0.007

GM (local) 0.166 0.329+ 0.048 4.399+ 0.003
ClipAlt (local) | 0.176 0.329: 0.048  4.075:1x 10°°
ClipRelax 0.131 0.136+ 0.155 40751 x 107°

Table 2: Error rates (average root mean squared ertostandard deviations) for the different regression
estimators on various data sets. The valuesgfi(, tt) are indicated for each data set, wherés the number
of featuresy is the number of training examples, attche number of testing samples.

Loss p=0.02 p=0.05 p=0.1 p=0.2
Logit 488+6.17 1.61+7.23 1764+ 4.00 19.53+2.91
1-tanh (local) | 0.91+1.93 2.30+2.85 6.49+ 4.32 13.96+ 3.38
ClipAlt (local) | 0.464+0.64 1.514+1.45 427+ 257 11.32+ 3.48
ClipRelax 0.26+0.34 0.78+-0.78 2.49+ 3.38 10.10+8.21

Table 3:Misclassification error rates on clean data (average etrstandard deviations) on the Long-Servedio
problem [16] with increasing noise levels

Finally, we investigated the behavior of the regressionhods on a few real data sets. We chose
three data sets: astronomy data containing outliers fr@h ghd two UCI data sets, seeding the
the UCI data sets with outliers. Test results are reporteclean data to avoid skewing the reported
results. For UCI data, outliers were added by resampligandy; from N (0, 1000), with 5%
outliers. The regularization parametewas chosen through 10-fold cross validation on the training
set. Note that in real regression problems one needs tonolitaéstimate for the the scale, given
by the true standard deviation of the noise in the data. Herestimated the scale using tmean
absolute deviationa robust approach commonly used in the robust statistieature [17]. In
Table 2, one can see that on both data sets, ClipRelax cleatpgrformed the other methods. L2 is
clearly skewed by the outliers. Unsurprisingly, the cleakrobust loss functions, L1 and HuberM,
perform better than L2 in the presence of outliers, but netelsas ClipRelax.

Classification: We investigated the well known case study from [16] and caeghéhe proposed
method to logistic regression (i.e. the logit, or binomiavidince loss [12]) and the robuist- tanh
loss [19] in a classification context. Here 200 examples des@/n from the target distribution with
label noise applied at various levels. The experiment wasated 50 times to obtain average results
and standard deviations. Table 3 shows the test error peafuce in clean data of the different
methods. From these results one can conclude that ClipRelevore robust than standard logit
training. Training with logit loss is slightly better thanettanh loss algorithm in terms of training
loss, but not very significantly. It is interesting to seettiven the prediction error is measured on
clean labels ClipRelax generalizes significantly bettanttine robust —tanh loss. This implies that
the classification model produced by ClipRelax is closeh&otiue model despite of the presence of
outliers, demonstrating that the proposed method can hestaba simple classification context.

7 Conclusion

We have proposed a robust estimation method for regressidrclassification based on a notion
of “loss-clipping”. Although the method is not as fast assk@rd convex training, it is scalable to
problems of moderate size. The key benefit is competitivebétrer) estimation quality than the
state-of-the-art in robust estimation, while ensuringvplide robustness to outliers and computable
bounds on the optimality gap. To the best of our knowledgeehwo properties have never been
previously achieved simultaneously. It would be intergstio investigate whether the techniques
developed can also be applied to other forms of robust esimiom the classical literature, includ-
ing GM, MM, L, R and S estimators [11, 13, 17, 23]. Connectinith algorithmic stability [3] and
influence function based analysis [5, 6, 11] merit furtheestigation. Obtaining tighter bounds on
approximation quality that would enable a proof of consistealso remains an important challenge.
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Relaxed Clipping: A Global Training Method
for Robust Regression and Classification
(Supplementary M aterial)

Proof Details

For Proposition 1, recall the definitions from the main body of the paper (using the same equation
numbers as in the main body)

le(y,x"@) = min(1,£(y,x"8)) @)
Loy, x10) = plly,x"0)+1—p. )

Proposition 1 For any loss /(y,x " 8), we have £.(y,x " @) = mino<,<1 £,(y,x'8).
Proof of Proposition 1

Notice that d‘—;ép(y,xTo) = f(y,x"8) — 1. Henceif £(y,x"6) > 1, then p = 0 will be the

optimizer, obtaining a minimum objective value of 1. Otherwiseif £(y,x ") < 1, then p = 1 will
be the optimizer, obtaining a minimum objective value of £(y,x"8). If {(y,x"0) = 1, then all
feasible values of p yield the same objective value of 1. i

To prove Lemma 1, recall the definition from the main body of the paper
*(y,a) = sup ax'@—L(y,x'8). (8)
2]

Lemma 1 For any convex differentiable loss function £(y, x " ) such that the level sets of £, (v) =
ax' (8 —v) + £(y,x"v) are bounded

((y,x'0) = sup ax'@—L*(y,a). 9)
Proof of Lemma 1
First note that
. T " . T . T T
sup ax' 0 — 0" (y,a) = sup ax 0 —sup ax v —L(y,x' V) (18)
= supmin ax' (8 —v) +£(y,x"v) (19)

by the definition (8).? Since the inner objective has bounded level setsin v for all o by assumption,
strong maximin duality holdsin this case. [4, pp.281-2]. Hence

(19) = minsup ax' (0 —v)+£(y,x' V) (20)

Finally, notice that the inner supremum in (20) always achieves +oco unlessv = 6 (or 8" x = 0),
therefore the outer minimizationin v must select v = 0, yielding thefinal objectivevalue£(y, x ' 9).
|

For the proof of Theorem 1, first recall the main optimization objective and its equivalents that were
formulated in the main body of the paper (using the same equation numbers as the main body)

i 21013+ 3 £y X,

meln 2 HOHZ + . éc(yqute) (3
o . . 1 2 = ) ] ) o
= min min o{|o]; + Eﬂ pil(yi, Xi:0) + 1 — p; (5
_ . T T _ Yoz
= in minp £y, X0)+1 (1-p)+ [0 (6)

2\We are using the fact that the inner objective is convex and has bounded level sets to note that the inner
infimum can always be acheived, hence it can be re-expressed as a min.

10



Theorem 1 Let K = X X T denote the kernel matrix over input data. Then

6) = min sup —(n+1) v T(a)v (10)

1 1 | —
—\/mlﬁ'/f\/ﬁlyl’l—ﬁv”'/“—l o

wherev isan (n + 1) x 1 vector, aisann x 1 vector, and the matrix T'(«x) is given by

T(a):%{l; }A(a)KA(a)[l 1+ |20 E e Wl T

Proof of Theorem 1

First note that applying (9) from Lemma 1 to the main objective (6) yields

_ . . T T . l 2
6) = oin min p Uy, X0)+1 (1-p)+ 6l
= min minsup —p £*(y,a) +a A(p)XO+1T(1—-p)+ TgTe (21)
0<p<l 6 o 2

where £*(y, a) denotes the n x 1 vector of dual values over training examples and A(p) denotes
putting p on the main diagonal of a square matrix.

Next, observe that the inner minimization and maximization can be exchanged since the inner objec-
tive has bounded level setsin 8, meaning that strong minmax duality holds [4, pp.281-2]. Making
the exchange then solving for the critical point in 6 yields

0 = JXTA(p)a (12)
Y
(the objectiveis convex in 8). Substituting this result back into (21) yields
_ : . _ AT p* T _ _i T T
6) = oin sup —p (y,a)+1 (1-p) 5P Ala) XX Ala)p. (22

From here, deriving the reformulated objective merely involves algebraic manipulation. Consider

R o= —pT€(v.0)=17(p=1) = 5-p" Al)KA(a)p @)

—(a+p"b+p"Cp) (24)

wherea = —n, b =£*(y,a) +1,C = %A(a)KA(a), and K = XX . Nowletn =2p —1,
whichimplies p = £ (n + 1). Therefore, one can rewrite the objective as

R = —(a+4n"b+i1"b+in"Cn+inTC1+117C1) (25)
= —(p+n's+n'Sn) (26)
wherep=a+ 31"b+ 117C1,s = b+ ;C1,and S = ;C. Now note that if we let
1
= 2
v = )] (@7
the objective can be rewritten as
R = —~Vv'T(a)v (29)
where
1.T
_ p 38
) = | f % | @9
1T 1[4a+21"b bT
,1{1]0[1 I]+Z{ b 0 (30
= (11).

11



Finaly, introduce the rescaling v = ﬁv, so that the objective becomes

R = —(n+1)v'T(a)v (3D

which gives the objective used in (10).

. . . 1 1 o
Next, to derive the transformed constraints, notice that il v < et and v, = st

in (10) simply follow from the original constraints0 < p < 1 in (6) plus the additional constraint
v1 = 1 introduced in (27), viathe substitution chain p — 1 — v — v given above.

The introduction of the final constraint ||| = 1 requires an additional argument. Recall from the
proof of Proposition 1 that the solution to (6) always has the property that p € {0, 1}", hence adding
this constraint to (6) does not change its optimal objective value. Given the above substitutions, im-

posing this discreteness constraint on p is equivalent to asserting v; € {+ \/anl} for al 7. However,

given the box constraints that have already been established on v, thisreducesto enforcing ||v|| = 1.
|

Before proving Theorem 2 we need to establish some useful relationships between the translated
versions of the vectors and matrices introduced above.

Lemma2 Let M* denote the matrix that participates in the optimal solution of (16). Consider the
rescaling M = (n+ 1)M*. If we definem = M, (i.e. thefirst column of /), and m = mas.;,+1
(i-e. the subvector of m suchthat m™ = [1 m]), then from the feasibility constraints A7* = 0 and
6(M*) = —51itfollowsthat M = 0,0(M) =1,-1 < M;; <1,m; = l,and -1 <m; <1
for all 7, j.

From the definitions M* = 25:1 ajujuf and v* = 25:1 oV} given at the end of Section 4,
and the fact that M* satisfies the constraints in (16), if one defines v; = V%u; ando; = o7, it

followsthat vi; = 1,0, > 0, ", 0; = 1, and therefore M = Y_ ov,v /.

We will also use the definitions n; = vo., 41 andn = -, o;m;, sothat v; = [1n]]", asin (27).

Finally, consider the definition of the rounded solution p = 1(1+23,, ,;v/n + 1) given at theend of
Section 4. Furthermore, define p; = 5(1+n;) and p = >, ojp,- Fromthecollection of definitions
and properties above, one can determine that p = 1(1 4+ 3,1V +1) = $(1 + moyy1) =
1(1+m)=1(1+n) = p. Italsofollowsthat 0 < p, < 1 for all 4.

Theorem 2 (Part 1) R(p,a*) < 2R(p*,0*) < 2n, where R(p, a*) is the value of (10) at the
rounded solution p = £ (1 + 3., ,vVn + 1).

Proof of Theorem 2 (Part 1)

Let (a*, M*) denote the optimal solution to the relaxation (15) and let (p*, 6") denote the optimal
solution to the target problem (6). Consider the rescaling M = (n + 1)M™ discussed in Lemma 2
above, sothat M = 0 and §(M ) = 1. Define

R(M,a*) = —tr(MT(a")) (32)
which gives the value of the relaxed objective achieved by (M*, a*) in (15) where M* = M/(n +
1). Recall that R(p*, 8™) denotes the optimum objective value obtained in (6). It then immediately
follows that

R(M,a*) < R(p*,0") < n. (33)

since the optimal relaxed objective value is a lower bound by construction (13), and the second
inequality followstrivially from the observation that R(0, 0) = n. Our goa isto analyze the relaxed

objective R(M, o*) at the saddle point (M, a*) to bound the effects of rounding the solution to p.

We need some preliminary definitions to make things clearer. From the definition given in (11)
rewrite T'(«) as

T(a) = D(a)+Gla)—P (34)
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where

_ 2178 (y,) £y, )"

D(a) = 1| ey 0 } (35
Gla) = 2_1;]0(01)[1 I (36)
Cla) = %A(Q)KA(Q) 37)

Ll2n —17
1 } (38)

One can then obtain a straightforward decompostion
R(M,a*) = —tr(MT(a")) (39)
= tr(M(—D(a") - G(a*) + P)) (40)

= tr(M(—D(a")-2G(a))) + tr(MG(a™)) + tr(MP). (41)
They key property of this decomposition is that each term must be nonnegative. That is, note that

tr(MP) > 0 (42)
tr(MG(a*)) > 0 (43)

since, inthefirst case, My, = 1 and —1 < M;; < 1, and in the second case, G(a*) = 0. Also, by
Lemma 3 below we have

tr (M(—D(a*) — 2G(a*))) > 0. (44)

Therefore, since each term in (41) is nonnegative and their sumisat most R(p*, 0) (established in
(33)), it must follow that each individual termin (41) is upper bounded by R(p*,6"). In particular

tr(MG(a*)) < R(p*,0%). (45)

Finaly, to bound the objective value obtained by p, we will work instead with its translation m =
[1(2p—1)T] = M., defined in Lemma 2 above. In particular, using the definition (32) let

R(p,a*) = Rmm" a*) = —m'T(a*)m (46)

wherem = [1 (2p — 1)T] = M. (the latter equality follows from Lemma 2 above). Note that by
the specia structure of D(a*) and P we have

tr(MD(a*)) m' D(a*)m (47
tr(MP) = m'Pm (48)

Alsosincem ' T'(a*)m < tr(MT(a*)) by the optimality of M* = M/(n + 1) (see (13)) we must
aso have

0 < m'Gla)m < tr(M*G(a*®)) < R(p*,0%). (49)
From (47)—49) we conclude

R(p,a*) = —m'T(a*)m (50)

= —m' (D(a*)+G(a*) — P)m (51)

< —m" (D(a*) - P)m (52)

= —tr(M(D(a*) - P)) (53)

= —tr(M(T(a") - G(a))) (54)

= —tr(M(T(a")) +tr(MG(a™)) (55)

< 2R(p",0") (56)
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Lemma3 tr (M(—D(a*) — 2G(a*))) > 0.

Proof of Lemma3

The proof of this lemma uses the definitions and properties from Lemma 2 above. Note that by the
special structure of D(a*) and G/(a*) we have

tr(M (D(a*) + 2G(a*))
=Y ov] (D(a®) +2G(a"))v;

(57
(59)

=1 (y, o) + 0 (y,0) + 317C(@")1+ 7 C(a) 1+ 1 > o] C(a”)n; (59)
J

— [)Tf*(y7 a’)+2 Z a‘,-pjTC(a*)pj
J

— * * 1 * *
=p' ' (y, ")+ ;Zojp,TA(a )KA(a")p,
J
— * * 1 * *
=p' U (y, ") + ;Zaja TA(p]-)KA(pj)a

=p'l(y,a

where

J

1 _
*)+*Q*TKQ*
Y

K=Y 0;A(p))KA(p;)

J

Notethat K = 0 sincec; > 0.

It remains to show (63) is nonpositive. Recall that o* was assumed to maximize (14), which means

1 _
—/_JTK*(y,a*) _ 7a*TKa*

2y

1 _
= max—p £(y,a) - —a' Ka
o 2'}/

1

= maxmgiinZ(y,XO) —a'A(p)XO - —a Ka
(e

minmax p' £
0 [e

> 0

2y

1

(y,X0) —a"A(p)X0 — —a'Ka

where we have used the fact that p > 0 and

_pTe*(y7a) =
Ka* =

mgin p ey, X0)—aA(p)X6
—YA(p)X 0"

2y
= minp £y, X0) + %BTXTA(p)Rm(p)Xe

(60)

(61)

(62)

(63)

(64)

(65)
(66)
(67)
(68)

(69)

(70)
(71)

Unfortunately, (65) isnot quite the same as (63) (note the v verus 2+ difference in the denominators).
However, given the above results for (65) we can now return to (63) and observe

1 _
—fJTK*(y,a*) _ *Q*TKCX*
v

IVl

—p 'l (y,a") + " TA(p) X"
p Ly, X0") —a* TA(P)XO* + T A(p)XO*

p Ly, X6%)
0.

14

by (71)
by (70)

(72)
(73)
(74)
(75)



Theorem 2 (Part 2) If the unclipped loss ¢(y, ) is b-Lipschitzin g for b < oo and either y or K

remains bounded, then there existsa ¢ < oo such that R(p, 0) < c.

Proof of Theorem 2 (Part 2)

For simplicity we will show the proof for the case when ¢(y, §) is strictly convex in g. Recall that
(M*, o*) solves the saddle point problem (14). Therefore, given M ™, the resulting objective must
be at equilibrium in o*, hence

Vo R(M*, ) = —A(i))[*(y,a*)’—%f(cx* ~ 0 (76)

where £*(y, a*)’ denotes the vector of derivatives of £*(y;, o)’ with respect to o; at o, and K
is defined in (64). Therefore we have that —A(p)€* (y,a*) = Ka*/v. (The strict convexity of
£(y, ) in g ensuresthat £*(y, ) issmooth in «, hence the derivative exists at «* [22, Section 26].)

Now consider the definition

b* = AP (y,a”) = %f(a*, 77)
Note that under the assumptions of the theorem, there must exist a constant ¢ < oo such that
Ib*[loc < c. We prove this fact in two cases. First, consider the case where y is bounded.
Since 4(y, §) is b-Lipschitz in ¢ by assumption, it follows that || a*||.. < b [22, Corollary 13.3.3].
Since both y and a* are bounded, £*(y, a*)" must be bounded (since it was determined above
that ¢*(y, o) is smooth in «). Finally, 0 < p < 1 was established in Lemma 2 above; therefore
b* is bounded. Second, consider the case where K is bounded. Then K must be bounded, since
both o; and p; are bounded. Finally, since o™ is bounded (as established above) it follows that

b* = Ka* /v isbounded.
Finally, consider the objective value obtained by fixing p and re-optimizing 0

R(p.6) = minR(p,6) @)
= minp £y, X6) + 2]6]* +17(1 - p) (79

1
—  max —p £ (y,@) - - AP)KAP)a+1T(1-p) (80)

fle]l oo <b 2y
< | Dax —p 0 (y,0) +17 (1 p) (81)
< max —p'E(v.a’)+(a—a) b 1T (1-p) (82)

< o

T Jaless —p U (y, )~ —a' Ko’ +a'b" +17(1 - p) (GS)

o< Y

Note that by Lemma 3 and the observation after (44) we have that the two first termsin (83) are
bounded by 0 < —p " £*(y, a*) — %a*Tf(a* < R(p*,0"). Therefore

(83) < max R(p",6")+ a'b +17(1-p) (84)
< max 2n+a'b* (85)
lleelloe <b

Since it was established above that b* isbounded, it follows that R(p, €) is bounded. i
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