Abstract
We demonstrate that almost all non-parametric dimensionality reduction methods can be expressed by a simple procedure: regularized loss minimization plus singular value truncation. By distinguishing the role of the loss and regularizer in such a process, we recover a factored perspective that reveals some gaps in the current literature. Beyond identifying a useful new loss for manifold unfolding, a key contribution is to derive new convex regularizers that combine distance maximization with rank reduction. These regularizers can be applied to any loss.
Type
Publication
International Conference on Machine Learning (ICML)