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Problem Definition

Suppose we are going to invest in a stock market.
Our neighbor, for mysterious reasons, happens
to know how the market evolves. But he can-
not change his portfolio (proportions of holding
stocks) once committed (to avoid being caught by
regulators, say). On the other hand, we, the nor-
mal investor, do not have any inside information
but can sell and buy at will. If we and our pre-
scient neighbor invest the same amount of money,
is there a (computationally feasible) way for us to
perform comparably well to our neighbor, with-
out knowing his investing strategy? Surprisingly
(as contrary to our real-life experience perhaps),
the answer is yes, and we will see it through the

1443

lens of online learning. Disclaimer: The reader
is at his own risk if he decides to practice the
beautiful theoretical results we describe below.

The online learning problem is best described
as a multi-round two-person game between the
“learner” and the “environment,” following the
protocol:

The Online Learning Protocol

Fort=1,...,T
Learner predicts x; € D;
Environment responds with a cost
function f; : D — R;
Learner suffers an
Je(xe);

Learner learns some information of f;.

immediate cost

Through the multi-round interactions with the
environment, the learner tries to learn the be-
havior of the environment so as to minimize its
cumulative cost in the time horizon ¢ € [1,T],
where we could allow the game to continue
indefinitely, i.e., T = oo.

The online learning framework is particularly
relevant in real applications where (1) sequential
decisions are needed, (2) average good perfor-
mance is desired, and (3) the process is too
complicated to be modeled statistically. In our
stock example above, the learner will be us (nor-
mal stock holder), and the environment will be
the market. Each day we submit our portfolio
x;, carefully constructed based on the past in-
formation and perhaps also mingled with some
randomness (coin tosses for luck). The market
responds with rises and falls of the stock prices,
represented as the cost function f;. We suffer the
loss f;(x;) and learn something about the market
(e.g., ft), and the life moves on to the next day.
(If it feels more comfortable, one can negate f
and call it gain. We shall not do this, because
“a true warrior faces her bleak life bravely.”) Our
adventure ends at day 7', which is prefixed. (For
T = oo, the adventure never ends.) Of course,
the goal is to earn on average as much money
as possible; it is OK if we lose occasionally.
Also, for an average person (us), it is perhaps too
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complicated to have a clear idea what is exactly
going on in that stock market. As mentioned,
we would like to compete against our “prescient
neighbor.” This is formalized as the regret below.
To evaluate the performance of the learner, the
following notion of regret plays a central role:

T

Rr(x):=Y_ (f,(x,) - f,(x)), VxeC CD.
t=1
(D

Intuitively, the learner compares itself with the
baseline (e.g., the “prescient” neighbor) that con-
stantly predicts x € C in each round. We are
interested in bounding the learner’s regret with
respect to the “best” competitor in the set C (al-
though our notation drops the dependence on C):

Rr := sup E(Rr(x)), @)

xeC

where the expectation E(-) is taken with respect
to any internal randomization the learner or the
environment might use. The learner is said to be
(Hannan) consistent if

R
TT — 0, as T — oo, i.e., Ry = o(T).

In other words, the learner performs, on average,
as well as the best constant competitor in the long
run.

We adopted the notion of regret not because
we believe a constant (unchanging) predictor is
the best strategy for our problem. Instead, the
regret should be interpreted as a bare minimum
requirement: If there does exist a constant pre-
dictor that performs reasonably well on our task,
it would be unacceptable if our algorithm is
not even on par with it. More often than not,
we would like to do better than any constant
predictor, but this can be highly nontrivial (either
computationally or statistically).

We have allowed the learner to operate on a
larger set D than its “competitors” (which are
restricted to C). Of course this buys the learner
some advantage, which sometimes is necessary
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for consistency, particularly when C is a noncon-
vex set. For instance, consider the game where
the sets C = D = {0, 1} and the cost functions

1, ifx=ux

Si(x) = 3

0, otherwise '

Recall that in our online learning protocol, we
have no control on how the environment reacts. In
the very worst case, the environment may appear
to be completely “hostile.” For instance, the cost
function f; in (3) is thus defined to make the
learner always suffer unit cost in each round. On
the other hand, the best constant competitor in
C suffers cost at most 7/2 in T rounds. Hence,
RTT > % for all T, meaning that any learner
that follows our protocol cannot be consistent.
The lesson is, of course, that we cannot compete
under a very adversarial environment. However,
if we allow the learner to randomize its decisions
and correspondingly pay expected cost, then it is
again possible to devise consistent learners for
this game [8], provided that the environment is
oblivious, i.e., it does not adapt to the learner’s
randomization, thus constraining its “hostility.”
Intuitively, randomization and averaging smooth
out the possible worst-case (but oblivious) reac-
tions of the environment. This is also equivalent
to allowing the learner to operate on D = [0, 1],
the convex hull of C = {0, 1}. Indeed, for binary
x we can interpret the cost function in (3) as
fi(x) = |x — y¢|, where in the worse case the
environment could happen to choose y; = 1 —x;
from the set C. In the randomized setting, the
learner first picks x € D, the convex hull of C,
and then chooses 1 with probability x and 0 other-
wise. Provided that the environment still chooses
(however adversarial) y; € C, the expected cost
the learner suffers is again f;(x) = |x — y;|, but
this time extended to the convex domain D. The
claim that there exists a consistent learner under
this randomized setting follows from Theorem 2
below. Intuitively, now the learner sits in the
middle (x = 1/2) and leans toward the better
constant predictor fast enough.

The previous example shows that consistency
may not always be achievable. Consequently, the
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interesting questions in online learning include
(but are not limited to) the following:

* Identifying settings under which consistency
can be achieved

e Determining the correct order of the regret
tending to infinity

* Devising computationally efficient and order
optimal learners

These questions heavily depend on what the
learner can learn in each round. For instance, in
the full information setting, the learner observes
the entire cost function f;; in the bandit setting,
the learner only observes its incurred cost f; (x;),
while in the partial monitoring setting, the
learner only observes some quantity related to
its cost. The geometry of the decision set D and
the competitor set C, as well as the structural
property (such as convexity, smoothness, etc.) of
the cost functions, also play a significant role. In
the next section, we will consider a special case
where a particularly simple algorithm known as
online gradient descent suffices to achieve the
optimal regret. For more complete and thorough
discussions, please refer to the excellent book [3]
and surveys [2, 8].

Online Convex Programming
We further simplify our online learning protocol
as follows:

Online Convex Programming (on the real
line)

e D C Ris a closed convex set, with r =
maxy,yep |X — y| < 00;

e Vt < T, f; is convex and differentiable
on some open set containing D;

e The gradient is uniformly bounded:
SUpyep,r<7 [V/i(X)| = M < o0;

e The learner gets to observe V f;(x;) in
round .
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The third condition is satisfied if each f; is M -
Lipschitz continuous, i.e.,

Vx.yeD, |fi(x)= fi(I <M -|x -yl
“)

while the last condition is certainly met if the
cost function f; is revealed to the learner in
each round. Under this setting, Zinkevich [9] first
analyzed the online learner that simply follows
the (projected) gradient update:

Vi > 1, xp41 = Ppxr = n:V fi(x0),  (5)
where 1, > 0 is a small step size that we
determine later and

Q)

Pp(x) = argmin |x — y|,
yeD

is the (Euclidean) projection of x onto the closed
set D, i.e., the closest point in D to x. The
projection is needed since the learner’s prediction
X:41 1s restricted to the decision set D.

Before we analyze the regret of the above
online gradient algorithm, let us first observe that

Ar =Y (fete) = fi)
t=1
T

=D (VA (i =)

(N

where the first inequality follows from the con-
vexity of f;. Interestingly, the right-hand side is
the worst-case regret for the special case where
each f; is a linear function, say, w;x; for some
|[w¢| < M. In other words, we could have re-
stricted the game to linear cost functions, instead
of the seemingly more general convex functions.

The regret of an online learner can be bounded
by analyzing its progress with respect to some
potential function. Here we choose the familiar
quadratic potential. Note that for any x € C C
D, clearly Pp(x) = x; hence,
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[xer1 — x> = [Pp(xe =0V fi (1)) — Pp(x)?
< |xt =0V fi(x) — x
< |xe = x> =20:V fi (xe)
(= x) + ;M3
< |y = x> =21 (fi (x0)

— fi(x)) + n?M?, 8)

where the first inequality follows from the 1-
Lipschitz continuity of the projection Pp(-) and
the last inequality is due to the convexity of f;.

Dividing (8) by 275;, summing the indices from
t = 1tot = T, and rearranging, we have

=1 2n;
)
M? ! 9
+ M2y ©)
t=1
S e Y (gl
T2 1 i— 2N 20—
&y
2 2 t
lx; — x>+ M 23. (10)

Setting the step size 1, properly leads to our key
results, summarized in the next section.

Key Results
If the horizon T is finite and known in advance,

then we can use a constant step size n;, = 7.
Optimizing with respect to > 0 from (10) yields

Theorem 1 (e.g., [8,9]) Letn; =n = Mf/? for

some constant ¢ > 0, then the online gradient
learner achieves sublinear regret

2+ |x —x1)?

Rr(x) < MVT >
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2 2
< MVTE 2+r
C

(11

for the online convex programming problem.

If the horizon is not know in advance, inspired
by the step size in Theorem 1, we can try setting
N = MC 7 Note that 7, is decreasing with
respect to ¢. Continuing from (10):

Using integration, Zthl ﬁ <
JT. Thus, we have proved

Theorem 2 (Zinkevich [9]) Let n, = _Mi/? for
some constant ¢ > 0; then the online gradient

T 1
Jo mdtf

learner achieves sublinear regret (simultaneously

forall T)
2¢2% 4 r?

RT()C) < MﬁT

(12)

for the online convex programming problem.

Comparing to Theorem 1, we only lose a
constant 2 in Theorem 2, but the result now holds
simultaneously for all T — a property sometimes
called anytime. Theorems 1 and 2 not only imply
the consistency of the online gradient learner but
also demonstrate that Ry = O(\/T ), since the
right-hand sides of (11) and (12) are independent
of the competitor x. In fact, this rate is optimal,
1.e., there exists an instantiation where no learner
(efficient or not) can do better; see, e.g., [6].
Thanks to the convexity assumption on f; (and
the decision set D), the online gradient algorithm
can be efficiently implemented if the gradient
V f; and the projection Pp(-) can be efficiently
computed.

Doubling Trick When the horizon 7T is not
known in advance, we can also use the doubling
trick, which divides the time into exponentially
increasing phases
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Mogo (T +1)1

U

i=1

Q12— 1),

and on the i th phase, we use the constant step size
n;i = O(1/+/2i71) suggested in Theorem 1. The
overall regret is bounded by

[loga (T+1)]
Z 0(1/2i—1) —

i=1

V2
V2-1

oWT +1).

So asymptotically we only lose a factor of

NN
L~ 341

Other Rates It is possible to tighten the regret
rate if the cost functions are more ‘“regular.”
Intuitively, this means the environment is more
constrained hence can only be less adversarial.
Indeed, if f; — 7| - |2 is convex, namely, f; is o-
strongly convex, Hazan et al. [6] showed that the
online gradient learner equipped with a smaller
step size 1y % suffers only logarithmic regret
O(log(7T')) — an exponential improvement com-
pared to Theorem 2. Just like the time horizon, it
is possible to achieve the same logarithmic regret
without knowing the parameter o; see [1]. Sim-
ilarly, if f; is so-called exponentially concave, a
similar logarithmic regret can be achieved using
a second-order Newton-type learner [6].

Extension to High Dimensions The above anal-
ysis easily extends to high dimensions. In fact,
Theorems 1 and 2 hold in any abstract Hilbert
space, with virtually the same proof (provided
that we replace the absolute value with the Hilbert
norm). The cost functions f; need not be differ-
entiable either; picking an arbitrary subgradient
in the subdifferential df; (x;) would suffice.

Extension to Composite Functions The regret
can be extended to include a penalty function g
as follows:

T
Rr(x) = ) (filx) + g(x) — fi(x) — g(x)).
t=1

13)
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Our previous definition in (1) corresponds to the
setting where g(x) = 0iff x € D (otherwise the
regret is set to o0). We could simply treat f;+g as
a whole and apply the online gradient algorithm
without any modification. A different approach,
resulting in a similar regret bound, upgrades the
projection to the proximity operator (of g):

PZ(x) = argmin 5-[x — y|* + g(y),  (14)
y

where n > 0 is the step size to be chosen ap-
propriately. The latter approach is not only more
general but also leads to more structured inter-
mediate predictions [4]. For instance, if g(x) =
>, |x;|is the £1 norm, then [P (x)]; = sign(x;)-
max{|x;| — n,0}, which would be exactly zero
if |x;| is small and 7 is large. In contrast, if we
apply online gradient descent directly to f; + g,
we would almost never get sparse intermediate
predictions.

Without Projections The online gradient
learner is computationally efficient only when
the projection Pp (+) in (6) (or more generally the
proximity operator in (14)) can be efficiently
implemented. In some applications, this is
unfortunately not the case. Instead, Hazan
and Kale [5] proposed a different learner that
bypasses the projection step. Basically, the
learner iteratively finds the vertexes of the
decision set D and then takes suitable convex
combinations of them to make progress.

Connection to Stochastic Optimization The
regret bound in Theorem 2 is closely related to
some results in stochastic optimization, for the
following problem [7]:

igg f(x), where f(x):=Eg(F(x,§)), (15)

and ¢ is some random variable. The stochastic
(sub)gradient method is a popular iterative algo-
rithm for optimizing (15). In each iteration, it
randomly draws an independent sample &, and
follows the projected (sub)gradient update:

Xi+1 = Pp(x; =0/ Vi F(x1.§)).
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for some small step size n; > 0. The similarity
to the online gradient learner is apparent once
we identify f;(x) := F(x,§&). Thus, the regret
bound in Theorem 2 implies

T

0( =) = s 7E[ 3 (v = i)

xep T =1

T
sup %E[Z (F(xe, &) — Fx, St))]

x€D =1

T
: (% > G| - inf £

t=1

T
= (f (% Zx,) ~ inf f(x),

t=1

provided that the random sample §&; is
independent of x; and F(-, &) is convex for
(almost) every realization of £. In other words,
the ergodic mean % Zszlx, approaches, in
expectation, the infimum in (15) at the rate

o(1/VT).
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Problem Definition

List update is one of the classic problems in
the context of online computation. The main
motivation for the study of the problem is self-
adjusting lists. Consider a linear list which rep-
resents a dictionary abstract data type. There
are three elementary operations in the dictionary,
namely, insertion, deletion, and lookup (search).
To perform these operations on an item x, an
algorithm needs to search for x, i.e., examine the
list items, one by one, to find x. For the case
of an insertion, all items should be sequentially
checked to ensure that the inserted item is not
already in the list. A deletion also requires finding
the item that is being deleted. In this manner, all
operations can be translated into a sequence of
lookups or accesses to the items in the list. To
access an item at index 7, an algorithm examines
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