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Abstract

Motivation: The mutations of cancers can encode the seeds of their own destruction, in the form of T
cell recognizable immunogenic peptides, also known as neoantigens. It is computationally challenging
however, to accurately prioritize the potential neoantigen candidates according to their ability of acti-
vating the T cell immuno-response, especially when the somatic mutations are abundant. Although a
few neoantigen prioritization methods have been proposed to address this issue, advanced machine
learning model that is specifically designed to tackle this problem is still lacking. Moreover, none of the
existing methods considers the original DNA loci of the neoantigens in the perspective of 3D genome
which may provide key information for inferring neoantigens’ immunogenicity.

Results: In this study, we discovered that DNA loci of the immuno-positive and immuno-negative MHC-
| neoantigens have distinct spatial distribution patterns across the genome. We therefore employed the
3D genome information along with an ensemble pMHC-I coding strategy, and developed a group fea-
ture selection based deep sparse neural network model (DNN-GFS) that is optimized for neoantigen
prioritization. DNN-GFS demonstrated increased neoantigen prioritization power comparing to existing
sequence-based approaches. We also developed a webserver named deepAntigen
(http:/lyishi.sjtu.edu.cn/deepAntigen) that implements the DNN-GFS as well as other machine learning
methods. We believe that this work provides a new perspective towards more accurate neoantigen
prediction which eventually contribute to personalized cancer immunotherapy.

Availability: Data and implementation are available on webserver: http://yishi.sjtu.edu.cn/deepAntigen
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1. Introduction

The approval of several immunotherapies has led to dramatic changes in
cancer therapy. In a variety human malignancies, therapeutic efficacy was
enhanced by immunotherapies via boosting the endogenous T cell’s abil-
ity to destroy cancer cells (Schumacher and Schreiber, 2015). The ‘check-
point inhibitors’ therapies work by blocking proteins that act as molecular
breaks for T cells. With the breaks removed, T cells can better undertake
their job to kill cancer cells. Despite the great success of checkpoint inhib-
itors, still many patients do not respond to the agents, and many that do
temporarily respond, eventually relapse. Moreover, checkpoint inhibitors
do not fully take advantage of the T cell’s exquisite specificity, one of its
most important characteristics (Sompayrac, 2019). This led many re-
searchers pay more attention to the new immunotherapy strategies against
tumor known as neoantigen therapies. T cells are potent at killing when
they recognize ‘foreign’ antigens which could be some protein fragments
from an invading virus or bacteria. The key ability of T cells in distin-
guishing foreign antigens from self prevents autoimmunity which on the
contrast makes them less potent in recognizing tumor cells because they
are our own but abnormal cells. The T cells overcome this dilemma in two
ways. First, they tend to respond to tissue-specific antigens (TSAs) which
are specific amino acid fragments produced by cells of certain types. Sec-
ond, T cells respond to neoantigens which are small peptides generated in
tumor cells containing high level of DNA mutations. The nonsynonymous
mutations can be entirely absent from the human genome, leading the can-
cer cells vulnerable to T cells as they look ‘foreign’ (Sompayrac, 2019).
In several clinical practices, it has been demonstrated that endogenous
T cells with mounted cancer-killing T cell receptor (TCR) are able to rec-
ognize epitopes which are composed of the peptides displayed on major
histocompatibility complexes (MHCs) on the surface of the cancer cells
(Ott, et al., 2017; Schumacher and Schreiber, 2015). With the help of DNA
and RNA sequencing technology, it has been revealed that tens to thou-
sands of different somatic mutations can be generated during cancer initi-
ation and progression, depending on different cancer types (Castro, et al.,
2019; Prior, etal., 2019; Volkov, et al., 2019). Most of these mutations are
often caused by genomic instability within the tumor cells and lead to no
obvious cell growth advantage; they are also known as passenger muta-
tions. On the contrast, a small percent of these mutations are known as
driver mutations which interfere with normal cell regulation and help to
drive cancer growth and resistance to targeted therapies (Yarchoan, et al.,
2017). Both passenger and driver mutations can cause tumor to express
abnormal proteins or polypeptides that cannot be found in normal cells as
they can be nonsynonymous mutations that alter protein-coding se-
quences. When cell metabolize, the proteins possessing abnormal se-
quences are cut into short peptides and are presented as epitopes on the
cell surface by the MHC (also known as human leukocyte antigen, HLA,
in human case) molecules, which have a chance to be recognized by T
cells as foreign antigens (Yarchoan, et al., 2017). An effective neoantigen
which leads to the final immunological response, is determined by many
factors. For instance, Dintzis et al. found that size-fractionated linear pol-
ymers of acrylamide substituted with hapten can affect the immunogenic-
ity triggering (Dintzis, et al., 1976). Other factors such as peptide degra-
dation and transportation, peptide-MHC binding affinity and stability, and
pMHC-TCR interaction should also be considered (Blaha, et al., 2019).
Based on the above knowledge, in ideal situation, after the DNA se-
quencing procedure, potential neoantigens can be synthesized in vitro and
their efficacy can be validated in vivo via either cancer cell-line or animal
model, before conducting in clinical practice (Schumacher and Schreiber,
2015; Yarchoan, et al., 2017). Indeed, the cancers with a single dominant

mutation can often be effectively treated by focusing on the driver muta-
tion (O'Brien, et al., 2003; Yarchoan, et al., 2017). Nevertheless, in many
other cancer situations, the somatic mutations are usually abundant, which
lead to a computationally challenging task to efficiently prioritize the po-
tential neoantigen candidates according to their ability to activate the T
cell’s immuno-response (Hackl, et al., 2016). In the past decade, many
prediction methods have been proposed to address the neoantigen priori-
tization problem (Jurtz, et al., 2017; Lundegaard, et al., 2008; Nielsen and
Andreatta, 2016). These methods can be categorized into two major clas-
ses: the protein spatial conformation-based approaches which consider the
pMHC and T cell receptor (TCR) 3D structures, and the protein sequence-
based approaches which consider the amino acid combinatorial characters.
For the protein spatial conformation-based approaches, when high quality
pMHC 3D structures are available, methods such as molecular dynamic
(MD) can be adopted to explore the complex interaction between TCR and
pMHC (Blevins, et al., 2016; Riley, et al., 2018; Wang, et al., 2017). If
high quality pMHC spatial information is lacking, by sacrificing compu-
tational complexity and spatial model accuracy, computational pMHC
modelling can be adopted, followed by 3D to 1D feature transformation
and machine learning approaches (Riley, et al., 2019). Most neoantigen
prediction methods belong to the sequence-based class because they can
usually be set up efficiently (Gupta, et al., 2016; Hackl, et al., 2016), and
there are much larger data sets available for training and validation (Vita,
et al., 2019; Zhang, et al., 2011).

Early sequence-based methods such as BIMAS (Parker, et al., 1994)
and SYFPEITHI(Schuler, et al., 2007) utilized the position-specific scor-
ing matrices (PSSMs), which are defined from experimentally confirmed
peptide binders of a particular MHC allele (Hackl, et al., 2016). More so-
phisticated approaches based on machine learning techniques were later
developed which were demonstrated to perform better than the PSSM-
based methods; these approaches capture and utilize the nonlinear nature
of the pMHC-TCR interaction. In recent years, consensus approaches such
as CONSENSUS (Moutaftsi, et al., 2006) and NetMHCcons (Karosiene,
et al., 2012) were exploited which combine results of multiple neoantigen
prediction tools, aiming to obtain more robust and accurate outcomes, and
their efficacies were supported by experimental results. Nonetheless, the
performance gain of these methods is determined by the weighting scheme
among different prediction components, which lead to increased compu-
tational complexity (hyper-parameter tuning). Because the peptide MHC
binding can be affected by HLA allele variety, most recently, the pan-spe-
cific methods, such as NetMHCpan (Jurtz, et al., 2017; Nielsen and
Andreatta, 2016), were developed which allow the HLA type independent
prioritization. In NetMHCpan, a neural network is firstly trained based on
multiple public datasets, then the binding affinity for a given peptide-
MHC complex is predicted according to the trained neural network, with
the polymorphic HLA types, e.g., HLA-A, HLA-B or HLA-C being con-
sidered. Even compared to HLA allele-specific approaches (Hackl, et al.,
2016; Trolle, et al., 2015), both NetMHCpan (Jurtz, et al., 2017) and
NetMHClIpan (Karosiene, et al., 2013) could perform remarkably better.
Although methods such as NetMHC or NetMHCpan were designed to pre-
dict peptide-MHC binding affinity, they were either considered as strong
indicators for neoantigens’ effectiveness (Harndahl, et al., 2012;
Lundegaard, et al., 2011; Rasmussen, et al., 2016), or were adopted as
important features in the state-of-the-art neoantigen predicting methods
such as Neopepsee and pTuneos (Kim, et al., 2018; Zhou, et al., 2019).
More recently, Wu et al. proposed a recurrent-neural-network based ap-
proach DeepHLApan which considered both pMHC binding and potential
immunogenicity, yet sequence information of both peptide and HLA were
still adopted as training features (Wu, et al., 2019).
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For all the existing neoantigen prediction methods, although several
evaluation criteria were proposed for a more fair and robust comparison
(Peters, et al., 2006; Trolle, et al., 2015; Wang, et al., 2008), independent
benchmark studies that can be used to recommend specific tools are still
lacking. More importantly, although there are abundant previous re-
searches indicating that somatic mutations, including point mutations,
gene fusions, and copy number abnormalities do not occur at random in
the perspective of genome 3D conformation (Berger, et al., 2011; Branco
and Pombo, 2006; Engreitz, et al., 2012; Mani, et al., 2009; Mathas, et al.,
2009; Meaburn, et al., 2007; Nikiforova, et al., 2000; Roix, et al., 2003;
Wijchers and de Laat, 2011), for which we also did a thorough study and
discovered the somatic co-mutation hotspot (SCH) in 3D genome (Shi, et
al., 2016), none of the existing neoantigen prediction methods considers
this spatial genomic information of somatic mutations, i.e., the DNA loci
of these mutations in the perspective of high order genome 3D confor-
mation. We believe that the 3D genome information could contain much
richer information compared to the existing amino acid sequence based
neoantigen prediction methods. Therefore, in this work, we retrospect the
DNA origin of the neoantigens, both immune-positive and negative, in the
context of the genome 3D conformation, and demonstrate some discover-
ies that worth paying attention to. We adopted the 3D genome information
into an ensemble peptide feature coding scheme, and developed a group
feature selection-based deep sparse neural network (DNN-GFS) model
that is customized and optimized for the neoantigen prediction task. We
also developed an off-the-shelf webserver that implements the DNN-GFS
method along with other machine learning methods; the webserver takes
sequencing result (vef file) and produces prioritized neoantigens as well
as some useful intermediate functions such as vcf annotation and candi-
date neoantigen enumeration, etc. The whole workflow is illustrated in
Fig. 1, where the adoption of 3D genome information, ensemble feature
coding, and the DNN-GFS algorithm are keys for distinguishing our neo-

antigen prediction from all the existing methods.

Fig. 1 Workflow of neoantigen therapy supported by 3D genome information. Left to
right: tumor sample collection from patient; Whole-exome sequencing and mRNA se-
quencing for somatic mutations calling and gene expression estimation (whether the mu-
tated DNA is expressed into mRNA and could potentially be translated into protein/peptide)
respectively; Hi-C data curation to obtain 3D genome information; candidate peptides de-
termined by NGS are generated and by combining 3D genome information immune-posi-
tive peptides are predicted machine learning methods; the top ranked peptides are screened
by conducting animal experiments; the final peptide penal can be applied back to the target
patient. This work aims to solve the tasks within the dashed red frame.

2. Methods

2.1 Immunogenicity data curation and reference genome
mapping

The neoantigen peptide sequences and the immune responses were col-
lected from the IEDB database under the T Cell Assay category (Vita, et
al., 2019). For the cross-validation experiments, we collected training data
before 2018 in IEDB; After collecting 337248 peptide records in the pri-
mary dataset, we performed filtering under Homo Sapiens and MHC-I
subtypes and restrained the peptide length 9, as well as merging identical
records and mapping to human reference genome hgl9. When mapping
the peptides to the reference genome, we first applied the PANDAS library
to create a data frame object for subsequent processing. Then we assigned
the column name by importing a name dictionary and filtered the dataset
so that the only entries left have Homo Sapiens as their hostname. The
dataset was further cleaned up by applying two functions we developed,
Letter check and Drop_legal, which checks for amino acid alphabet legit-
imacy. We developed a pipeline to query the BLAST (Boratyn, et al.,
2013) web server and map the gene names to chromosomes and starting
positions. The dataset was divided into 711 partitions where each partition
contains 100 sequences. To set up BLAST queries, we restricted the
search to Homo Sapiens using the entrez ID keywords and used the
PAM30 matrix to find matches; the gap costs were adjusted to regulate
gap penalty. We then queried BLAST iteratively. For each match, we
adopted the accession and raw bit score for the first hit. After obtaining
the accessions, we used the DAVID tool (Huang, et al., 2009) to obtain
the gene names composed with gene symbols and the chromosome posi-
tions are also obtained. The final results contain a tuple of peptides, HLA
subtype, chromosome number, and chromosome position. For identical
peptides with multiple immune experiments, we define peptides with pos-
itive rate > 80% as immune-positive samples and with positive rate < 20%
as immune-negative peptides. In the end, we obtained 3909 peptides, with
809 immuno-positive peptides and 3100 immuno-negative peptides. We
also collected a standalone validation dataset from IEDB dated after 2018
and performed the same operation mentioned herein. In the end, 430 vali-
dation peptides were obtained with 125 positive samples and 305 negative
samples.

2.2 Hi-C data curation & A/B compartment determination

For the chromatin 3D conformation data, we employed two well-known
Hi-C data resources (Dixon, et al., 2012; Rao, et al., 2015), and obtained
eight Hi-C datasets, i.e., hESC, IMR90, GM 12878, HUVEC, IMR90-Rao,
NHEK, K562, and KBM7. The Knight-Ruiz normalization (KR-norm)
was applied on both intra-chromosomal and the inter-chromosomal (ge-
nome-wise) Hi-C contact maps. Bin sizes of 40kb, 100kb, and 500kb were
adopted for intra-chromosomal contact frequency analyses, A/B compart-
ment analyses, and inter-chromosomal contact frequency analyses and
chromatin 3D modeling. To determine the compartment activeness (com-
partment A: active, compartment B: inactive) of each chromosome bin,
we used individual chromosome Hi-C contact maps. We first diagonal
normalized each contact map by dividing the contact frequencies by their
corresponding off-diagonal mean. Then we computed the Pearson corre-
lation coefficient (PCC) matrices for each chromosome, and the compart-
ment type was jointly determined by the sign of the eigenvector corre-
sponding to the first eigenvalue of the PCC matrices and the signal of the
epigenetic marker H3k4mel.

2.3 Chromatin 3D modeling

We employed molecular dynamics (MD) and developed a human genome
3D conformation modeling approach with resolution 500kb (bin size) for
all eight Hi-C datasets. The bins were coarse-grained as beads and intact
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genome was represented by bead-on-the-string structures consisting of 23
polymer chains. The beads’ spatial positioning is affected by both chro-
matin connectivity that constrains linearly neighboring beads in close 3D
proximity and chromatin activity that ensures active regions tend to be
located closer to the nucleus center. The chromatin activity was deter-
mined according to compartment degree that can be directly calculated
from Hi-C matrix as described above and also in previous work (Xie, et
al., 2017). Based on compartment degree index, beads were assigned dis-
tance values with respect to the nuclear center; the conformation of chro-
matin was then optimized from random structures with molecular dynam-
ics approach by applying bias potential to satisfy these distance con-
straints. For each cell linage, 300 feasible conformation structures were
optimized from random ones to reduce possible variation for further anal-
ysis.

2.4 Deep sparse neural network methods

The deep feedforward networks, also known as multilayer perceptrons
(MLPs) were employed in this work as the basic neural network architec-
ture (Goodfellow, 2016). For a single unit, its basic form is y=f (x; 0),
where x is the input, y is the output, and 0 represents the parameters of the
network that need to be optimized by adaptable methods. For a single mid-
dle layer neural network, a generic form can be given as:

i = & (WX, +b,) (1)

where {Wj, by} are the optimized parameters of the layer, corresponding
to 0 in basic form, and g(.) is the activation function of the layer for which
we chose the widely adopted linear unit (ReLU) and the sigmoid unit in
our model. Their function forms are g(z)=max {0, z} and g(z)=0(z); X is
the input and yy is the output. Note that an important prerequisite in our
model is X+1=Yi, which makes all layers form the whole network, and spe-
cially, there is no input x for input layer. In order to obtain a set of adapt-
able {Wj, by}, the network should be trained multiple times by minimizing
the regularized objective function J:(Goodfellow, 2016)

J(0:X,y) =J(0;X,y) + AR(0) @)

In practice, only the weights (W) of 0 at each layer are penalized, and
to simplify the equation, 8 can be replaced by w:(Goodfellow, 2016)

J(w;X,y) = J(W; X,y) + AR(W) 3)

where J(w;X,y) is the standard objective function, R(w) is the parameter
norm penalty, and A € [0, 0] is a hyper parameter that weights the two
terms. Larger values of A correspond to more regularization and setting
A=0 results in no regularization. In this work, we set J(.) as the cross-en-
tropy loss. Many effective regularization strategies have been previously
studied. The most common regularization strategy is the L, norm penali-
zation, which is usually adopted to avoid overfitting. Its general form is:

R(w) =l wl? 4)

also known as Tikhonov regularization or ridge regression. Another com-
mon practice is the L; regularization, which has a similar presentation:

R(w) =l wil = Zwi‘ (5)

that is the sum of absolute values of all weights. Particularly, the LASSO
(least absolute shrinkage and selection operator) is a typical model that
uses a L, penalization. The L, regularization can not only avoid overfitting,
but also obtain a sparser solution than L,, by making a subset of the
weights to become zero (or very close to zero), suggesting that the corre-
sponding features may safely be discarded. Due to this important property
and the ability of preventing overfitting, L, regularization is used in feature
selection scenario extensively (Goodfellow, 2016). Note that recent study
has revealed that sparsity is the key to imitate human brain for the neural
network (Dettmers and Zettlemoyer, 2019).

Apparently, the regularization can prevent overfitting, but its contribu-
tion is not limited to that. Scardapane et al. (Scardapane, et al., 2017) con-
sidered group-level sparsity, a weight grouping strategy was achieved by
grouping all outgoing connections from a single neuron, which may in-
duce the property of pruning the corresponding neuron from the network.
As introduced in group lasso (Simon and Tibshirani, 2012), group sparse
regularization, e.g., L, norm, can be written as:

R, (W)U ZG:\/@II gl, (6)

where |g| is the dimensionality of the vector g, vector g corresponds to
weight matrix W, every g is one row of a matrix W, denoting all outgoing
connections from an input neuron. G is the set of g, g€G, which is the
result of grouping W by row. Furthermore, sparse group Lasso (SGL) pe-
nalization was proposed by combining Lasso and group Lasso
(Scardapane, et al., 2017; Simon, et al., 2013; Simon and Tibshirani, 2012)

Ry (W)O R, (W)+R, (W) 7

which can increase the sparsity above group sparse regularization. In ad-
dition, the hyperpapermeter can be used to weight the two terms, that is
(Friedman, et al., 2010):

R WL (1-a)R, (W)+aR, (W) ®)

where o=1 corresponds to the L, term and =0 corresponds to the L, ; term.
This form gives users more choice for their problem.

2.5 Group feature selection based DNN (DNN-GFS)

Traditional DNN and some relevant sparse DNNs have a good perfor-
mance but remain to be improved in many research field (Goodfellow,
2016). When real problems are handled by deep learning, there are usually
some prior knowledge neglected, leading to an unideal performance. If we
only consider the datasets, it is difficult to obtain the optimal model and
the corresponding parameters we expect. Moreover, the situation will get
worse with decreasing sample size, especially in biology problems with
more features than samples. But when the prior information is imposed on
models, the model will be closer to our expectation and generalization may
be improved.

For our neoantigen prioritization problem, based on the existing sparse
DNN models (Friedman, et al., 2010; Simon, et al., 2013; Simon and
Tibshirani, 2012), we develop a new regularization strategy that aims to
tackle both feature selection and the group sparse regularization challenge,
which is an extension of the L, and L, penalization. Specifically, the fea-
ture grouping nature is considered in group sparse regularization, forming
a new regularization strategy. We term it Group Feature Selection (GFS)
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regularization. In the feature vector of our neoantigen prediction problem,
some groups contain multiple features and some groups contain a single
feature. In the former cases, features of the same group need to be either
all selected or all rejected, simultaneously. This means that all outgoing
connections from all neurons in one group should be either simultaneously
all zeros, or all non-zeros (Scardapane, et al., 2017). The group feature
selection regularization can be written as follows:

Ros(W0 D |F | fiEl I g, ©)

geGy

where vector g is the average of the squares of g vectors of a feature group,
which can efficiently reduce computational complexity. |g| is the dimen-
sionality of the vector g, and Gy is the result of grouping again by feature
group information based on G (groups of group lasso). As Fig. 2 a illus-
trates, some features form new groups. |F;| is the corresponding feature
number matrix of G;. Note that, when a group contains a single feature,
the expression can be simplified as L, ;. Moreover, for one-dimensional
groups, it can also be reduced to the standard Lasso, while for all features
in a new group, it is closer to L, regularization. These regularization terms
other than L, are convex but non-smooth, since their gradient is not de-
fined when ||g||;=0, which is illustrated in Fig. 2c.

Inpan Layee Widden Lier Ouapt Layer

Fig. 2. The group feature selection based deep neural network method (DNN-GFS). a
illustration of features belonging to groups of different sizes. All features belong to at most
one group. A group can contain a single feature or multiple features. b Illustration of the
DNN-GFS architecture and the group feature selection effect. ¢ Illustration of the geometric
principles of different regularization terms applied on the weighted neural network wiring

and 2D projection from three representative views. F denotes Front view in ¢ (1).

The GFS devised here is a flexible regularization strategy as G, can be
customized according to different preferences to adapt various require-
ments. Furthermore, |Fj| is also chosen skillfully in this work. i.e. |F| can
be replaced or rectified by other coefficients, which is able to enlarge or
narrow the differences among groups. When imposing Rgrs(W) on the W,
we achieve the feature selection effect as illustrated in Fig 2b. Results that
are based on other regularization strategies are showed in Fig. S5 and S6
of supplemental materials, and it is demonstrated that only GFS can
achieve the group feature selection effect. The detailed comparisons in-
cluding network structures (Fig. S7), sparse effects of different strategies
(Fig. S8) and tuning processes (Fig. S9-S14) are also given in supple-
mental materials. The geometric interpretations of different approaches in
3D space and 2D projection from three representative views is shown in
Fig 2c, and more details can be found in supplemental materials. Similar
to L,, GFS achieves sparsity and avoids overfitting, and moreover, the
performance is improved by exploiting group information.

3. Results

3.1 The distribution of neoantigens’ DNA loci in 3D genome

For all the peptides (both immuno-positive and immuno-negative) in-
cluded in this study, we first generated a pool that contains all the peptide
pairs. Then we classified all the peptide pairs in this pool into three cate-
gories: positive-positive pairs (Pos-Pos), negative-negative pairs (Neg-
Neg), and positive-negative pairs (Pos-Neg). For each peptide pair, we
computed contact frequencies for each Hi-C datasets, i.e., hESC, IMR90,
GM12878, HUVEC, IMR90-Rao, NHEK, K562, and KBM?7, respec-
tively(Dixon, et al., 2012; Rao, et al., 2015). The contact frequency distri-
bution of the three categories are shown in Fig. 3a. It is demonstrated that
on all the Hi-C datasets, immune-positive peptide pairs are more proxi-
mate to each other comparing to immune-negative peptide pairs; the cor-
responding T-test and Wilcoxon rank sum test p-values, i.e., Pos-Pos vs.
Neg-Neg, are all smaller than 10° and 10°'%, respectively. This indicates
that the immuno-positive peptide’s DNA loci tend to be more proximate
in genome spatial space. We then computed the A/B compartment type
(A: active; B: inactive) for each chromosomal region (bin), based on both
Hi-C dataset and epigenetic markers, shown in Fig. 3b and Fig. 3c. The
whole genome contact maps of the eight Hi-C datasets are shown in Fig.
S2 and the A/B compartment results of each chromosome are shown in
Fig. S3 of Supplementary Materials. Then we assigned the corresponding
DNA loci of the positive and negative peptides with their A/B compart-
ment type. We found that in certain chromosomes, immune-positive neo-
antigens tend to be located on compartment A, comparing to immuno-
negative neoantigens, as shown in Fig. 3d and Fig. S4 of Supplementary
Materials. This indicates that the DNA loci of the immuno-positive or neg-
ative peptides are positively correlated to chromosome compartment type,
either A or B, depending on which chromosome.

We then developed a novel molecular dynamic based chromatin 3D
modeling method and mapped the immuno-positive and negative pep-
tides’ corresponding chromosomal loci to the constructed 3D genome
structure and calculated their radius distance to the nucleus center, as
shown in Fig. 3e. We found that the immuno-positive peptide’s corre-
sponding loci tend to locate closer to the nuclear periphery (more far away
from the nucleus center), compared to the immuno-negative ones, as Fig.
3f demonstrates. We found that by adopting the radius position infor-
mation, the prediction power of the existing methods such as netMHCPan
and netMHC can be elevated. In detail, prediction scores defined as
Yprea = Snetmucpan X 72 OF Ypreq = Spermuc X T2 can significantly bet-
ter discriminate the immune-positive peptides from the immune-negative
peptides, comparing to using netMHCPan or netMHC alone. We thus be-
lieve that the DNA loci’s radius positions of the immuno-positive and im-
muno-negative peptides are significantly differently distributed and can
play an important role in predicting pMHC-I immunogenicity.

3.2 Peptide encoding and predictions
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A reasonable and proper peptide encoding strategy is key to the down-
stream predictions as it can include and quantify more features that are
plausibly related to the outcome. But by including more features into the
prediction model, we also increase the risk of adding noisy (irrelevant)
features into the feature pool and making the prediction prone to overfit-
ting. To overcome this dilemma, we propose to first enumerate as many
features as possible and then perform feature selection within the training
process of the prediction modeling. Previous neoantigen prediction meth-
ods adopted one or more coding schemes such as amino acid (AA) com-
position, AA sparse coding, BLOSM, BLOMAP, etc. In this work, based
on the above observation that chromatin 3D information may significantly
contribute to discriminating immuno-positive peptides from immuno-neg-
ative ones, we adopted this piece of information in the peptide encoding
strategy. In detail, the 3D coordinates and the radius positions of the Hi-C
data based 3D modeling results, the HLA subtype encoding, the amino
acid compositions, the sparse coding, BLOMAP coding, and BLOSUM
coding of the peptides, the AAindex2 coding of the peptides are adopted
and collected as features. At the end, we obtained a training matrix with
3909 peptides and 5459 features, shown in Fig. 4a. Note that as Fig. 4a
demonstrates, there is no obvious pattern that a single feature or a group
of features are correlated to the true label vector.
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Fig. 3 The DNA loci of neoantigens in 3D genome. a Distribution of proximities between

peptide pairs of different types. Immuno-positive peptide pairs tend to be more proximate
to each other comparing to immuno-negative ones, while immuno-positive-negative pairs
lie in between (all the P-values of the T-test comparison are smaller than 10°°). b Illustra-
tion of Hi-C submatrices of compartment A and B on chromosome 1. ¢ Illustration of ei-
genvalues of compartment A (red) and B (blue) on chromosome 1. d Comparison of per-
centages of immuno-positive peptide belonging to compartment A (red) and immune-neg-
ative peptide belonging to compartment A (blue). e The 3D genome molding results based
on hESC and IMR90 Hi-C datasets and the distribution of the DNA loci of immuno-positive

(yellow to red color spectrum, depending on positive occurrence on the same 500k bin) and

immuno-negative peptides (green). f Radius position comparison of the immuno-positive
and negative peptides’ DNA loci 3D genome. The positive loci (red) are significantly closer
to the nuclear periphery (more far away from the nucleus center), compared to the immuno-
negative ones (green); they are all closer to the nuclear periphery comparing to the back-

ground distribution (blue). All T-test P-values are smaller than 10,

In theoretical deep neural network (DNN) studies, there have been
plenty of evidences pointing to the fact that the majority of weights in most
deep networks are redundant and may jeopardize the prediction accuracy
(Han, et al., 2015; Sainath, et al., 2013; Scardapane, et al., 2017). It is
possible to learn only a small percentage of the weights, while still pre-
serving the prediction accuracy (Han, et al., 2015). Nevertheless, studies
focusing on the input feature selection based neural network is limited.
Moreover, in the neoantigen prediction problem, the features that encode
the peptides come in groups, e.g., the 3D coordinates <x,y,z> of a pep-
tide’s DNA loci are in one group, or the sparse coding for an amino acid
is a group of 20 binary features, etc.. Therefore, when imposing feature
selection on the DNN, it should be in a group fashion, i.e., features be-
longing to the same group should be either all selected or all rejected. The
group feature selection based deep neural network (DNN-GFS) is intro-
duced in detail in the Methods section.

a
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T

Fig. 4 Prediction results comparison. a The leftmost column vector indicates the true
labels of the immuno-positive (yellow) and immuno-negative (green) for each of the 3909
peptides. The matrix heatmap indicates the column-wise normalized feature values of the
3909 peptides by 5459 features. b and ¢ are the ROC plot comparison for DNN-GFS, DNN,
SVM, LR, KNN, Neopepsee, pTuneos, DeepHLApan, NetMHCpan, NetMHC and IEDB-
immuno, under 5-fold and leave one out (LOO) cross-validation respectively. d and e are
the precision-recall plot comparison for different prediction methods under 5-fold and leave
one out (LOO) cross-validation respectively. f and g are the prediction score (normalized)
distribution comparison for immuno-positive (left violins) and immuno-negative peptides

(right violins); all the P-values of the T-tests are equal to or very close to zero.

To compare the prediction efficacy, in addition to DNN-GFS, we also
applied traditional L2 norm deep neural network (DNN), support vector
machine (SVM), logistic regression (LR), k-nearest neighbor (KNN) clas-
sifiers on the 5459 encoded feature matrix. Moreover, we included the
widely adopted methods IEDB-immunogenicity, NetMHCpan and
NetMHC into the comparison, as well as the most recent popular methods
Neopepsee, pTuneos and DeepHLApan. The comparison was conducted
in the framework of both cross-validation (5-fold or leave-one-out) and
validation alone. The ROC curves are shown in Fig. 4 b, d and f; the pre-
cision-recall curves are shown in Fig. 4 ¢, e, and g; the prediction score
distributions for the immuno-positive and negative samples are shown in
Fig. 4 h, i and j. Note that in the ten prediction methods, the KNN and LR
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output binary values, so for precision-recall curve comparison, we ex-
cluded them. Detailed prediction statistics are shown in Table S1-1, S1-2,
and Table S2. As the comparison results demonstrate, the deep learning-
based approaches DNN-GFS and DNN outperform the rest of the methods
and DNN-GFS, due to its feature selection potency, is better than tradi-
tional DNN. The SVM, Neopepsee, pTuneos and DeepHLApan are also
effective methods and ranked second tier among the ten methods. Alt-
hough NetMHC and NetMHCpan were initially designed to predict pep-
tide-MHC binding affinity, their capability in predicting neoantigen can-
not be neglected and they are ranked third tier. The logistic regression and
KNN classifiers, although performs reasonably well in cross-validation
experiments, are not very stable when applied on the standalone validation
set. The IEDB-immunogenicity prediction method, does not catch up with
other prediction methods, possibly due to the fact that the immunogenicity
scoring function is too simple to capture subtle sequence features that only
advanced non-linear machine learning methods can. We also implemented
other well-known sparse learning neural network models and compared
their efficacy with DNN-GFS, as introduced in table S1 and S2 of Supple-
mentary Materials, and the results indicate that DNN-GFS outperforms
existing sparse neural network methods in terms of prediction statistics.

3.3 Features selected by DNN-GFS

Based on the whole training dataset, the DNN-GFS model selected 2693
features out of the 5459 features, achieving a feature sparsity ratio 49.33%.
Features belonging to the same group are either all selected or all ex-
cluded. Among the selected features, all the 3D genome related features
are selected, including radius position, HLA subtype, 3D coordinates of
peptides’ DNA loci, etc. For HLA subtype-encoding, all features are se-
lected and cross-validation performance is improved about 3%~4% com-
pared to dataset of not containing HLA subtype information, which illus-
trates their importance. For 9 AA peptides, the sparse coding of the pep-
tide’s position 1 to 5 and 7 to 8 are all selected but not position 6 and 9.
BLOSUM coding features are all excluded while BLOMAP coding fea-
tures for AA position 1 to 4 are selected. Except AA position 5, other side
chain polarity features are all selected, and side chain charge features for
position 1 to 3 are selected. For the hydropathy features, AA position 5
and 9 are selected, and for molecular weight, feature of AA position 2, 6,
and 9 are selected. Other selected features are mostly AAindex2 related
features. The DNN-GFS model thus suggests that the combination of these
grouped features play an important role in building the prediction model
and we believe that the importance of these features in neoantigen predic-
tion is worth further investigating. Detailed feature selection and model
sparsity analyses can be found in Supplementary Materials.

4. Discussion

From the association study of peptides’ immunogenicity and their 3D ge-
nome information, we found that immuno-positive peptides’ DNA loci
tend to be more proximate to each other and locate closer to the nuclear
periphery, i.e., greater radius value to the nuclear center, comparing to im-
muno-negative ones. This implies that if a nonsynonymous mutation hap-
pens closer to some nonsynonymous mutation that were already proven to
produce immuno-positive peptides, or if it is located closer to the nuclear
periphery, the mutation is more likely to generate immuno-positive neo-
antigens. This association can be further enhanced if the A/B compartment
information of the mutation is provided. In practice, the whole genome
spatial organization is more conserved across different cell types and even
in mutated cancer cells. While A/B compartment characters of certain

chromatin regions may flip across cell lines or in cancer cells, i.e., more
transient, we only adopted the 3D coordinates and radius position of pep-
tides’ DNA loci in the prediction model, but if the A/B compartment in-
formation can also be included if the real time cancer cell’s chromatin 3D
experiment can be performed in the future.

To explain such intriguing relationship between 3D genome and the
neoantigens’ immunogenicity, factors of at least three aspects should be
considered: Firstly, the non-random nature of coding sequence distribu-
tion in 3D genome: during evolution, wild type coding sequences where
neoantigens of different immunogenicity characters originate are located
in different regions of the nucleus (Gorkin, et al., 2019; Svozil, et al.,
2008). Secondly, the gene expressions affected by 3D genome: the mis-
sense mutations need to be transcribed to generate potential neoantigens
and the gene expressions are known to be affected by high order genome
organization (Gorkin, et al., 2014). Thirdly, the non-random occurrences
of somatic mutations in 3D genome: previous discoveries indicated that
somatic mutations may not occur at random, and we systematically stud-
ied and discovered in our prior work that co-mutations may occur in a
spatial clustering fashion in genome 3D space (spatial co-mutation
hotspot, SCH), possibly due to abnormal chemical concentration or a sys-
tematic DNA repair protein failure at certain chromatin 3D loci (Shi, et
al., 2016). This leads to a straightforward hypothesis that mutations in dif-
ferent chromosomal regions may carry different immunogenicity charac-
ter, affected by wild type coding sequences, somatic mutation patterns,
and gene transcriptions. We thus believe that it is worth considering these
aspects when studying the underlying mechanism of how high order ge-
nome organization affect neoantigens’ immunogenicity. For example, to
explain our discovery that immuno-positive neoantigens’ corresponding
DNA sequences tend to locate closer to nucleus periphery (greater radius
to the nuclear center), one may consider the fact that their transcribed mis-
sense mRNAs enter cytoplasm more easily (a shorter path from transcrip-
tion loci to nuclear envelope). Core genes during evolution, if mutated,
require stronger TCR responses, because otherwise it causes greater can-
cerous impact, and these genes are usually expressed across cell types and
their distribution in 3D genome also worth further study. Therefore, it is
also worth to investigate the relationship between neoantigen immunogen-
icity and gene evolutionary essentiality in the perspective of high order
genome conformation.

‘When building the prediction models, due to the fact that most MHC-I
presented peptides are of 9 amino acid long, the features we used to encode
the peptides are all based on 9mer peptides, and the predictions are tar-
geted on the 9mers as well. Nevertheless, our approach is not restricted to
9mers and can be easily extended to peptides of other length. For example,
if a target peptide is longer than 9 amino acids, a sliding window of length
9 can be used to enumerate all possible 9mers, and the prediction score
can be estimated by taking the maximum or average of each individual
scores. In the cases where a target peptide is shorter than length 9, we only
need to consider length 8 as peptides presented by MHC-I shorter than or
equal to length 7 is very rare. So, for the 8mer cases, we can compensate
an extra amino acid to the beginning or to the end of the sequence and
enumerate all possible peptides and again take the maximum or average
of each individual one’s prediction score.

Most existing machine learning algorithms for the classification prob-
lem usually assume that the feature across different training examples is
independent and obey the same distribution, and the links among them are
usually neglected which is not reasonable for an unbalanced problem. In
many real-world applications however, the small sample issue is ubiqui-
tous and the features are usually correlated. The DNN-GFS developed
here provides a new way of exploiting these links for feature selection in
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addition to traditional neural networks. In the machine learning area, quite
a few studies have exploited introducing sparse regularization into deep
neural network framework, but most of these models only focus on reduc-
ing complexity of the network as a whole, resulting in pruning edges and
nodes of the network, but not specifically targeting on the input layer, i.e.,
the input feature vector. In this work therefore, due to the scenario that
peptides are represented in an ensemble encoding which may introduce
noise or redundant features into the learning process, the proposed DNN-
GFS model focus on reducing the features of the input layer. Moreover,
due to the nature that certain features are grouped and should be either all
selected or all rejected, we considered selecting features in a grouped fash-
ion in the model, by imposing group-specific regularization. As shown in
Fig. 4, the DNN-GFS model not only exceeds the widely adopted methods
NetMHCpan and NetMHC, but also exceeds other existing machine learn-
ing methods such as DNN, LR, SVM, and KNN that are performed based
on the same 5459 feature encoding strategy. Moreover, DNN-GFS outper-
forms other sparse learning DNN models as shown in table S3-S10 of Sup-
plementary Materials. This agrees with our conjecture that DNN-GFS is a
better DNN heuristic designed specifically for the neoantigen prediction
in the specific 5459 encoding scenario. Although DNN-GFS outperforms
the widely adopted NetMHCpan and NetMHC methods to a large extend,
due to its ability of capturing subtle nonlinear relationships of features in
a grouped fashion, the prediction power can be further improved once
more immunogenicity training data are provided, especially for each HLA
subtypes. We also believe that DNN-GFS can also be applied in other
problems where group feature selection is demanded.

To facilitate practical usage, we developed a webserver deepAntigen
(Fig. S1). In the current version, if the end user only provides sequencing
result vef file, the candidate peptides will be generated by only considering
nonsynonymous point mutations, i.e., 9mer peptides surrounding the mu-
tated amino acid, while small insertions or deletions (INDEL) can also be
considered as rankPep function is independent and user can provide their
own plausible peptides for prediction. For the prediction method, we sug-
gest to use DNN-GFS as its power of discriminating immuno-positive
peptides from immuno-negative ones are most potent, but other machine
learning approaches can also be considered and the consensus result
maybe of more interest to an end user.

Although the mechanism of under what conditions certain specific ne-
oantigens activate T cell immunogenicity is still under studying, this work
focuses on the machine learning challenge of effectively and efficiently
predict/prioritize immuno-positive neoantigens. We found that the spatial
distributions of the immuno-positive and immuno-negative peptides’ cor-
responding DNA loci follow different pattern, i.e., immuno-positive pep-
tides’ DNA loci tend to be located more proximate to the nuclear periphery
and tend to be more clustered in 3D genome space, compared with im-
muno-negative peptides’ DNA loci; the peptides’ DNA loci distribution is
also related to the A/B compartment of the chromatin. It is therefore sali-
ent that utilizing the 3D genome information of the peptides’ correspond-
ing DNA loci can significantly contribute to the prediction of immuno-
positive neoantigens. To utilize the most of 3D genome information, we
customized a group feature selection based deep neural network (DNN-
GFS) model, which takes not only the 3D genome information, but also a
combinatorial peptide sequence features represented by an ensemble pep-
tide encoding strategy. The DNN-GFS selected 3D genome related fea-
tures as well as some other important peptide sequence features and posi-
tion specific amino acid features; the comparison studies demonstrated
that DNN-GFS outperforms the widely adopted methods NetMHCpan and
NetMHC, and other machine learning prediction models including DNN,
SVM, LR, and KNN. DNN-GFS is implemented in the webserver
deepAntigen along with other machine learning methods. To the best of

our knowledge, this is the first time that the DNA origins’ 3D genome
perspective is considered in the neoantigen study and we hope that our
work contributes novel insights to neoantigen study and eventually bene-
fits personalized cancer immunotherapy. Although close-up studies are
needed to uncover the relationship between 3D genome and neoantigen
immunogenicity, in this work, we only demonstrate the contributes of 3D
genome information in more accurate neoantigen prediction, as well as
providing plausible explanation that it is evolution that places sequences
of different immunogenicity characters in different locations in the 3D ge-
nome while different locations are prone to mutations of different causes.
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