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Abstract 
Motivation: The mutations of cancers can encode the seeds of their own destruction, in the form of T 

cell recognizable immunogenic peptides, also known as neoantigens. It is computationally challenging 

however, to accurately prioritize the potential neoantigen candidates according to their ability of acti-

vating the T cell immuno-response, especially when the somatic mutations are abundant. Although a 

few neoantigen prioritization methods have been proposed to address this issue, advanced machine 

learning model that is specifically designed to tackle this problem is still lacking. Moreover, none of the 

existing methods considers the original DNA loci of the neoantigens in the perspective of 3D genome 

which may provide key information for inferring neoantigens’ immunogenicity. 

Results: In this study, we discovered that DNA loci of the immuno-positive and immuno-negative MHC-

I neoantigens have distinct spatial distribution patterns across the genome. We therefore employed the 

3D genome information along with an ensemble pMHC-I coding strategy, and developed a group fea-

ture selection based deep sparse neural network model (DNN-GFS) that is optimized for neoantigen 

prioritization. DNN-GFS demonstrated increased neoantigen prioritization power comparing to existing 

sequence-based approaches. We also developed a webserver named deepAntigen 

(http://yishi.sjtu.edu.cn/deepAntigen) that implements the DNN-GFS as well as other machine learning 

methods. We believe that this work provides a new perspective towards more accurate neoantigen 

prediction which eventually contribute to personalized cancer immunotherapy. 

Availability: Data and implementation are available on webserver: http://yishi.sjtu.edu.cn/deepAntigen 
Contact: yishi@sjtu.edu.cn, menglum@scnu.edu.cn, darlt@sjtu.edu.cn, heguang@sjtu.edu.cn, 
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1. Introduction  

The approval of several immunotherapies has led to dramatic changes in 

cancer therapy. In a variety human malignancies, therapeutic efficacy was 

enhanced by immunotherapies via boosting the endogenous T cell’s abil-

ity to destroy cancer cells (Schumacher and Schreiber, 2015). The ‘check-

point inhibitors’ therapies work by blocking proteins that act as molecular 

breaks for T cells. With the breaks removed, T cells can better undertake 

their job to kill cancer cells. Despite the great success of checkpoint inhib-

itors, still many patients do not respond to the agents, and many that do 

temporarily respond, eventually relapse. Moreover, checkpoint inhibitors 

do not fully take advantage of the T cell’s exquisite specificity, one of its 

most important characteristics (Sompayrac, 2019). This led many re-

searchers pay more attention to the new immunotherapy strategies against 

tumor known as neoantigen therapies. T cells are potent at killing when 

they recognize ‘foreign’ antigens which could be some protein fragments 

from an invading virus or bacteria. The key ability of T cells in distin-

guishing foreign antigens from self prevents autoimmunity which on the 

contrast makes them less potent in recognizing tumor cells because they 

are our own but abnormal cells. The T cells overcome this dilemma in two 

ways. First, they tend to respond to tissue-specific antigens (TSAs) which 

are specific amino acid fragments produced by cells of certain types. Sec-

ond, T cells respond to neoantigens which are small peptides generated in 

tumor cells containing high level of DNA mutations. The nonsynonymous 

mutations can be entirely absent from the human genome, leading the can-

cer cells vulnerable to T cells as they look ‘foreign’ (Sompayrac, 2019). 

In several clinical practices, it has been demonstrated that endogenous 

T cells with mounted cancer-killing T cell receptor (TCR) are able to rec-

ognize epitopes which are composed of the peptides displayed on major 

histocompatibility complexes (MHCs) on the surface of the cancer cells 

(Ott, et al., 2017; Schumacher and Schreiber, 2015). With the help of DNA 

and RNA sequencing technology, it has been revealed that tens to thou-

sands of different somatic mutations can be generated during cancer initi-

ation and progression, depending on different cancer types (Castro, et al., 

2019; Prior, et al., 2019; Volkov, et al., 2019). Most of these mutations are 

often caused by genomic instability within the tumor cells and lead to no 

obvious cell growth advantage; they are also known as passenger muta-

tions. On the contrast, a small percent of these mutations are known as 

driver mutations which interfere with normal cell regulation and help to 

drive cancer growth and resistance to targeted therapies (Yarchoan, et al., 

2017). Both passenger and driver mutations can cause tumor to express 

abnormal proteins or polypeptides that cannot be found in normal cells as 

they can be nonsynonymous mutations that alter protein-coding se-

quences. When cell metabolize, the proteins possessing abnormal se-

quences are cut into short peptides and are presented as epitopes on the 

cell surface by the MHC (also known as human leukocyte antigen, HLA, 

in human case) molecules, which have a chance to be recognized by T 

cells as foreign antigens (Yarchoan, et al., 2017). An effective neoantigen 

which leads to the final immunological response, is determined by many 

factors. For instance, Dintzis et al. found that size-fractionated linear pol-

ymers of acrylamide substituted with hapten can affect the immunogenic-

ity triggering (Dintzis, et al., 1976). Other factors such as peptide degra-

dation and transportation, peptide-MHC binding affinity and stability, and 

pMHC-TCR interaction should also be considered (Blaha, et al., 2019). 

Based on the above knowledge, in ideal situation, after the DNA se-

quencing procedure, potential neoantigens can be synthesized in vitro and 

their efficacy can be validated in vivo via either cancer cell-line or animal 

model, before conducting in clinical practice (Schumacher and Schreiber, 

2015; Yarchoan, et al., 2017). Indeed, the cancers with a single dominant 

mutation can often be effectively treated by focusing on the driver muta-

tion (O'Brien, et al., 2003; Yarchoan, et al., 2017). Nevertheless, in many 

other cancer situations, the somatic mutations are usually abundant, which 

lead to a computationally challenging task to efficiently prioritize the po-

tential neoantigen candidates according to their ability to activate the T 

cell’s immuno-response (Hackl, et al., 2016). In the past decade, many 

prediction methods have been proposed to address the neoantigen priori-

tization problem (Jurtz, et al., 2017; Lundegaard, et al., 2008; Nielsen and 

Andreatta, 2016). These methods can be categorized into two major clas-

ses: the protein spatial conformation-based approaches which consider the 

pMHC and T cell receptor (TCR) 3D structures, and the protein sequence-

based approaches which consider the amino acid combinatorial characters. 

For the protein spatial conformation-based approaches, when high quality 

pMHC 3D structures are available, methods such as molecular dynamic 

(MD) can be adopted to explore the complex interaction between TCR and 

pMHC (Blevins, et al., 2016; Riley, et al., 2018; Wang, et al., 2017). If 

high quality pMHC spatial information is lacking, by sacrificing compu-

tational complexity and spatial model accuracy, computational pMHC 

modelling can be adopted, followed by 3D to 1D feature transformation 

and machine learning approaches (Riley, et al., 2019). Most neoantigen 

prediction methods belong to the sequence-based class because they can 

usually be set up efficiently (Gupta, et al., 2016; Hackl, et al., 2016), and 

there are much larger data sets available for training and validation (Vita, 

et al., 2019; Zhang, et al., 2011). 

Early sequence-based methods such as BIMAS (Parker, et al., 1994) 

and SYFPEITHI(Schuler, et al., 2007) utilized the position-specific scor-

ing matrices (PSSMs), which are defined from experimentally confirmed 

peptide binders of a particular MHC allele (Hackl, et al., 2016). More so-

phisticated approaches based on machine learning techniques were later 

developed which were demonstrated to perform better than the PSSM-

based methods; these approaches capture and utilize the nonlinear nature 

of the pMHC-TCR interaction. In recent years, consensus approaches such 

as CONSENSUS (Moutaftsi, et al., 2006) and NetMHCcons (Karosiene, 

et al., 2012) were exploited which combine results of multiple neoantigen 

prediction tools, aiming to obtain more robust and accurate outcomes, and 

their efficacies were supported by experimental results. Nonetheless, the 

performance gain of these methods is determined by the weighting scheme 

among different prediction components, which lead to increased compu-

tational complexity (hyper-parameter tuning). Because the peptide MHC 

binding can be affected by HLA allele variety, most recently, the pan-spe-

cific methods, such as NetMHCpan (Jurtz, et al., 2017; Nielsen and 

Andreatta, 2016), were developed which allow the HLA type independent 

prioritization. In NetMHCpan, a neural network is firstly trained based on 

multiple public datasets, then the binding affinity for a given peptide-

MHC complex is predicted according to the trained neural network, with 

the polymorphic HLA types, e.g., HLA-A, HLA-B or HLA-C being con-

sidered. Even compared to HLA allele-specific approaches (Hackl, et al., 

2016; Trolle, et al., 2015), both NetMHCpan (Jurtz, et al., 2017) and 

NetMHCIIpan (Karosiene, et al., 2013) could perform remarkably better. 

Although methods such as NetMHC or NetMHCpan were designed to pre-

dict peptide-MHC binding affinity, they were either considered as strong 

indicators for neoantigens’ effectiveness (Harndahl, et al., 2012; 

Lundegaard, et al., 2011; Rasmussen, et al., 2016), or were adopted as 

important features in the state-of-the-art neoantigen predicting methods 

such as Neopepsee and pTuneos (Kim, et al., 2018; Zhou, et al., 2019). 

More recently, Wu et al. proposed a recurrent-neural-network based ap-

proach DeepHLApan which considered both pMHC binding and potential 

immunogenicity, yet sequence information of both peptide and HLA were 

still adopted as training features (Wu, et al., 2019). 
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For all the existing neoantigen prediction methods, although several 

evaluation criteria were proposed for a more fair and robust comparison 

(Peters, et al., 2006; Trolle, et al., 2015; Wang, et al., 2008), independent 

benchmark studies that can be used to recommend specific tools are still 

lacking. More importantly, although there are abundant previous re-

searches indicating that somatic mutations, including point mutations, 

gene fusions, and copy number abnormalities do not occur at random in 

the perspective of genome 3D conformation (Berger, et al., 2011; Branco 

and Pombo, 2006; Engreitz, et al., 2012; Mani, et al., 2009; Mathas, et al., 

2009; Meaburn, et al., 2007; Nikiforova, et al., 2000; Roix, et al., 2003; 

Wijchers and de Laat, 2011), for which we also did a thorough study and 

discovered the somatic co-mutation hotspot (SCH) in 3D genome (Shi, et 

al., 2016), none of the existing neoantigen prediction methods considers 

this spatial genomic information of somatic mutations, i.e., the DNA loci 

of these mutations in the perspective of high order genome 3D confor-

mation. We believe that the 3D genome information could contain much 

richer information compared to the existing amino acid sequence based 

neoantigen prediction methods. Therefore, in this work, we retrospect the 

DNA origin of the neoantigens, both immune-positive and negative, in the 

context of the genome 3D conformation, and demonstrate some discover-

ies that worth paying attention to. We adopted the 3D genome information 

into an ensemble peptide feature coding scheme, and developed a group 

feature selection-based deep sparse neural network (DNN-GFS) model 

that is customized and optimized for the neoantigen prediction task. We 

also developed an off-the-shelf webserver that implements the DNN-GFS 

method along with other machine learning methods; the webserver takes 

sequencing result (vcf file) and produces prioritized neoantigens as well 

as some useful intermediate functions such as vcf annotation and candi-

date neoantigen enumeration, etc. The whole workflow is illustrated in 

Fig. 1, where the adoption of 3D genome information, ensemble feature 

coding, and the DNN-GFS algorithm are keys for distinguishing our neo-

antigen prediction from all the existing methods. 

Fig. 1 Workflow of neoantigen therapy supported by 3D genome information. Left to 

right: tumor sample collection from patient; Whole-exome sequencing and mRNA se-

quencing for somatic mutations calling and gene expression estimation (whether the mu-

tated DNA is expressed into mRNA and could potentially be translated into protein/peptide) 

respectively; Hi-C data curation to obtain 3D genome information; candidate peptides de-

termined by NGS are generated and by combining 3D genome information immune-posi-

tive peptides are predicted machine learning methods; the top ranked peptides are screened 

by conducting animal experiments; the final peptide penal can be applied back to the target 

patient. This work aims to solve the tasks within the dashed red frame. 

2. Methods 

2.1 Immunogenicity data curation and reference genome 

mapping 

The neoantigen peptide sequences and the immune responses were col-

lected from the IEDB database under the T Cell Assay category (Vita, et 

al., 2019). For the cross-validation experiments, we collected training data 

before 2018 in IEDB; After collecting 337248 peptide records in the pri-

mary dataset, we performed filtering under Homo Sapiens and MHC-I 

subtypes and restrained the peptide length 9, as well as merging identical 

records and mapping to human reference genome hg19. When mapping 

the peptides to the reference genome, we first applied the PANDAS library 

to create a data frame object for subsequent processing. Then we assigned 

the column name by importing a name dictionary and filtered the dataset 

so that the only entries left have Homo Sapiens as their hostname. The 

dataset was further cleaned up by applying two functions we developed, 

Letter_check and Drop_legal, which checks for amino acid alphabet legit-

imacy. We developed a pipeline to query the BLAST (Boratyn, et al., 

2013) web server and map the gene names to chromosomes and starting 

positions. The dataset was divided into 711 partitions where each partition 

contains 100 sequences. To set up BLAST queries, we restricted the 

search to Homo Sapiens using the entrez ID keywords and used the 

PAM30 matrix to find matches; the gap costs were adjusted to regulate 

gap penalty. We then queried BLAST iteratively. For each match, we 

adopted the accession and raw bit score for the first hit. After obtaining 

the accessions, we used the DAVID tool (Huang, et al., 2009) to obtain 

the gene names composed with gene symbols and the chromosome posi-

tions are also obtained. The final results contain a tuple of peptides, HLA 

subtype, chromosome number, and chromosome position. For identical 

peptides with multiple immune experiments, we define peptides with pos-

itive rate > 80% as immune-positive samples and with positive rate < 20% 

as immune-negative peptides. In the end, we obtained 3909 peptides, with 

809 immuno-positive peptides and 3100 immuno-negative peptides. We 

also collected a standalone validation dataset from IEDB dated after 2018 

and performed the same operation mentioned herein. In the end, 430 vali-

dation peptides were obtained with 125 positive samples and 305 negative 

samples. 

2.2 Hi-C data curation & A/B compartment determination 

For the chromatin 3D conformation data, we employed two well-known 

Hi-C data resources (Dixon, et al., 2012; Rao, et al., 2015), and obtained 

eight Hi-C datasets, i.e., hESC, IMR90, GM12878, HUVEC, IMR90-Rao, 

NHEK, K562, and KBM7. The Knight-Ruiz normalization (KR-norm) 

was applied on both intra-chromosomal and the inter-chromosomal (ge-

nome-wise) Hi-C contact maps. Bin sizes of 40kb, 100kb, and 500kb were 

adopted for intra-chromosomal contact frequency analyses, A/B compart-

ment analyses, and inter-chromosomal contact frequency analyses and 

chromatin 3D modeling. To determine the compartment activeness (com-

partment A: active, compartment B: inactive) of each chromosome bin, 

we used individual chromosome Hi-C contact maps. We first diagonal 

normalized each contact map by dividing the contact frequencies by their 

corresponding off-diagonal mean. Then we computed the Pearson corre-

lation coefficient (PCC) matrices for each chromosome, and the compart-

ment type was jointly determined by the sign of the eigenvector corre-

sponding to the first eigenvalue of the PCC matrices and the signal of the 

epigenetic marker H3k4me1. 

2.3 Chromatin 3D modeling 

We employed molecular dynamics (MD) and developed a human genome 

3D conformation modeling approach with resolution 500kb (bin size) for 

all eight Hi-C datasets. The bins were coarse-grained as beads and intact 
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genome was represented by bead-on-the-string structures consisting of 23 

polymer chains. The beads’ spatial positioning is affected by both chro-

matin connectivity that constrains linearly neighboring beads in close 3D 

proximity and chromatin activity that ensures active regions tend to be 

located closer to the nucleus center. The chromatin activity was deter-

mined according to compartment degree that can be directly calculated 

from Hi-C matrix as described above and also in previous work (Xie, et 

al., 2017). Based on compartment degree index, beads were assigned dis-

tance values with respect to the nuclear center; the conformation of chro-

matin was then optimized from random structures with molecular dynam-

ics approach by applying bias potential to satisfy these distance con-

straints. For each cell linage, 300 feasible conformation structures were 

optimized from random ones to reduce possible variation for further anal-

ysis. 

2.4 Deep sparse neural network methods 

The deep feedforward networks, also known as multilayer perceptrons 

(MLPs) were employed in this work as the basic neural network architec-

ture (Goodfellow, 2016). For a single unit, its basic form is y=ƒ (x; θ), 

where x is the input, y is the output, and θ represents the parameters of the 

network that need to be optimized by adaptable methods. For a single mid-

dle layer neural network, a generic form can be given as: 

 ( )k k k k kg= +y W x b  (1) 

where {Wk, bk} are the optimized parameters of the layer, corresponding 

to θ in basic form, and gk(.) is the activation function of the layer for which 

we chose the widely adopted linear unit (ReLU) and the sigmoid unit in 

our model. Their function forms are g(z)=max {0, z} and g(z)=σ(z); xk is 

the input and yk is the output. Note that an important prerequisite in our 

model is xk+1=yk, which makes all layers form the whole network, and spe-

cially, there is no input xk for input layer. In order to obtain a set of adapt-

able {Wk, bk}, the network should be trained multiple times by minimizing 

the regularized objective function 𝐽:(Goodfellow, 2016) 

 ( ; , ) ( ; , ) ( )J J R= +θ X y θ X y θ  (2) 

In practice, only the weights (W) of θ at each layer are penalized, and 

to simplify the equation, θ can be replaced by w:(Goodfellow, 2016) 

 ( ; , ) ( ; , ) ( )J J R= +w X y w X y w  (3) 

where J(w;X,y) is the standard objective function, R(w) is the parameter 

norm penalty, and 𝜆 ∈ [0,∞] is a hyper parameter that weights the two 

terms. Larger values of λ correspond to more regularization and setting 

λ=0 results in no regularization. In this work, we set J(.) as the cross-en-

tropy loss. Many effective regularization strategies have been previously 

studied. The most common regularization strategy is the L2 norm penali-

zation, which is usually adopted to avoid overfitting. Its general form is: 

 
2

2( )R =w w‖ ‖  (4) 

also known as Tikhonov regularization or ridge regression. Another com-

mon practice is the L1 regularization, which has a similar presentation: 

 1( ) i
i

R = =w w w‖ ‖  (5) 

that is the sum of absolute values of all weights. Particularly, the LASSO 

(least absolute shrinkage and selection operator) is a typical model that 

uses a L1 penalization. The L1 regularization can not only avoid overfitting, 

but also obtain a sparser solution than L2, by making a subset of the 

weights to become zero (or very close to zero), suggesting that the corre-

sponding features may safely be discarded. Due to this important property 

and the ability of preventing overfitting, L1 regularization is used in feature 

selection scenario extensively (Goodfellow, 2016). Note that recent study 

has revealed that sparsity is the key to imitate human brain for the neural 

network (Dettmers and Zettlemoyer, 2019). 

Apparently, the regularization can prevent overfitting, but its contribu-

tion is not limited to that. Scardapane et al. (Scardapane, et al., 2017) con-

sidered group-level sparsity, a weight grouping strategy was achieved by 

grouping all outgoing connections from a single neuron, which may in-

duce the property of pruning the corresponding neuron from the network. 

As introduced in group lasso (Simon and Tibshirani, 2012), group sparse 

regularization, e.g., L2,1 norm, can be written as: 

 
21 2( ) | |

G

R


g

w g g‖ ‖  (6) 

where |g| is the dimensionality of the vector g, vector g corresponds to 

weight matrix W, every g is one row of a matrix W, denoting all outgoing 

connections from an input neuron. G is the set of g, g∈G, which is the 

result of grouping W by row. Furthermore, sparse group Lasso (SGL) pe-

nalization was proposed by combining Lasso and group Lasso 

(Scardapane, et al., 2017; Simon, et al., 2013; Simon and Tibshirani, 2012) 

 
21 1SGL( ) ( ) ( )R R R+w w w  (7) 

which can increase the sparsity above group sparse regularization. In ad-

dition, the hyperpapermeter can be used to weight the two terms, that is 

(Friedman, et al., 2010): 

 
21 1SGL( ) (1 ) ( ) ( )R R R − +w w w  (8) 

where α=1 corresponds to the L1 term and α=0 corresponds to the L2,1 term. 

This form gives users more choice for their problem. 

2.5 Group feature selection based DNN (DNN-GFS) 

Traditional DNN and some relevant sparse DNNs have a good perfor-

mance but remain to be improved in many research field (Goodfellow, 

2016). When real problems are handled by deep learning, there are usually 

some prior knowledge neglected, leading to an unideal performance. If we 

only consider the datasets, it is difficult to obtain the optimal model and 

the corresponding parameters we expect. Moreover, the situation will get 

worse with decreasing sample size, especially in biology problems with 

more features than samples. But when the prior information is imposed on 

models, the model will be closer to our expectation and generalization may 

be improved. 

For our neoantigen prioritization problem, based on the existing sparse 

DNN models (Friedman, et al., 2010; Simon, et al., 2013; Simon and 

Tibshirani, 2012), we develop a new regularization strategy that aims to 

tackle both feature selection and the group sparse regularization challenge, 

which is an extension of the L2 and L1 penalization. Specifically, the fea-

ture grouping nature is considered in group sparse regularization, forming 

a new regularization strategy. We term it Group Feature Selection (GFS) 
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regularization. In the feature vector of our neoantigen prediction problem, 

some groups contain multiple features and some groups contain a single 

feature. In the former cases, features of the same group need to be either 

all selected or all rejected, simultaneously. This means that all outgoing 

connections from all neurons in one group should be either simultaneously 

all zeros, or all non-zeros (Scardapane, et al., 2017). The group feature 

selection regularization can be written as follows: 

 
2( ) | | | |

f

GF sS
G

R



g

w F g g‖ ‖  (9) 

where vector ḡ is the average of the squares of g vectors of a feature group, 

which can efficiently reduce computational complexity. |ḡ| is the dimen-

sionality of the vector ḡ, and Gƒ is the result of grouping again by feature 

group information based on G (groups of group lasso). As Fig. 2 a illus-

trates, some features form new groups. |Fs| is the corresponding feature 

number matrix of Gƒ. Note that, when a group contains a single feature, 

the expression can be simplified as L2,1. Moreover, for one-dimensional 

groups, it can also be reduced to the standard Lasso, while for all features 

in a new group, it is closer to L2 regularization. These regularization terms 

other than L2 are convex but non-smooth, since their gradient is not de-

fined when ||ḡ||2=0, which is illustrated in Fig. 2c. 

Fig. 2. The group feature selection based deep neural network method (DNN-GFS). a 

illustration of features belonging to groups of different sizes. All features belong to at most 

one group. A group can contain a single feature or multiple features. b Illustration of the 

DNN-GFS architecture and the group feature selection effect. c Illustration of the geometric 

principles of different regularization terms applied on the weighted neural network wiring 

and 2D projection from three representative views. F denotes Front view in c (1). 

The GFS devised here is a flexible regularization strategy as Gƒ can be 

customized according to different preferences to adapt various require-

ments. Furthermore, |Fs| is also chosen skillfully in this work. i.e. |Fs| can 

be replaced or rectified by other coefficients, which is able to enlarge or 

narrow the differences among groups. When imposing RGFS(W) on the W, 

we achieve the feature selection effect as illustrated in Fig 2b. Results that 

are based on other regularization strategies are showed in Fig. S5 and S6 

of supplemental materials, and it is demonstrated that only GFS can 

achieve the group feature selection effect. The detailed comparisons in-

cluding network structures (Fig. S7), sparse effects of different strategies 

(Fig. S8) and tuning processes (Fig. S9-S14) are also given in supple-

mental materials. The geometric interpretations of different approaches in 

3D space and 2D projection from three representative views is shown in 

Fig 2c, and more details can be found in supplemental materials. Similar 

to L1, GFS achieves sparsity and avoids overfitting, and moreover, the 

performance is improved by exploiting group information. 

3. Results 

3.1 The distribution of neoantigens’ DNA loci in 3D genome 

For all the peptides (both immuno-positive and immuno-negative) in-

cluded in this study, we first generated a pool that contains all the peptide 

pairs. Then we classified all the peptide pairs in this pool into three cate-

gories: positive-positive pairs (Pos-Pos), negative-negative pairs (Neg-

Neg), and positive-negative pairs (Pos-Neg). For each peptide pair, we 

computed contact frequencies for each Hi-C datasets, i.e., hESC, IMR90, 

GM12878, HUVEC, IMR90-Rao, NHEK, K562, and KBM7, respec-

tively(Dixon, et al., 2012; Rao, et al., 2015). The contact frequency distri-

bution of the three categories are shown in Fig. 3a. It is demonstrated that 

on all the Hi-C datasets, immune-positive peptide pairs are more proxi-

mate to each other comparing to immune-negative peptide pairs; the cor-

responding T-test and Wilcoxon rank sum test p-values, i.e., Pos-Pos vs. 

Neg-Neg, are all smaller than 10-99 and 10-18, respectively. This indicates 

that the immuno-positive peptide’s DNA loci tend to be more proximate 

in genome spatial space. We then computed the A/B compartment type 

(A: active; B: inactive) for each chromosomal region (bin), based on both 

Hi-C dataset and epigenetic markers, shown in Fig. 3b and Fig. 3c. The 

whole genome contact maps of the eight Hi-C datasets are shown in Fig. 

S2 and the A/B compartment results of each chromosome are shown in 

Fig. S3 of Supplementary Materials. Then we assigned the corresponding 

DNA loci of the positive and negative peptides with their A/B compart-

ment type. We found that in certain chromosomes, immune-positive neo-

antigens tend to be located on compartment A, comparing to immuno-

negative neoantigens, as shown in Fig. 3d and Fig. S4 of Supplementary 

Materials. This indicates that the DNA loci of the immuno-positive or neg-

ative peptides are positively correlated to chromosome compartment type, 

either A or B, depending on which chromosome. 

We then developed a novel molecular dynamic based chromatin 3D 

modeling method and mapped the immuno-positive and negative pep-

tides’ corresponding chromosomal loci to the constructed 3D genome 

structure and calculated their radius distance to the nucleus center, as 

shown in Fig. 3e. We found that the immuno-positive peptide’s corre-

sponding loci tend to locate closer to the nuclear periphery (more far away 

from the nucleus center), compared to the immuno-negative ones, as Fig. 

3f demonstrates. We found that by adopting the radius position infor-

mation, the prediction power of the existing methods such as netMHCPan 

and netMHC can be elevated. In detail, prediction scores defined as 

𝑌𝑝𝑟𝑒𝑑 = 𝑆𝑛𝑒𝑡𝑀𝐻𝐶𝑃𝑎𝑛 × 𝑟2 or  𝑌𝑝𝑟𝑒𝑑 = 𝑆𝑛𝑒𝑡𝑀𝐻𝐶 × 𝑟2 can significantly bet-

ter discriminate the immune-positive peptides from the immune-negative 

peptides, comparing to using netMHCPan or netMHC alone. We thus be-

lieve that the DNA loci’s radius positions of the immuno-positive and im-

muno-negative peptides are significantly differently distributed and can 

play an important role in predicting pMHC-I immunogenicity. 

3.2 Peptide encoding and predictions 
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A reasonable and proper peptide encoding strategy is key to the down-

stream predictions as it can include and quantify more features that are 

plausibly related to the outcome. But by including more features into the 

prediction model, we also increase the risk of adding noisy (irrelevant) 

features into the feature pool and making the prediction prone to overfit-

ting. To overcome this dilemma, we propose to first enumerate as many 

features as possible and then perform feature selection within the training 

process of the prediction modeling. Previous neoantigen prediction meth-

ods adopted one or more coding schemes such as amino acid (AA) com-

position, AA sparse coding, BLOSM, BLOMAP, etc. In this work, based 

on the above observation that chromatin 3D information may significantly 

contribute to discriminating immuno-positive peptides from immuno-neg-

ative ones, we adopted this piece of information in the peptide encoding 

strategy. In detail, the 3D coordinates and the radius positions of the Hi-C 

data based 3D modeling results, the HLA subtype encoding, the amino 

acid compositions, the sparse coding, BLOMAP coding, and BLOSUM 

coding of the peptides, the AAindex2 coding of the peptides are adopted 

and collected as features. At the end, we obtained a training matrix with 

3909 peptides and 5459 features, shown in Fig. 4a. Note that as Fig. 4a 

demonstrates, there is no obvious pattern that a single feature or a group 

of features are correlated to the true label vector. 

Fig. 3 The DNA loci of neoantigens in 3D genome. a Distribution of proximities between 

peptide pairs of different types. Immuno-positive peptide pairs tend to be more proximate 

to each other comparing to immuno-negative ones, while immuno-positive-negative pairs 

lie in between (all the P-values of the T-test comparison are smaller than 10-99). b Illustra-

tion of Hi-C submatrices of compartment A and B on chromosome 1. c Illustration of ei-

genvalues of compartment A (red) and B (blue) on chromosome 1. d Comparison of per-

centages of immuno-positive peptide belonging to compartment A (red) and immune-neg-

ative peptide belonging to compartment A (blue). e The 3D genome molding results based 

on hESC and IMR90 Hi-C datasets and the distribution of the DNA loci of immuno-positive 

(yellow to red color spectrum, depending on positive occurrence on the same 500k bin) and 

immuno-negative peptides (green). f Radius position comparison of the immuno-positive 

and negative peptides’ DNA loci 3D genome. The positive loci (red) are significantly closer 

to the nuclear periphery (more far away from the nucleus center), compared to the immuno-

negative ones (green); they are all closer to the nuclear periphery comparing to the back-

ground distribution (blue). All T-test P-values are smaller than 10-99. 

In theoretical deep neural network (DNN) studies, there have been 

plenty of evidences pointing to the fact that the majority of weights in most 

deep networks are redundant and may jeopardize the prediction accuracy 

(Han, et al., 2015; Sainath, et al., 2013; Scardapane, et al., 2017). It is 

possible to learn only a small percentage of the weights, while still pre-

serving the prediction accuracy (Han, et al., 2015). Nevertheless, studies 

focusing on the input feature selection based neural network is limited. 

Moreover, in the neoantigen prediction problem, the features that encode 

the peptides come in groups, e.g., the 3D coordinates <x,y,z> of a pep-

tide’s DNA loci are in one group, or the sparse coding for an amino acid 

is a group of 20 binary features, etc.. Therefore, when imposing feature 

selection on the DNN, it should be in a group fashion, i.e., features be-

longing to the same group should be either all selected or all rejected. The 

group feature selection based deep neural network (DNN-GFS) is intro-

duced in detail in the Methods section. 

Fig. 4 Prediction results comparison. a The leftmost column vector indicates the true 

labels of the immuno-positive (yellow) and immuno-negative (green) for each of the 3909 

peptides. The matrix heatmap indicates the column-wise normalized feature values of the 

3909 peptides by 5459 features. b and c are the ROC plot comparison for DNN-GFS, DNN, 

SVM, LR, KNN, Neopepsee, pTuneos, DeepHLApan, NetMHCpan, NetMHC and IEDB-

immuno, under 5-fold and leave one out (LOO) cross-validation respectively. d and e are 

the precision-recall plot comparison for different prediction methods under 5-fold and leave 

one out (LOO) cross-validation respectively. f and g are the prediction score (normalized) 

distribution comparison for immuno-positive (left violins) and immuno-negative peptides 

(right violins); all the P-values of the T-tests are equal to or very close to zero. 

To compare the prediction efficacy, in addition to DNN-GFS, we also 

applied traditional L2 norm deep neural network (DNN), support vector 

machine (SVM), logistic regression (LR), k-nearest neighbor (KNN) clas-

sifiers on the 5459 encoded feature matrix. Moreover, we included the 

widely adopted methods IEDB-immunogenicity, NetMHCpan and 

NetMHC into the comparison, as well as the most recent popular methods 

Neopepsee, pTuneos and DeepHLApan. The comparison was conducted 

in the framework of both cross-validation (5-fold or leave-one-out) and 

validation alone. The ROC curves are shown in Fig. 4 b, d and f; the pre-

cision-recall curves are shown in Fig. 4 c, e, and g; the prediction score 

distributions for the immuno-positive and negative samples are shown in 

Fig. 4 h, i and j. Note that in the ten prediction methods, the KNN and LR 
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output binary values, so for precision-recall curve comparison, we ex-

cluded them. Detailed prediction statistics are shown in Table S1-1, S1-2, 

and Table S2. As the comparison results demonstrate, the deep learning-

based approaches DNN-GFS and DNN outperform the rest of the methods 

and DNN-GFS, due to its feature selection potency, is better than tradi-

tional DNN. The SVM, Neopepsee, pTuneos and DeepHLApan are also 

effective methods and ranked second tier among the ten methods. Alt-

hough NetMHC and NetMHCpan were initially designed to predict pep-

tide-MHC binding affinity, their capability in predicting neoantigen can-

not be neglected and they are ranked third tier. The logistic regression and 

KNN classifiers, although performs reasonably well in cross-validation 

experiments, are not very stable when applied on the standalone validation 

set. The IEDB-immunogenicity prediction method, does not catch up with 

other prediction methods, possibly due to the fact that the immunogenicity 

scoring function is too simple to capture subtle sequence features that only 

advanced non-linear machine learning methods can. We also implemented 

other well-known sparse learning neural network models and compared 

their efficacy with DNN-GFS, as introduced in table S1 and S2 of Supple-

mentary Materials, and the results indicate that DNN-GFS outperforms 

existing sparse neural network methods in terms of prediction statistics. 

3.3 Features selected by DNN-GFS 

Based on the whole training dataset, the DNN-GFS model selected 2693 

features out of the 5459 features, achieving a feature sparsity ratio 49.33%. 

Features belonging to the same group are either all selected or all ex-

cluded. Among the selected features, all the 3D genome related features 

are selected, including radius position, HLA subtype, 3D coordinates of 

peptides’ DNA loci, etc. For HLA subtype-encoding, all features are se-

lected and cross-validation performance is improved about 3%~4% com-

pared to dataset of not containing HLA subtype information, which illus-

trates their importance. For 9 AA peptides, the sparse coding of the pep-

tide’s position 1 to 5 and 7 to 8 are all selected but not position 6 and 9. 

BLOSUM coding features are all excluded while BLOMAP coding fea-

tures for AA position 1 to 4 are selected. Except AA position 5, other side 

chain polarity features are all selected, and side chain charge features for 

position 1 to 3 are selected. For the hydropathy features, AA position 5 

and 9 are selected, and for molecular weight, feature of AA position 2, 6, 

and 9 are selected. Other selected features are mostly AAindex2 related 

features. The DNN-GFS model thus suggests that the combination of these 

grouped features play an important role in building the prediction model 

and we believe that the importance of these features in neoantigen predic-

tion is worth further investigating. Detailed feature selection and model 

sparsity analyses can be found in Supplementary Materials. 

4. Discussion 

From the association study of peptides’ immunogenicity and their 3D ge-

nome information, we found that immuno-positive peptides’ DNA loci 

tend to be more proximate to each other and locate closer to the nuclear 

periphery, i.e., greater radius value to the nuclear center, comparing to im-

muno-negative ones. This implies that if a nonsynonymous mutation hap-

pens closer to some nonsynonymous mutation that were already proven to 

produce immuno-positive peptides, or if it is located closer to the nuclear 

periphery, the mutation is more likely to generate immuno-positive neo-

antigens. This association can be further enhanced if the A/B compartment 

information of the mutation is provided. In practice, the whole genome 

spatial organization is more conserved across different cell types and even 

in mutated cancer cells. While A/B compartment characters of certain 

chromatin regions may flip across cell lines or in cancer cells, i.e., more 

transient, we only adopted the 3D coordinates and radius position of pep-

tides’ DNA loci in the prediction model, but if the A/B compartment in-

formation can also be included if the real time cancer cell’s chromatin 3D 

experiment can be performed in the future. 

To explain such intriguing relationship between 3D genome and the 

neoantigens’ immunogenicity, factors of at least three aspects should be 

considered: Firstly, the non-random nature of coding sequence distribu-

tion in 3D genome: during evolution, wild type coding sequences where 

neoantigens of different immunogenicity characters originate are located 

in different regions of the nucleus (Gorkin, et al., 2019; Svozil, et al., 

2008). Secondly, the gene expressions affected by 3D genome: the mis-

sense mutations need to be transcribed to generate potential neoantigens 

and the gene expressions are known to be affected by high order genome 

organization (Gorkin, et al., 2014). Thirdly, the non-random occurrences 

of somatic mutations in 3D genome: previous discoveries indicated that 

somatic mutations may not occur at random, and we systematically stud-

ied and discovered in our prior work that co-mutations may occur in a 

spatial clustering fashion in genome 3D space (spatial co-mutation 

hotspot, SCH), possibly due to abnormal chemical concentration or a sys-

tematic DNA repair protein failure at certain chromatin 3D loci (Shi, et 

al., 2016). This leads to a straightforward hypothesis that mutations in dif-

ferent chromosomal regions may carry different immunogenicity charac-

ter, affected by wild type coding sequences, somatic mutation patterns, 

and gene transcriptions. We thus believe that it is worth considering these 

aspects when studying the underlying mechanism of how high order ge-

nome organization affect neoantigens’ immunogenicity. For example, to 

explain our discovery that immuno-positive neoantigens’ corresponding 

DNA sequences tend to locate closer to nucleus periphery (greater radius 

to the nuclear center), one may consider the fact that their transcribed mis-

sense mRNAs enter cytoplasm more easily (a shorter path from transcrip-

tion loci to nuclear envelope). Core genes during evolution, if mutated, 

require stronger TCR responses, because otherwise it causes greater can-

cerous impact, and these genes are usually expressed across cell types and 

their distribution in 3D genome also worth further study. Therefore, it is 

also worth to investigate the relationship between neoantigen immunogen-

icity and gene evolutionary essentiality in the perspective of high order 

genome conformation. 

When building the prediction models, due to the fact that most MHC-I 

presented peptides are of 9 amino acid long, the features we used to encode 

the peptides are all based on 9mer peptides, and the predictions are tar-

geted on the 9mers as well. Nevertheless, our approach is not restricted to 

9mers and can be easily extended to peptides of other length. For example, 

if a target peptide is longer than 9 amino acids, a sliding window of length 

9 can be used to enumerate all possible 9mers, and the prediction score 

can be estimated by taking the maximum or average of each individual 

scores. In the cases where a target peptide is shorter than length 9, we only 

need to consider length 8 as peptides presented by MHC-I shorter than or 

equal to length 7 is very rare. So, for the 8mer cases, we can compensate 

an extra amino acid to the beginning or to the end of the sequence and 

enumerate all possible peptides and again take the maximum or average 

of each individual one’s prediction score. 

Most existing machine learning algorithms for the classification prob-

lem usually assume that the feature across different training examples is 

independent and obey the same distribution, and the links among them are 

usually neglected which is not reasonable for an unbalanced problem. In 

many real-world applications however, the small sample issue is ubiqui-

tous and the features are usually correlated. The DNN-GFS developed 

here provides a new way of exploiting these links for feature selection in 
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addition to traditional neural networks. In the machine learning area, quite 

a few studies have exploited introducing sparse regularization into deep 

neural network framework, but most of these models only focus on reduc-

ing complexity of the network as a whole, resulting in pruning edges and 

nodes of the network, but not specifically targeting on the input layer, i.e., 

the input feature vector. In this work therefore, due to the scenario that 

peptides are represented in an ensemble encoding which may introduce 

noise or redundant features into the learning process, the proposed DNN-

GFS model focus on reducing the features of the input layer. Moreover, 

due to the nature that certain features are grouped and should be either all 

selected or all rejected, we considered selecting features in a grouped fash-

ion in the model, by imposing group-specific regularization. As shown in 

Fig. 4, the DNN-GFS model not only exceeds the widely adopted methods 

NetMHCpan and NetMHC, but also exceeds other existing machine learn-

ing methods such as DNN, LR, SVM, and KNN that are performed based 

on the same 5459 feature encoding strategy. Moreover, DNN-GFS outper-

forms other sparse learning DNN models as shown in table S3-S10 of Sup-

plementary Materials. This agrees with our conjecture that DNN-GFS is a 

better DNN heuristic designed specifically for the neoantigen prediction 

in the specific 5459 encoding scenario. Although DNN-GFS outperforms 

the widely adopted NetMHCpan and NetMHC methods to a large extend, 

due to its ability of capturing subtle nonlinear relationships of features in 

a grouped fashion, the prediction power can be further improved once 

more immunogenicity training data are provided, especially for each HLA 

subtypes. We also believe that DNN-GFS can also be applied in other 

problems where group feature selection is demanded. 

To facilitate practical usage, we developed a webserver deepAntigen 

(Fig. S1). In the current version, if the end user only provides sequencing 

result vcf file, the candidate peptides will be generated by only considering 

nonsynonymous point mutations, i.e., 9mer peptides surrounding the mu-

tated amino acid, while small insertions or deletions (INDEL) can also be 

considered as rankPep function is independent and user can provide their 

own plausible peptides for prediction. For the prediction method, we sug-

gest to use DNN-GFS as its power of discriminating immuno-positive 

peptides from immuno-negative ones are most potent, but other machine 

learning approaches can also be considered and the consensus result 

maybe of more interest to an end user. 

Although the mechanism of under what conditions certain specific ne-

oantigens activate T cell immunogenicity is still under studying, this work 

focuses on the machine learning challenge of effectively and efficiently 

predict/prioritize immuno-positive neoantigens. We found that the spatial 

distributions of the immuno-positive and immuno-negative peptides’ cor-

responding DNA loci follow different pattern, i.e., immuno-positive pep-

tides’ DNA loci tend to be located more proximate to the nuclear periphery 

and tend to be more clustered in 3D genome space, compared with im-

muno-negative peptides’ DNA loci; the peptides’ DNA loci distribution is 

also related to the A/B compartment of the chromatin. It is therefore sali-

ent that utilizing the 3D genome information of the peptides’ correspond-

ing DNA loci can significantly contribute to the prediction of immuno-

positive neoantigens. To utilize the most of 3D genome information, we 

customized a group feature selection based deep neural network (DNN-

GFS) model, which takes not only the 3D genome information, but also a 

combinatorial peptide sequence features represented by an ensemble pep-

tide encoding strategy. The DNN-GFS selected 3D genome related fea-

tures as well as some other important peptide sequence features and posi-

tion specific amino acid features; the comparison studies demonstrated 

that DNN-GFS outperforms the widely adopted methods NetMHCpan and 

NetMHC, and other machine learning prediction models including DNN, 

SVM, LR, and KNN. DNN-GFS is implemented in the webserver 

deepAntigen along with other machine learning methods. To the best of 

our knowledge, this is the first time that the DNA origins’ 3D genome 

perspective is considered in the neoantigen study and we hope that our 

work contributes novel insights to neoantigen study and eventually bene-

fits personalized cancer immunotherapy. Although close-up studies are 

needed to uncover the relationship between 3D genome and neoantigen 

immunogenicity, in this work, we only demonstrate the contributes of 3D 

genome information in more accurate neoantigen prediction, as well as 

providing plausible explanation that it is evolution that places sequences 

of different immunogenicity characters in different locations in the 3D ge-

nome while different locations are prone to mutations of different causes. 
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