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Abstract

Shift neural networks reduce computation complexity by removing expensive
multiplication operations and quantizing continuous weights into low-bit discrete
values, which are fast and energy-efficient compared to conventional neural net-
works. However, existing shift networks are sensitive to the weight initialization
and yield a degraded performance caused by vanishing gradient and weight sign
freezing problem. To address these issues, we propose S3 re-parameterization, a
novel technique for training low-bit shift networks. Our method decomposes a
discrete parameter in a sign-sparse-shift 3-fold manner. This way, it efficiently
learns a low-bit network with weight dynamics similar to full-precision networks
and insensitive to weight initialization. Our proposed training method pushes the
boundaries of shift neural networks and shows 3-bit shift networks compete with
their full-precision counterparts in terms of top-1 accuracy on ImageNet.

1 Introduction

While deep neural networks (DNNs) have achieved widely success in various tasks, the training
and inference of DNNs usually cost prohibitive resources due to the fact that they are often over-
parametrized and composed of computational costly multiplication operations for both forward and
backward propagation [28]. To enable the application feasibility of DNNs in resource-constrained
scenarios, substantial efforts have been made to reduce the computation complexity of neural networks
while preserving their accuracy. Among different proposed approaches for this purpose, low-bit
neural networks with binary weights [6, 22] or ternary weights [15] are recently designed to replace
the expensive operations like multiplication with cheaper ones, e.g., replacing multiplication with
sign flip operation during inference.

We focus on low-bit shift neural networks [11, 9, 30] that replace multiplication with the bit-shift
operation. Following the conventional linear algebra notations, we denote scalars by x, vectors in
bold small letters x, and matrices by bold capital letters X. Traditional neural networks require
computing the inner product w>x =

∑
i wixi, where w is the weight vector and x is the feature

vector. In comparison, shift neural networks limit the values of the weight vectors to a set of discrete
values wshift ∈ {0} ∪ {±2p}. In this case, multiplication can be replaced with bit-shift operations,
as multiplying wi = 2p is equavilent to shifting p places to the left (if p is positive) or to the right
(if p is negative). The bit-shift operation alone only covers discrete neural networks with positive
weights, therefore, most shift neural networks further add a sign flip operation to the shift to allow
wi = {±2p}. Inference with bit-shift operations is highly hardware friendly and can save up to 196×
energy cost on FPGA and 24× on ASIC compare to their multiplication counterparts [28].

Several works aim to further improve the memory efficiency of shift neural networks by reducing
the bit-width of the weights. Zhou et al. [30] propose to fine-tune pre-trained full-precision weights
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with a progressive power-of-two weight quantization strategy. They suggest to keep a portion of
weights unquantized during fine-tuning to improve model performance. DeepShift [9] is the state-of-
the-art technique for training low-bit shift networks from random initialization. Initialization with
pre-trained full-precision weights provides a significant performance gain for DeepShift. All latest
techniques heavily rely on the initialization of full-precision pre-trained weights, which implies some
optimization difficulties exist in the current training diagram of low-bit shift networks. However,
although extremely memory efficient and hardware friendly, low-bit shift networks suffer from a
significant accuracy drop on large datasets compared to their full-precision counterpart, and the
performance of them is sensitive to weight initialization.

To address these problems, in this work, we analyze the current training diagram of low-bit shift neural
networks, and find that the accuracy degradation and the weight initialization sensitivity of the low-bit
shift networks are caused by the design flaw of the weight quantizer during training. Specifically,
training shift neural networks is different from training full-precision networks. The gradient-based
optimization algorithms are designed for optimizing continuous variables, but the weights of shift
neural networks are discrete values. To learn the discrete weights with a gradient-based approach, it
is necessary to exploit weight re-parameterization. One of the most widely adopted discrete weight
re-parameterization technique is using a quantizer function to map a continuous parameter w ∈ R
to a discrete weight w ∈ {v1, v2, · · · , vk} with k possible values. As the weight quantizers are
generally non-differentiable functions, a gradient approximator, such as straight-through estimator
[3], is utilized to approximate their derivatives during training. Our analysis shows the quantizer
leads to a severe gradient vanishing and weight sign freezing.

In this paper, we design an effective training strategy to combat the gradient vanishing and weight
sign freezing problem in low-bit shift networks. We first impose a dense weight priori during
training, which equals maximizing the `0 norm of the discrete weights. However, optimizing `0
norm during training is a combinatorial problem, instead we propose S3 re-parameterization and
regularize the sparsity parameter. S3 is a new technique which re-parameterizes the discrete weights
of shift networks in a sign-sparse-shift, a 3-dimensional augmented parameter space to disentangle
the roles of quantization values, and hopefully train more effectively thanks to more orthogonal
axes in the augmented space. Although our method introduces extra parameters during training,
its memory occupation under low-bit is slightly higher than the full-precision network since the
additional memory overhead depends on the weight size. In contrast, the activation size dominates
the training memory occupation, especially using a large batch size.

We evaluate our approach on the ImageNet dataset. While all previous methods require at least
5-bit weight representation to achieve the same performance as the full-precision neural networks on
large datasets such as ImageNet, our experimental results show that our proposed method surpasses
all previous methods, pushes this boundary further to 3-bits. Besides, our approach requires no
complicated weight initialization or training strategy. Moreover, we define two indices of weight
dynamics, named weight sign variation rate (WSVR) and weight low-value rate (WLVR), and
compare the trend of these two indices during the training process of different methods. Experiments
show that the weight dynamics of the ternary weights trained with our proposed technique better
align with the weight dynamics of full-precision weights than trained with a traditional quantizers.
This desirable dynamics is caused by our re-parametrization, and is the key to efficient training. We
hope that this opens the possibility for methods similar as S3 to be used in training low-bit networks.

2 Related Works

Different approaches have been proposed to reduce the computational complexity of neural networks.
A type of the popular multiplication-free neural networks is low-bit neural networks with binary
weights [6, 22] or ternary weights [15]. However, they suffer from under-fitting on large datasets,
leading to an accuracy gap compared with their full-precision counterparts. Other approaches include
replacing multiplication operations with addition operations [5, 25, 26] or bit-shift operations [11, 9,
30]. Although these approaches achieve a low accuracy drop on large datasets, they require higher
weight representation bit-width. Other follow-up works try to improve the accuracy of multiplication-
free neural networks by replacing multiplication with both addition and bit-shift operation [28], sum
of binary bases [17, 29], or sum of shift kernels [16]. However, their computational cost is high as
they use multiple operations per kernel.
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Training shift neural networks with discrete weight values is a challenging task. Many weight re-
parameterization approaches have been proposed to solve the challenge. One way is using stochastic
weight [6, 18, 23], but these methods suffer from the slow computation of sampling. Another way is
utilizing a quantizer function [6, 22, 15] to map or threshold continuous weights to discrete values.
Since the thresholding function is non-differentiable, the backward gradients across the quantizer are
approximated by a gradient approximator. The Straight-Through-Estimator (STE) [3] is a popular
choice for quantizer gradient approximation.

There are also works study the vanishing gradient problem (VGP) that appears frequently in deep
neural network training. [1, 10] point out that the zero values in full-precision weights lead to VGP
when training highly pruned neural networks, which eventually jeopardizes the accuracy of the model.
[8, 30] suggest to maintain a portion of the full-precision weights during quantized network training
for improving the performance of the model. [30] shows that applying progressive quantization on
low and high value weights differently can further improve the performance of the trained model.
Quantizing high-value weights first and keep more low-value weights remains in full-precision during
training helps to achieve a better shift neural network compared with randomly applying progressive
quantization strategy on weights regardless their values. This observation coincide with our analysis,
and we argue that the performance gain of progressive quantization methods come from the gradient
flow preserved by maintaining a portion of full-precision weight during training. However, the study
of the negative impacts caused by weight quantizers are still missing. To the best of our knowledge,
we are the first to study the VGP caused by weight quantizer design.

3 Training Low-bit Networks

We first introduce the general form of the weight quantizers for discrete weight training, and then
explain how quantization function leads to training difficulties. In low-bit networks, including shift
networks, the weights are discrete values while usually the gradient-based optimization algorithms
are designed for optimizing continuous variables. Specifically, quantizer function is one of the most
widely-used approach for training discrete weight neural networks. It maps a continuous weight w to
one of the k discrete weight values Q(w) ∈ {v1, v2, · · · , vk}. Several quantizers of low-bit networks
[15, 31, 27] and shift networks [9, 30] are in the following form of staircase function:

Q(w) =


v1 w < t1
v2 t1 ≤ w < t2

...
vk tk ≤ w

(1)

However, training a quantized neural network with a quantizer function in the form of Equation (1) is
challenging due to two issues, vanishing gradient (VGP) and weight sign freezing. We discuss the
vanishing gradient issue in section 3.1 and the weight sign freezing issue in section 3.2.

3.1 Gradient vanishing

To clarify further why quantization and VGP are entangled, suppose a ReLU-activated fully-connected
layer can be generally formulated as:[
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The gradient update toward xl0 can be calculated as:
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Figure 1: Left panel: decomposing wter in Equation (6). Blue vectors demonstrate the original ternary
space, while the black vectors show the decomposed augmented space. The augmented parameters
are projected back to the ternary space after multiplication . Right panel: efficient back propagation
on wter in the S3 re-parameterized space.

(a) 3-th layer (b) 3-th layer, ternary (c) 7-th layer. (d) 7-th layer, ternary
Figure 2: Density polygon of the weights in the multiple layers of ResNet20 trained on CIFAR-10,
full-precision (blue), versus ternary before passing through the quantization function (orange). Full-
precision and quantized training have different dynamics. Ternary weights are kept away from zero,
preventing weight sign change.

By observing Equation (3), we can see that the gradient information ∂Loss
∂xl+1

1

propagating from xl+1
1

to xl0 vanishes in two distinct situations: i) the corresponding derivative of ReLU is zero. (i.e. the
neuron is not activated), and ii) the corresponding weight W l

10 is zero. Both scenarios lead to a
gradient information loss, and ultimately cause inferior performance even after training convergence.
The situation i) is widely known as the Dying ReLU issue caused by the sparse derivative of ReLU.
Several ReLU-variants [20, 12] with non-sparse derivatives are developed as remedies.

The VGP caused by the quantizer is similar to the dying ReLU issue. As the first step, we motivate S3

technique on a ternary network and then generalize it further for higher bit shift networks. The ternary
quantizer function (1) contributes to situation ii) by mapping a portion of non-zero full-precision
weights w to the exact zero value wter = Q(w). This leads to a smaller `0 norm for the discrete
weight term wter compared to its full-precision counterpart w, ‖Q(w)‖0 ≤ ‖w‖0. Shift networks
exchange the costly multiplication operation with cheap shift operation, so inherently it is a non-
uniform quantized network and faces the same problem. The VGP caused by the quantizer is the main
optimization difficulty in training shift neural networks as well. This issue appears more severely in
low-bit networks which include fewer quantized range with higher sparsity rate.

3.2 Weight sign freezing

Another issue of the low-bit quantizer is the weight sign freezing effect. This effect prevents the
weight sign variation and leads to different weight dynamics between the full-precision weights and
the low-bit discrete weights.

The weight dynamics of full-precision weights are as follows. In general practice, the weights are
initialized with a zero-centred distribution in small variance and trained with `2 regularization, so they
stay close to the origin point during training. When the full-precision neural network train with noisy
gradient updates, such as an SGD optimizer and a large learning rate at the beginning of training,
the weights oscillate around the origin point. With the learning rate decreasing, more and more
weights converge to a specific sign representing the corresponding input feature, which correlates to
the prediction output. The remaining weights whose input feature is neither positively correlated nor
negatively correlated are concentrated in the region close to the origin point to oscillate.
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However, we notice that the weight dynamics of low-bit discrete weights trained with quantizer are
dramatically different. We train ResNet-20 models with full precision weights and ternary weights
using quantizer and compare the histogram variation of the same layer in Fig. 2. Take ternary
quantizer [15] as an example. The histogram variation of a ternary weight trained with the quantizer
has two peaks. They are symmetric to zero; this is because the positive and negative thresholds
of the ternary quantizer attract a large portion of weights oscillating around them and prevent the
weights across zero and switching their sign. The intuition of full-precision weight dynamics and
the observation from weight histogram comparisons inspire us to design the experiments in section
5.2. Our experiments show that the ternary networks trained with a quantizer have very low WSVR
during the whole training process. We call it the weight sign freezing issue.

4 S3 Re-parameterization

We suggest to initialize the networks with dense weight prior, which is equivalent to maximizing
the `0 norm of the weight tensors at initialization. We initialize ternary weights away from zero
so that VGP is partially solved at early training epochs. Dense weight initialization provide additional
benefits for low-capacity models, and encourages training around non-zero weight values. This
characteristic empirically increases the model capacity and alleviate under-fitting problem commonly
observed in low-bit models.

The remedy proposed at initialization only solves training difficulty at early training. Efficient training
over discrete weights still remain slow. As the follow up remedy we propose to re-parameterize
the discrete weight of shift networks into a sign-sparse-shift 3-fold manner, we call S3. This re-
parameterization allows us to regard the low bit network as projection of an augmented space, in
which a single parameter takes care sparsity, a single parameter takes care of of switching signs, and
another parameters takes care of the weight magnitude. This decomposition has two benefits. First,
it promote the weight sign variation by allowing the discrete weight switch between positive and
negative values without approaching to zero. Second, it allows to control the amount of sparsity by
controlling the sparsity parameter during longer epochs.

4.1 Ternary network

Almost all ternary networks such as [15] are trained with the following quantizer

wter = Q∆(w) =


1 ∆ ≤ w,
0 −∆ ≤ w < ∆,

−1 w < −∆.

(5)

We propose to replace the quantizer in the form of (5) with the following S3 re-parameterized
counterpart, see Figure 1:

wter = 1(wsparse){21(wsign)− 1}, (6)
in which 1(·) is the Heaviside function, i.e. 1(x) = 1 if x > 0 and equals zero otherwise. Note
that w,wsparse, wsign are full precision parameters, and ternary weights are recovered after passing
through the Heavidside function.

The S3 re-parameterization approach for ternary weight training decomposes the discrete ternary
weight into two binary parameters, one representing sign, another representing sparsity. Motivated
from the ReLU activation, we propose to impose dense weights by penalizing the loss function
with the magnitude of negative weights. This is a simple regularization that adds little to training
computation and is effective to enforce dense weights.

Rsparse(wsparse) = ‖max(−wsparse, 0)‖1 (7)

4.2 Shift networks

We further generalize our approach toward shift neural networks. Following [9] the discrete weight
of shift networks can be decomposed into two parts: a ternary term wter and a scaling term composed
of power of 2 numbers 2S that shifts the network S bits wshift = wter2

S , shifting to left or right
depends on the sign of S ∈ Z.
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Figure 3: Illustrating the overview of 3bit shift network trained with S3 re-parameterization and dense
weight regularizer (forward computation in dark green, backward in light red)

We apply the decomposedwter = wsignwsparse described in the session 4.1 and re-write shift networks
in terms of the decomposed ternary weights. Following [9] we focus on positive S values.The re-
parameterization for the negative S values can easily be achieved by adding a constant bias to S. We
propose to re-parameterize this shift weights as a combination of t binary variables recursively.

S0 = 0, St = 1(wt)(St−1 + 1). (8)

For instance, S3 reparameterizes a 3-bit shift networks whose discrete weight values are wshift ∈
{0,±1,±2,±4} to:

wshift = 2S21(wsparse){21(wsign)− 1}, (9)

while S2 = 1(w2){1(w1) + 1}, so it reduces to a ternary network for t = 0. Note that in this
reparametrization all weights (wsign, wsparse, w1, w2) are trained in full precision. Figure 3 demon-
strates forward pass and back propagation using this reparametrization.

Ultimately
L(w) = Loss(w) + λR(w) + αRsparse(w)

is optimized, in whichR is the `2 norm and α > 0 is a regularization constant controlling the network
sparsity during training.

5 Experiments

In this section, we describe our experiment setup and benchmark S3 re-parameterization over SOTA
low-bit DNNs. Then we compare the dynamics of weights with different training paradigms to show
our method could better align with the training of full-precision models. Finally, we present ablation
studies of the dense weight regularizer and the number of training epochs.

5.1 Benchmark S3 re-parameterization over SOTA low-bit DNNs

Models and datasets. We evaluate our proposed method on ILSVRC2012 [7] dataset with different
bit-widths to demonstrate the effectiveness and robustness of our method. We use ResNet-18 and
ResNet-50 as our backbone with the same data augmentation and pre-processing strategy proposed in
[13]. Following common practice in most previous methods [22, 19, 29], all convolution layers are
quantized except for the first one.
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Table 1: Comparison of SOTA methods using ResNet-18 trained on ImageNet

Kernel operation Methods Bit-Width Initialization Top-1 Acc. (%) Top-5 Acc. (%)

Multiplication FP32 32 Random 69.6 89.2
TTQ 2 Pre-trained 66.6 87.2

Sum of Sign Flips
Lq-Net [29] 2 Random 68.0 88.0
Lq-Net [29] 3 Random 69.3 88.8
Lq-Net [29] 4 Random 70.0 89.1

Sign Flip

BWN [22] 1 Random 60.8 83.0
HWGQ [4] 1 Random 61.3 83.2
BWHN [14] 1 Random 64.3 85.9
IR-net [21] 1 Random 66.5 86.8
TWN [15] 2 Random 61.8 84.2
LR-net [23] 2 Random 63.5 84.8
SQ-TWN [8] 2 Random 63.8 85.7
INQ [30] 2 Pre-trained 66.02 87.13
Ours 2 Random 66.37 87.18

Shift + Sign Flip

INQ [30] 3 Pre-trained 68.08 88.36
INQ [30] 4 Pre-trained 68.89 89.01
INQ [30] 5 Pre-trained 68.98 89.10
DeepShift [9] 6 Random 65.63 86.33
DeepShift [9] 6 Pre-trained 68.32 88.41
Ours 3 Random 69.82 89.23
Ours 4 Random 70.47 89.93

Table 2: Comparison of SOTA methods using ResNet-50 trained on ImageNet

Kernel operation Methods Bit-Width Initialization Top-1 Acc. (%) Top-1 Acc. (%)
Multiplication FP32 32 Random 76.00 93.00

Shift + Sign Flip
INQ [30] 5 Pre-trained 74.81 92.45
DeepShift [9] 6 Pre-trained 75.29 92.55
Ours 3 Random 75.75 92.80

Training settings. We train the networks with 200 epochs utilizing the cosine learning rate, and the
initial learning rate is 1e-3. The networks are optimized with SGD optimizer, and the momentum and
weight decay are set to 0.9 and 1e-4 respectively. The hyper-parameter α of dense weight regularizer
is set to 1e-5 without using decay scheduler.

Baselines. We evaluate the proposed approach over two SOTA methods for training low-bit shift
networks, including DeepShift [9] and Incremental Network Quantization (INQ) [30]. We also
compare the results of shift network to other neural networks with higher computational cost,
including multiplication-based ConvNet in full-precision [13] and LqNet [29].

Experiment results. The results summarized in Table 1 and Table 2 show that our method signifi-
cantly improves the accuracies of low-bit multiplication-free networks. Our proposed method on the
3-bit shift networks has the most exciting result: it achieves state-of-the-art accuracy of low-bit shift
networks with a Top-1 accuracy of 69.82% on ResNet-18 and 75.75% on ResNet-50 without extra
technique at initialization or during training.

5.2 Compare and analyze the dynamics of weights with different training paradigms

The dynamics of weights during training reveals the learning process of a neural network. Here we
define two indices reflecting the weight variation behaviour during training, namely weight sign
variation rate (WSVR) and weight low-value rate (WLVR). Then we compare the variation trend of
them among different models during training.

Weight Sign Variation Rate (WSVR) indicates the frequency of weight sign variation during training.
To measure WSVR, we take weight snapshots every 10 epochs during training and measure the
percentage of weights with a different sign between two neighbouring snapshots as the WSVR.
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(b) Weight Low-Value Rate
Figure 4: Weight dynamics comparison using ResNet-20 trained on CIFAR-10. Each curve represents
one layer in the model. The colour of the layer gradually becomes opaque from front to end.

Weight Low-Value Rate (WLVR) indicates the percentage of weight values relatively close or equal
to zero. We use it as a unified index of continuous and discrete weights to reflect their generalized
sparseness during training. For discrete weight networks, we consider weight sparsity as WLVR. For
a model with continuous weight trained without an `1 regularizer, the low-value weights oscillate in a
neighbouring region of zero. To measure WLVR, we normalize the weight tensors of each layer to
the range between -1 and 1, then count the percentage of weights between -0.03 and 0.03 as WLVR.
Our conclusion relies on the variation trend of the curves, which is not significantly affected by this
hyper-parameter.

Experiments setup. We compare the two indicators mentioned above on three models: a full-
precision model, a ternary weight model including quantizer [15], and an S3 re-parameterized ternary
weight model described in section 4.1. This analysis chooses the ResNet-20 model as the backbone
and trains all three models on the CIFAR-10 dataset for 150 epochs with a cosine annealing learning
rate and the initial learning rate set to 0.1. All models are converged and reach a reasonable validation
accuracy on CIFAR10 (> 91%). We measure WSVRs and WLVRs for each layer in all three models
during training and summarize the results in Figure 4.

Result analysis. We can observe from Figure 4a that the full-precision network has high WSVRs
at the beginning of training and then slowly decreases to zero in the end, indicating that the weight
signs oscillate rapidly initially and gradually stabilize in the end. On the contrary, the ternary weight
model with a traditional quantizer remains low WSVRs during the whole training process, indicating
that the weight sign variation is not as frequent as its full-precision counterpart. Although our
proposed approach has a different trend of WSVRs with the full-precision model initially, it is in
good alignment in the rest of the training stage.

Figure 4b shows that the full-precision network has low WLVRs in the early stage of training and
then slowly increases, indicating that the portion of low-value weights increases during the training
of the full precision model. However, the WLVRs variation trend of the ternary weight network with
quantizer is toward the opposite direction—the weight sparsity of the ternary weight network trained
with a quantizer decrease during training. On the trend of this indicator, our method better aligns
with the full-precision model.

We argue that the design of S3 re-parameterization is the key to better alignment with the weight
dynamics. By decomposing into wsign and wsparse, the discrete weight can oscillate between -1 to 1
values directly, and the dense weight regularizer keeps the wsparse stay at one as long as possible until
both +1 and -1 status increasing the loss value and the gradient signal from the optimizer push the
discrete weight values to zero status. This decomposition design leads to weight dynamics very close
to the full-precision weight dynamics described in section 3.2, i.e. oscillation and slowly converge to
a specific weight sign, otherwise push to zero.

5.3 Ablation studies

In this section, we verify the efficiency and robustness of our method via extensive experiments.
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Figure 5: Sensitivity analysis for dense weight regularizers without using decay scheduler

Table 3: Dense weight regularizer hyper-parameter comparisons using ResNet-18 on ImageNet

Decay ResNet-18 α
Scheduler ImageNet 1e-2 1e-3 1e-4 1e-5 1e-6

None Top-1 69.78 69.85 69.84 69.82 69.83
Top-5 89.21 89.24 89.23 89.23 89.23

Linear Top-1 69.91 69.68 69.74 69.62 66.70
Top-5 89.23 89.06 89.13 89.10 86.93

Cosine Top-1 69.91 69.85 69.85 69.57 65.82
Top-5 89.15 89.20 89.38 89.04 86.50

Dense weight regularizer. We verify a wide range of hyper-parameters of the dense weight regular-
izer and two decay schedulers: linear decay and cosine decay, to prove our method’s efficiency and
robustness. We choose the 3-bit S3 re-parameterized shift network and ResNet-18 backbone on the
ImageNet dataset as the test case. All hyper-parameters are the same as described in section 5.1. The
ablation study results are summarized to Table 3.

The results show that the performance of S3 re-parameterized networks is insensitive to the choice of
α value of the dense weight regularizer. The decay schedulers for α have a limited impact on the
performance of the trained model as well, indicating that the main benefit of dense weight priori
comes from the early stage of training. This result implies the performance gain from initialization
with a pre-trained full-precision model may come from the good initial estimation of weight sign
from the pre-trained weights.

Although the experiment results are consistent across a wide range of α values and two different
decay schedulers, Figure 5 shows that the dense weight regularizer is an indispensable part to train an
S3 re-parameterized network—otherwise, the training suffers from a convergence problem.

Training epochs. Due to their frequent sign variation instability, binary parameters’ training requires
more epochs compared to their full-precision counterparts [6, 24, 2]. Since the number of training
epochs is critical for binary parameter training, we verify the neural network performance affected by
it. We choose the 3-bit S3 re-parameterized shift network and ResNet-18/50 backbone on ImageNet
dataset as the test case. All hyper-parameters are the same as described in section 5.1, except for the
number of epochs. Table 4 shows that the network performance can significantly improve with more
epochs. With the training of 200 epochs, we close the accuracy gap between 3bit shift networks and
full-precision CNN on ResNet18/50 ImageNet experiments.

6 Conclusion

Although low-bit shift networks are memory efficient and hardware friendly during inference, they are
not able to achieve competing performance with their full-precision counterparts due to the gradient
vanishing and weight sign freezing problems when trained by existing methods. Our proposed S3

reparametrization technique efficiently addresses these issues and bridges the accuracy gap between
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Table 4: Training epochs comparisons using ResNets trained on ImageNet

Experiments Accuracy Rsparse Epochs
α 90 120 150 180 200

ResNet-18 Top-1 1e-5 68.45 69.24 69.28 69.63 69.83
ImageNet Top-5 88.35 88.77 88.93 89.16 89.23
ResNet-50 Top-1 1e-5 74.67 75.47 75.76 / 75.75
ImageNet Top-5 92.27 92.60 92.72 / 92.80

low-bit shift networks and their full-precision counterparts by carefully design a decomposed space for
optimization so the discrete weight dynamics can match the continuous weight dynamics. Extensive
experiments and ablation studies demonstrate the superior effectiveness and robustness of our method
for training low-bit shift networks. Moreover, we show that S3 reparametrization enables a better
alignment between the dynamics of weights in training a low-bit shift network and its full-precision
counterpart. Our future work is to further explore the theoretical ground of our reparametrization
technique and weight dynamics.
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A Appendix

A.1 Comparison of the power-of-two scaling factor parameterizations

This experiment compares different parameterizations of the power-of-two scaling factors on a 3-bit
shift network. Our proposed method describe in Eq.8, and another is a staircase-like quantizer
function. Besides different scaling factor parameterization, all other hyper-parameters and designs
are the same as the experiments in Table 3 except for training epochs reduced to 120.

The design of the staircase-like quantizer is following the general practice of quantization-aware
training. In 3bit shift network, the value of power-of-two scaling factors is limited to {0, 1, 2}.
During the forward propagation, shift parameters rescale to the range of (-0.5, 2.5) based on their min
and max, and then rounded. During the backward propagation, we use STE to estimate the gradient
across the staircase-like quantizer function.

Our experiment results summarized in Table 5, it shows that our proposed parameterization of the
power-of-two scaling factor improves the shift networks’ performance.

Table 5: Comparison of power-of-two scaling factor parameterizations using ResNet-18 on ImageNet

Parameterization ResNet-18 α
of 2p ImageNet 1e-2 1e-3 1e-4 1e-5

Staircase-like function Top-1 68.58 68.58 68.52 68.59
Top-5 88.50 88.41 88.30 88.47

Ours(S3) Top-1 69.78 69.85 69.84 69.82
Top-5 89.21 89.24 89.23 89.23

A.2 Figures of the training epochs experiments

Figure 6 and 7 shows the training loss curves and testing accuracy curves of the training epochs
experiments summarized in Table 4.
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Figure 6: Training epochs comparison using ResNet-18 trained on ImageNet
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Figure 7: Training epochs comparison using ResNet-50 trained on ImageNet
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