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Abstract

At their core, many unsupervised learning models provide a compact representation
of homogeneous density mixtures, but their similarities and differences are not
always clearly understood. In this work, we formally establish the relationships
among latent tree graphical models (including special cases such as hidden Markov
models and tensorial mixture models), hierarchical tensor formats and sum-product
networks. Based on this connection, we then give a unified treatment of expo-
nential separation in exact representation size between deep mixture architectures
and shallow ones. In contrast, for approximate representation, we show that the
conditional gradient algorithm can approximate any homogeneous mixture within
ε accuracy by combining O(1/ε2) “shallow” architectures, where the hidden con-
stant may decrease (exponentially) with respect to the depth. Our experiments on
both synthetic and real datasets confirm the benefits of depth in density estimation.

1 Introduction
Multivariate density estimation, a widely studied problem in statistics and machine learning [28],
is becoming even more relevant nowadays due to the availability of huge amounts of unlabeled
data in various applications. Many unsupervised and semi-supervised learning algorithms either
implicitly (e.g. generative adversarial networks) or explicitly estimate (some functional of) the
underlying density function. In this work, we study the problem of density estimation with an explicit
representation through finite mixture models (FMMs) [19], which have endured thorough scientific
scrutiny over decades. The popularity of FMMs is largely due to their simplicity, interpretability,
and universality, in the sense that, given sufficiently many components (satisfying mild conditions),
FMMs can approximate any distribution to an arbitrary level of accuracy [22].

Many familiar unsupervised models in machine learning, at their core, provide a compact represen-
tation of homogeneous density mixtures. This list includes (but is not limited to) hidden Markov
models (HMM), the recently proposed tensorial mixture models (TMM) [26], latent tree graphi-
cal models (LTM)[21], hierarchical tensor formats (HTF) [13], and sum-product networks (SPN)
[9; 24]. However, despite all being a certain form of FMM, the precise relationships among these
models are not always well-understood. Our first contribution fills this gap: we prove (roughly) that
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{HMM,TMM} ⊆ LTM ⊆ HTF ⊆ SPN . Moreover, converting from a lower to an upper class
can be achieved in linear time and without any increase in size. Our results not only clarify the
similarities and subtle differences between these widely-used models, but also pave the way for a
unified treatment of many properties of such models, using tools from linear algebra.

We next investigate the consequence of converting a deep mixture model into a shallow one. We first
prove that the (nonnegative) tensor rank exactly characterizes the minimum size of a shallow SPN
(or LTM or HTF due to equivalence) that represents a given homogeneous mixture. Then, we show
that a generic “deep” SPN (with depth at least 2) can be exactly represented by a shallow SPN only
when the latter contains exponentially many product nodes. Our result extends significantly those in
[7; 26; 10; 18; 8] in various aspects, but most saliently from the restrictive full binary tree [7; 26] to
any rooted tree. As a consequence, our results imply that a generic HMM (whose underlying tree
is “completely” unbalanced) cannot be exactly represented by any polynomially-sized shallow SPN,
which, to our best knowledge, has not been shown before.

From a practical point of view, exact representations are an overkill: it suffices to approximate a
given density mixture with reasonable accuracy. Our third contribution demonstrates that under the
`∞ metric, we can approximate any homogeneous density mixture within ε accuracy by combining
O(1/ε2) shallow SPNs. However, our proof requires the knowledge of the target density hence is not
practical. Instead, borrowing a classic idea from [17] we show that minimizing the KL divergence
using the conditional gradient algorithm can also approximate any homogeneous mixture within ε
accuracy by combining O(1/ε2) base SPNs, where the hidden constant decreases exponentially wrt
the depth of the base SPNs. Each iteration of the conditional gradient algorithm amounts to learning a
base SPN hence can be efficiently implemented. We conduct thorough experiments on both synthetic
and real datasets and confirm the benefits of depth in density estimation.

We proceed as follows: In §2 we introduce homogeneous density mixtures. In §3 we articulate the
relationships among various popular mixture models. §4 examines the exponential separation in exact
representation size between deep and shallow models while §5 turns into approximate representations.
We report our experiments in §6 and finally we conclude in §7. All proofs are deferred to Appendix C.

2 Density Estimation using Mixture Models
In this section, we introduce our main problem: how to estimate a multivariate density through an
explicit, finite homogeneous mixture. To set up the stage, let x = (x1, . . . , xd), with xi ∈ Xi where
each Xi is a Borel (measurable) subset of the Euclidean space Ei. We equip a Borel measure µi
on Xi. All our subsequent measure-theoretic definitions are w.r.t. the Borel σ-field of Xi and the
measure µi. Let X = X1 × · · · ×Xd and µ = µ1 × · · · × µd be the product space and product
measure, respectively. For each i ∈ [d] := {1, . . . , d}, let Fi be a class of density functions (w.r.t.
µi) of the variable xi, and let Gi = conv(Fi) be its convex hull. The function class Fi is essentially
our basis of densities for the variable xi. Our setting here follows that in [18] and includes both
continuous and discrete distributions.

We are interested in constructing a finite density mixture [19], using component densities from the
basis class F =

⋃d
i=1 Fi. We assume that our finite mixture f is “homogeneous,” i.e.

f(x) =

k1∑
j1=1

k2∑
j2=1

· · ·
kd∑
jd=1

Wj1,j2,...,jd

d∏
i=1

f iji(xi) = 〈W, ~f1(x1)⊗ · · · ⊗ ~fd(xd)〉, (1)

where ~f i := (f i1, . . . , f
i
ki

) ∈ Fkii ,W ∈
⊗

iR
ki
+ ' R

k1×···×kd
+ is a d-order density tensor (nonnega-

tive and sum to 1), and 〈·, ·〉 is the standard inner product on the tensor product space. We refer to the
excellent book [13] and Appendix A for some basic definitions about tensors. By dropping linearly
dependent densities in each Fi we can assume w.l.o.g. the tensor representationW is unique.

There are a number of reasons for restricting to homogeneous mixtures: Firstly, this is the most
common choice for estimating a multivariate density function [28]. Secondly, we can always apply the
usual “homogenization” trick, i.e., by enlarging the function class Fi and appending the (improper)
density 1 to eachFi. Thirdly, homogeneous densities are “universal” if each classFi is, c.f. Appendix
A of [26]. In other words, any joint density can be approximated arbitrarily well by a homogeneous
density, provided that each marginal class Fi can approximate any marginal density arbitrarily well
and the size (i.e. ki) tends to ∞. See Appendix F.1 for some empirical verifications, where we
show that convex combinations of relatively few isotropic Gaussians can approximate mixtures of
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Gaussians of full covariance matrices surprisingly well. Lastly, as we argue below, many known
models in machine learning are simply compact representations of homogeneous mixtures.

3 Compact Representation of Homogeneous Mixtures

We now recall a few unsupervised learning models in machine learning and show that they have a
compact representation of homogeneous mixtures at their core. We prove the precise relationship
amongst them. Our results clarify the similarity and difference of these recent developments, and pave
the way for a unified treatment of depth separation (Section 4) and model approximation (Section 5).

Sum-Product Networks (SPN) [9; 24; 18] An SPN T is a rooted tree whose leaves are density
functions f ij(xi) over each of the variables x1, . . . , xd and whose internal nodes are either a sum node
or a product node. Each edge (u, v) emanating from a sum node u has an associated nonnegative
weightwuv . The value Tv at a product node v is the product of the values of its children,

∏
u∈ch(v) Tu.

The value Tu at a sum node u is the weighted sum of the values of its children,
∑
v∈ch(u) wuvTv.

The value of an SPN T is the expression evaluated at the root node, which we denote as T(x). The
scope of a node v in an SPN is the set of all variables that appear in the leaves of the sub-SPN rooted
at v. We only consider decomposable and complete SPNs, i.e., the children of each sum node must
have the same scope and the children of each product node must have disjoint scopes. The main
advantage of a decomposable and complete SPN over a generic graphical model is that joint, marginal
and conditional queries can be answered by two network evaluations and hence, exact inference takes
linear time with respect to the size of the network [9; 24; 18]. In comparison, inference in Bayesian
Networks and Markov Networks may take exponential time in terms of the size of the network.
W.l.o.g. we can rearrange an SPN to have alternating sum and product layers (see Theorem C.1).

The latent variable semantics [23] as well as SPNs representing a mixture model over its leaf densities
[24] is well-known. It is also informally known that many tractable graphical models can be treated as
SPNs, but precise characterizations are scarce (see [29] which relates SPNs with Bayesian Networks).

Self-similar SPNs (S3PN) We call an SPN self-similar, if at every sum node, the sub-tree rooted at
each of its (product node) children is the same, except the weights at corresponding sum nodes and
the densities (but not the variables) at corresponding leaf nodes may differ. This special class of SPNs
is exactly equivalent to some recently proposed unsupervised learning models, as we show below.

Hierarchical Tensor Format (HTF) [13] We showed in (1) that a homogeneous mixture can be
identified with a tensorW , whose explicit storage can, however, be quite challenging since its size is∏d
i=1 ki. HTF [13] aims at representing tensors compactly, hence can also be used for representing

homogeneous mixtures. An HTF consists of a dimension-partition rooted tree (DPT) T, d vector
spaces Vi with bases1 Fi at the d leaf nodes, and at most d − 1 internal nodes which are certain
subspaces of the tensor product of vector spaces at disjoint children nodes. Note that the dimension of
the tensor product U⊗ V is the product of the dimensions of U and V. The key in HTF is to truncate
each tensor product with a (much smaller) subspace, hence keeping the total storage manageable.
Moreover, at each internal node v with k children nodes {vi}, instead of storing its r bases directly,
we store r coefficient tensors {wv,γj1,...,jk : γ ∈ [r]} such that, recursively, the γ-th basis at node v is∑

j1
· · ·
∑
jk
wv,γj1,...,jkvj1 ⊗ · · · ⊗ vjk , where {vji} consists of the bases at the i-th child node vi. To

our best knowledge, HTFs have not been recognized as SPNs previously, although they have been
used in a spectral method for latent variable models [27].

To turn an HTF into an SPN, more precisely an S3PN, we start from the root of the dimension-partition
tree T. For each internal node v with say r bases and say k children nodes {vi}, each of which has
ri bases themselves, we create three layers in the corresponding S3PN: in the first layer we have r
sum nodes {Svγ}, each of which is (fully) connected, with respective weights wv,γj1,...,jk , to the second
layer of

∏k
i=1 ri product nodes {Pvj1,...,jk}, and finally the third layer consists of

∑k
i=1 ri sum nodes

{Sviji }. The product node Pvj1,...,jk is connected to k sum nodes {Sv1j1 , . . . ,S
vk
jk
}. Note that the weights

wv,γj1,...,jk need not be positive or sum to 1 in HTF, although for representing a homogeneous mixture
we can make this choice and we call this subclass HTF+. Clearly, our construction is reversible hence
we can turn an S3PN into an equivalent HTF+ as well. The construction takes linear time and there is

1More generally frames, in particular, the elements need not be linearly independent.
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Figure 1: Left: A simple latent class model (special case of LTM). The superscript 2 indicates the
number of values the hidden variable H can take. Middle: The equivalent S3PN, where f ij(xi) =
p(Xi = xi|H = j) is from the density class Fi. Right: The dimension-partition tree in an equivalent
HTF+. The superscript indicates the number of bases, which should be the same for sibling nodes.

no increase of representation size. See Figs.1,5 for simple illustrations2. In summary, HTF is exactly
S3PN with arbitrary weights.

Diagonal HTF (dHTF) [13] For later reference, let us call the subclass of HTFs whose coefficient
tensors wv,γj1,...,jk (that define bases recursively at internal nodes of the DPT, see above) are diagonal
for all v and γ as dHTF, i.e., siblings in the DPT must have the same number of bases (ri ≡ r)
and wv,γj1,...,jk 6= 0 only when j1 = . . . = jk. In neural network terminology, dHTFs are “locally
connected.” Compared to the fully connected HTF, dHTFs significantly reduce the representation
size (at the expense of expressiveness, see Figure 7). For instance, the

∏k
i=1 ri = rk product nodes

in the above conversion from HTF to S3PN are reduced to merely r product nodes.
Latent Tree Models (LTM) [21; 27; 5] An LTM is a rooted tree graphical model with observed
variablesXi on the leaves and hidden variablesHj on the internal nodes. Note that we allow observed
variables Xi to be either continuous or discrete but the hidden variables Hj can take only finitely
many values. Using conditional independence, the joint density of observed variables is given as

f(x1, . . . , xd) =
∑
h1
· · ·
∑
ht
W(h1, . . . , ht)

∏d
i=1 f

i
hπi

(xi), (2)

where Hπi is the parent of Xi. From (2) it is clear that an LTM is a homogeneous density mixture,
whose tensor representation is given by the joint densityW of the hidden variables. What is less
known3 is that LTMs are a special subclass of self-similar SPNs. It may appear that the size of
S3PN is larger than that of an equivalent LTM, but this is because S3PN also encodes the conditional
probability tables (CPT) into its structure whereas LTMs require other means to store CPTs. Note
also that to evaluate an LTM, one usually needs to run a separately designed algorithm (such as
message passing), while in S3PN we evaluate the leaf densities and propagate in linear time to the
root. In summary, LTM is a subclass of S3PN with CPTs encoded as edge weights and with inference
simplified as network propagation. More precisely, LTM is exactly dHTF+, since conditioned on the
parent, all children nodes must depend on the same realization. An algorithm for converting LTMs
into equivalent S3PNs, along with more examples (Figs. 1-6), can be found in Appendix B.1.

Tensorial Mixture Models (TMM) [26; 7; 6] TMM [26] is a recently proposed subclass of dHTF+
where nodes on the same level of the dimension-partition tree must have the same number of bases.
Clearly, TMM is a strict subclass of LTM since the latter only requires sibling nodes in the DPT to
have the same number of bases. We note that TMM, as defined in [26], also assumes the DPT to be
binary and balanced, i.e. each internal node has exactly two children, although this condition can be
easily relaxed. See Figure 2 and its reduced form in Appendix B.3 for a simple example. Further, in
Appendix B.4, we give an example of an LTM that is not a TMM.

Hidden Markov Models (HMM) [3; 25] HMM is a strict subclass of LTM. [14] recently observed
that HMM is equivalent to the tensor-train format, a special subclass of dHTF+ where the DPT is
binary and completely “imbalanced.” See Appendix B.5 for a simple example. In some sense, TMM
and HMM are the two opposite extremes within dHTF+ (or equivalently LTM).

Further, in Appendix B.6 we give an example of an S3PN that is not an LTM, and in Appendix B.7,
we give an example of an SPN that is not an S3PN, leading to the following summary:
Theorem 3.1. {TMM, HMM} ⊆ LTM = dHTF+ ⊆ HTF+ = S3PN ⊆ SPN, in the sense that we can
convert in linear time from a lower representation class to an upper one, without any increase in size.

2All of our illustrations of S3PN in the main text are drawn with some redundant leaves, for the sake of
making the self-similar property apparent. See Appendix B for the reduced (but equivalent) counterparts.

3As an evidence, we note that the recent survey [21] on LTMs did not mention SPNs at all.
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Figure 2: Left: A dimension-partition tree in HTF. The superscripts indicate the number of bases,
which should remain constant on each level. Middle: The equivalent S3PN. The leaf f ij is the j-th
basis of vector space Vi. Right: An equivalent TMM. The superscripts indicate the number of values
each hidden variable can take (again, remaining constant on each level).

It is important to point out one subtlety here: any (complete and decomposable) SPN, if expanded at
the root, is a homogeneous mixture (c.f. (1)). Hence, any SPN is even equivalent to an LCM (i.e. an
LTM with one hidden variable taking many values, like in Figure 1), at the expense of potentially
increasing the size (significantly). Thus, the containment in Theorem 3.1 should be understood under
the premise of not increasing the representation size. It would be interesting to understand if the
containment is strict if only polynomial increase in size is allowed. We provide more comparing
examples in Appendix B for different models, and in the next section we discuss the (huge) size
consequence from converting a certain upper representation class to some lower one.

4 Depth Separation
In the previous section, we established relationships among different representation schemes for
homogeneous density mixtures. In this section, we prove an exponential separation in size when
converting one representation to another and extend the results in [10; 18; 7; 26]. The key is to exploit
the equivalence to HTF, which allows us to bound the model size using linear algebra.

We call a (complete and decomposable) SPN shallow if it has only one sum node, followed by
a layer of product nodes. Using the equivalence in Section 3, we know a shallow SPN (trivially
self-similar) is equivalent to an LCM (a latent tree model with one hidden node taking as many values
as the number of product nodes), or an HTF+ whose DPT has depth 1 (c.f. Figure 1). Recall that
rank+(W) denotes the nonnegative rank of a tensor and nnz(W) is the number of nonzeros (c.f.
Appendix A). The leaf nodes in SPN (LTM) or the leaf bases in HTF are either from F (union of
linearly independent component densities) or G (the convex hull), see the definitions in Section 2.

Our first result characterizes the model capacity of shallow SPNs (LCMs):

Theorem 4.1. If a shallow SPN T, with leaf (input) nodes from G, represents the density mixtureW ,
then T has at least rank+(W) many product nodes. Conversely, there always exists a shallow SPN
that representsW using rank+(W) product nodes and 1 sum node.

In other words, the nonnegative rank characterizes the smallest size of shallow SPNs (LCMs) that
represent the density mixtureW . Similarly, we can prove the following result when the leaf nodes
are from F instead of the convex hull G.

Theorem 4.2. If a shallow SPN T, with leaf nodes from F , represents the density mixtureW , then
either T has at least nnz(W) product nodes or rank+(W) = 1. Conversely, there always exists a
shallow SPN that representsW using nnz(W) product nodes and 1 sum node.

Note that we always have rank(W) ≤ rank+(W) ≤ nnz(W), thus the lower bound in Theorem 4.2
is stronger than that in Theorem 4.1. This is not surprising, because an SPN with leaf nodes from G
is the same as an SPN with leaf nodes from F and with an additional layer of sum nodes appended at
the bottom (to perform the convex hull operation). This difference already indicates that an additional
layer of sum nodes at the bottom can strictly increase the expressive power of SPNs. This distinction
between leaf nodes from F or from G, to our best knowledge, has not been noted before.

The significance of Theorem 4.1 and Theorem 4.2 is that they give exact characterizations of the
model size of shallow SPNs, and they pave the way for comparing more interesting models. For
convenience, we state our next result in terms of LTMs, but the consequence for dHTFs or SPNs
should be clear, thanks to the equivalence in Theorem 3.1.
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Theorem 4.3. Let an LTM T have d observed variables X = {X1, . . . , Xd} with parents Hi taking
ri values respectively. Assuming the CPTs of T are sampled from a continuous distribution, then
almost surely, the tensor representationW for T has rank at least

max
1≤m≤d/2

max
{S1,...,Sm,S̄1,...,S̄m}⊆X

m∏
i=1

min{ri, r̄i, ki, k̄i}, (3)

where ki (k̄i) is the number of (linearly independent) component densities that Si (S̄i) has, and Si
(S̄i) are non-siblings.

Corollary 4.4. In addition to the setting in Theorem 4.3, if each observed variable Xi has b sibling
observed variables and ri ≡ r ≤ k ≡ ki, then the tensor representationW has rank at least rbd/bc.

Corollary 4.5. In addition to the setting in Theorem 4.3, if each observed variable Xi has no sibling
observed variables and ri ≡ r ≤ k ≡ ki, then the tensor representationW has rank at least rbd/2c.

Combining Corollary 4.4 with Theorem 4.2 we conclude that an LTM T with d observed variables
Xi where every b of them share the same hidden parent node is equivalent to an LCM T′ where the
hidden node must take at least rbd/bc many values. Note that T has Θ(d/b) hidden variables, each
of them taking r values, thus the total size of the CPTs of T is Θ(rd/b) while the total size of that
of T′ is rbd/bc, an exponential blow-up. By combining Corollary 4.5 with Theorem 4.2 a similar
conclusion can be made for converting an HMM into a LCM. Of course, interpretation using SPNs is
also readily available: Almost all depth-L S3PNs (L ≥ 2) with weights sampled from a continuous
distribution can be written as a shallow SPN with necessarily exponentially many product nodes.

To our best knowledge, [10] was the first to construct a polynomial that, while representable by a
polynomially-sized depth-log d SPN, would require exponentially many product nodes if represented
by a shallow SPN. However, the deep SPN given in [10, Figure 1] is not complete. Recently, [7]
proved that the existence result of [10] is in fact generic. However, the results of [7] and subsequent
work [26] are limited to full binary trees. In contrast, our general Theorem 4.3 holds for any tree, and
we allow non-sibling nodes to take different number of values. As a result, we are able to handle
HMMs, the opposite extreme of TMM. Another important point we want to emphasize is that the
exponential separation from a shallow (i.e. depth-1) tree can be achieved by increasing the depth by
merely 1, as opposed to the depth-log d constructions in [10; 26].

We end this section by making another observation about Theorem 4.3: It also allows us to compare
the model size of LTMs T1 and T2 where say T1, after removing its rootR, is a subtree of T2. Indeed,
in this case we need only define the children nodes of R as “observed” variables. Then, T1 becomes
an LCM and T2 serves as T in Theorem 4.3, with observed variables as the children nodes of R. This
essentially extends [7, Theorem 3] from a full binary tree to any tree and allowing non-sibling nodes
to take different number of values.

5 Approximate Representation
In the previous section, we proved that homogeneous mixtures representable by “deep” architectures
(such as SPN or LTM) of polynomial size cannot be exactly represented by a shallow one with
sub-exponential size. In this section, we address a more intricate and relevant question: What if we
are only interested in an approximate representation?

To formulate the problem, let g and h be two homogeneous mixtures with tensor representationW
and Z , respectively. We consider the distance dist(g, h) := ‖W −Z‖ for some norm ‖ · ‖ specified
later. Using the characterization in Theorem 4.1 we formulate our approximation problem as follows.
Let ∆ be a perturbation tensor with ‖∆‖ ≤ ε. What is the minimum value for rank+(W + ∆), i.e.
the size of a shallow SPN? This motivates the following definition adapted from [1]:

ε-rank+(W) = min
{

rank+(W + ∆) : ‖∆‖ ≤ ε
}

= min
{

rank+(Z) : ‖Z −W‖ ≤ ε
}
. (4)

In other words, ε-rank+ is precisely the minimum size of a shallow SPN (LCM) that approximates
a specified mixture W with accuracy ε. We can similarly define ε-rank, where we replace the
nonnegative rank with the usual rank in (4). Note that the notion of ε-rank depends on the norm ‖ · ‖.

`∞-norm Let the norm in the definition (4) be the usual `∞ norm, and we signify this choice with
the notation ε-rank∞. In this setting, we can prove the following nearly-tight bound on the ε-rank.
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Theorem 5.1. Fix ε > 0 and tensorW ∈ Rk1×···×kd . Then, for some (small) constant c > 0,

ε-rank∞(W) ≤ c‖W‖tr
ε2 , (5)

where ‖W‖tr is the tensor trace norm. A similar result holds for ε-rank∞+ (W). The dependence on ε
is tight up to a log factor.

Note that the representative tensorW for a homogeneous density mixture f is nonnegative and sums
to 1, in which case ‖W‖tr ≤ ‖W‖1 = 1. Thus, very surprisingly, Theorem 5.1 confirms that any
deep SPN (or any LTM or HTF+) can be approximated by some shallow SPN with accuracy ε under
the `∞ metric and with at most c/ε2 many product nodes. Of course, this does not contradict with
the impossibility results in [7] and [18], because the accuracy ε there is exponentially small.

Theorem 5.1 remains mostly of theoretical interest, though, because (i) a straightforward application
of Theorem 5.1 leads to a disappointing bound on the total variational distance between the two
homogeneous mixtures f and g, due to scaling by the big constant

∏
i ki; (ii) in practical applications

we do not have access toW so the constructive algorithm in our proof does not apply.

KL divergence In contrast to the above `∞ approximation, we now give an efficient algorithm to
approximate a homogeneous density mixture h, using a classic idea of [17]. We propose to estimate
h by minimizing the KL divergence over the convex hull4 of a hypothesis class H:

min
Wg∈conv(H)

KL(h‖g), (6)

where KL(h‖g) :=
∫
h(x) log h(x)

g(x) dµ(x), and Wg is the representative tensor for the mixture g.
Following [17], we apply the conditional gradient algorithm [12] to solve (6): Given gt−1, we find

(ηt, ft)← arg min
η∈[0,1],Wf∈H

KL(h‖(1− η)gt−1 + ηf), gt ← (1− ηt)gt−1 + ηtft. (7)

One can also simply set ηt = 2
2+t , as is common in practice. Note that (7) can be approximately

solved based on an iid sample x1, . . . ,xn hence is practical:

max
η∈[0,1],Wf∈H

∑n

i=1
log[(1− η)gt−1(xi) + ηf(xi)]. (8)

Using basically the same argument as in [17], the above algorithm enjoys the following guarantee:

KL(h‖gt) ≤ chδ/t, (9)

where δ = sup{log 〈W,
~f1⊗···⊗~fd〉

〈Z, ~f1⊗···⊗~fd〉
:W,Z ∈ H,x ∈ X}, and

ch = min{p ≥ 0 :Wh =
∑p
i=1 λiWi,Wi ∈ H,λ ≥ 0,1>λ = 1} (10)

is essentially the rank of the mixture h (with tensor representationWh) w.r.t. the class H.

The important conclusion we draw from the above bound (9) is as follows: First, the constant ch is no
larger than

∏
i ki if H is any of the classes in Theorem 3.1 (since we only consider finite homogeneous

mixtures h). Second, if the target density h is a small number of combinations of densities in H, then
ch is small and we can approximate h using the algorithm (7) efficiently. Third, ch can be vastly
different for different hypothesis classes H, as shown in Section 4. For instance, if h is a generic
TMM and H is the shallow class LCM, then ch is exponential in d, whereas if H is the class TMM,
then ch can be as small as 1. There is a trade-off though, since solving (8) for a simpler class (such as
LCM) is easier than a deeper one (such as TMM). We will verify this trade-off in our experiments.

6 Experiments

We perform experiments on both synthetic and real world data to reinforce our theoretical findings.
Firstly, we present experiments on synthetic data to demonstrate the expressive power of an SPN and
the algorithm proposed in (7)-(8) which we call SPN-CG. Next, we present two sets of experiments
on real world datasets and present results for image classification under missing data.
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Figure 3: Depth efficiency and performance of SPN-CG

Synthetic data Firstly, in appendix F.1 we confirm that a Gaussian mixture model (GMM) with
full covariance matrices can be well approximated by a homogeneous mixture model represented by
an SPN learned using SPN-CG. Secondly, we generate 20,000 samples from a 16 dimensional GMM
under three different settings - (i) 8 component GMM with full covariance matrices, (ii) 8 component
GMM with diagonal covariance matrices and, (iii) GMMs represented by a deep SPN with 4 layers
- and estimate each using SPN-CG. We consider layers, L ∈ {1, 2, 3, 4} where L = 1 corresponds
to a shallow network and L = 4 corresponds to a network in TMM (a full binary tree). For each
L, at every iteration of SPN-CG we add a network with L layers. In Figure 3, we plot the number
of iterations and the total running time until convergence w.r.t. the depth for each setting described
above. We make the following observations: As the depth (layer) increases, the number of iterations
decreases sharply, since adding a deeper network effectively is the same as adding exponentially
many shallower networks (confirming Section 4). Moreover, although learning a deeper network in
each iteration is more expensive than learning a shallower network, the sharp decrease in iterations
full compensates this overhead and leads to a much reduced total running time. The advantage in
using deeper networks is more pronounced when the data is indeed generated from a deep model.

Image Classification under Missing Data by Marginalization A natural setting to test the ef-
fectiveness of generative models like deep SPNs is for classification in the regime of missing data.
Generative models can cope with missing data naturally through marginalizing the missing values,
effectively learning all possible completions for classification. As stated earlier, SPNs are attractive
because inference, marginalization and evaluating conditionals is tractable and amounts to one pass
through the network. This is in stark contrast with discriminative models that often rely on either data
imputation techniques (which result in sub-optimal classification) or by assuming the distribution of
missing values is same during train and test time; an assumption that is often not valid in practice.

We perform experiments on MNIST [15] for digit classification and small NORB [16] for 3D object
recognition under the MAR (missing at random) regime as described in [26] (Section 3). We
experiment with two missing distributions- (i) an i.i.d. mask with a fixed probability of missing each
pixel, and (ii) a mask obtained by the union of rectangles of a certain size, each positioned uniformly
at random in the image. Concretely, let P (X,Y) be the joint distribution over the images (X ∈ Rd)
and labels Y ∈ [M ]. Further, let Z be a random binary vector conditioned on X = x with distribution
Q(Z|X = x). To generate images with missing pixels, we sample z ∈ {0, 1}d and consider the
vector x � z. A pixel xi, i ∈ [d] is considered missing if zi = 0 in which case the corresponding
coordinate in x� z holds ∗ and it holds xi if zi = 1. In the MAR setting that we consider for our
experiments, Q(Z = z|X = x) is a function of both z and x but is independent of changes to xi
if zi = 0 i.e. Z is independent of missing pixels. As described in [26], the optimal classification
rule in the MAR regime is h∗(x� z) = P (Y = y|w(x, z)) where w(x, z) is the realization when X
coincides with x on coordinates i for which zi = 1.

Our major goal with these experiments is to test our algorithm SPN-CG for high-dimensional real
world settings and show the efficacy of learning SPNs by increasing their expressiveness iteratively.
Therefore, we directly adapt the experiments as presented in [26]. Specifically, we adapt the code
of HT-TMM for our SPN-CG by following the details in [26]. In each iteration of our algorithm,
we add an SPN structure exactly similar to HT-TMM. Therefore, the first iteration of our algorithm
(i.e. SPN-CG1) amounts to a structure similar to HT-TMM while additional iterations increase the
network capacity. For each iteration, we train the network using an AdamSGD variant with a base
learning rate of 0.03 and momentum parameters β1 = β2 = 0.9. For each added network structure,
we train the model for 22,000 iterations for MNIST and 40,000 for NORB.

4This is similar in spirit to [20; 2] which learn mixture of trees, but the algorithms are quite different.
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Figure 4: Performance of SPN-CG for missing data on MNIST and NORB

Due to space limit Figure 4 only presents results comparing our model with (i) data imputation
techniques that complete missing pixels with zeros or NICE [11], a generative model suited for
inpainting, and finally using a ConvNet for prediction, (ii) an SPN with structure learned using data
as proposed in [24] augmented with a class variable to maximize joint probability, and (iii) shallow
networks to demonstrate the benefits of depth. A more comprehensive figure showing comparisons
with several other algorithms is given in appendix F.2, along with details.

SPN-CG1 and SPN-CG3 in Figure 4 stand for one and three iterations of our algorithm respectively.
The results show that SPN-CG performs well in all regimes of missing data for both MNIST
and NORB. Furthermore, other generative models including SPN with structure learning perform
comparably only when a few pixels are missing but perform very poorly as compared to SPN-CG
when larger amounts of data is missing. Our results here complement those in [26] where these
experiments were first reported with state of the art results.

7 Conclusion
We have formally established the relationships among some popular unsupervised learning models,
such as latent tree graphical models, hierarchical tensor formats and sum-product networks, based
on which we further provided a unified treatment of exponential separation in exact representation
size between deep architectures and shallow ones. Surprisingly, for approximate representation, the
conditional gradient algorithm can approximate any homogeneous mixture within accuracy ε by
combining O(1/ε2) shallow models, where the hidden constant may decrease exponentially wrt the
depth. Experiments on both synthetic and real datasets confirmed our theoretical findings.
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Supplementary Material

Deep Homogeneous Mixture Models:
Representation, Separation, and Approximation

A Tensor Background

For any natural number d, we denote [d] := {1, . . . , d}. Let Vi, i ∈ [d], be k-dimensional vector
spaces over the real field R, then the tensor product V1 ⊗ · · · ⊗ Vd is the canonical vector space
that linearizes multilinear maps over the product space V1 × · · · × Vd. Perhaps the simplest way to
construct the tensor product is to first formally define rank-1 tensors as:

{v1 ⊗ · · · ⊗ vd : vi ∈ Vi, i ∈ [d]}, (11)
and then take the linear span of rank-1 tensors. For each T ∈ V1 ⊗ · · · ⊗ Vd, we define its rank as

rank(T ) := min{r : T =

r∑
γ=1

vγ1 ⊗ · · · ⊗ vγd , v
γ
i ∈ Vi, i ∈ [d], γ ∈ [r]}. (12)

Sometimes we further restrict each factor vγi to some subset Ui ⊆ Vi, leading to a “larger” notion
of rank. For instance, when Vi ≡ Rk, the above definition is called the CP-rank and if we take
Ui = Rk+, then we get the refined notion of nonnegative rank, denoted as rank+. Obviously,
rank+ ≥ rank (whenever the former is defined).

Usually we can identify a d-order tensor T ∈ V1 ⊗ · · · ⊗ Vd with a multi-dimensional array

T = [Ti1,...,id ]ij∈[ki],j∈[d] ∈
⊗
i

Rki ' Rk1×···×kd , (13)

once some bases have been chosen for each Vi. We can extend an inner product to the tensor product
space: provided that some inner product 〈·, ·〉i has been specified on each Vi, we first define the inner
product for rank-1 tensors:

〈u1 ⊗ · · · ⊗ ud,v1 ⊗ · · · ⊗ vd〉 :=

d∏
i=1

〈ui,vi〉i, (14)

and then extend multi-linearly.

We give an explicit description of TMM [26] here. For simplicity, let us assume d = bL for some
integers b and L. Then, every d-order tensor T can be represented recursively as

φ`,tγ =

r`−1∑
j=1

w`,t,γj

b⊗
s=1

φ
`−1,b(t−1)+s
j , ` ∈ [L− 1], γ ∈ [r`], t ∈ [bL−`], (15)

T = φL,11 =

rL−1∑
j=1

wL,1,1j

b⊗
s=1

φL−1,s
j , (16)

where φ0,i
γ ∈ Vi for all γ ∈ [r0]. Note that the tensor T is completely determined by

{φ0,i
γ : γ ∈ [r0], i ∈ [d]}

⋃
{w`,t,γ ∈ Rr`−1 : ` ∈ [L− 1], γ ∈ [r`], t ∈ [bL−`]} ∪ {wL,1,1 ∈ RrL−1},

(17)
where the former are the base vectors at the bottom level and the latter are the coefficient vectors at
each intermediate level. Note that the representation (15)-(16) is not 1-1 (hence some redundancy).
Let TMMb

r (with default TMMr := TMM2
r) be the class of tensors that can be represented as in

(15)-(16).

A simple counting argument reveals that the coefficient tensors in TMMb
r have d−b

b−1r
2 + r entries. It

is clear that TMMb
r ⊆ TMMb

r+1, and TMMb
1 is exactly the set of rank-1 tensors. As shown in [13],

every tensor of rank r can be represented in TMMb
r. Similarly, every tensor of nonnegative rank r can

be represented in TMMb
r, with all base vectors and coefficient vectors in (17) nonnegative. Moreover,

we can normalize the base vectors φ0,i
γ so that they have unit `1 norm.
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B More results on comparing different models

This appendix section provides more details to compliment section 4. We provide additional details
and examples to support the arguments that we made in section 4.

B.1 Converting an LTM to S3PN

Given an LTM, we can build a corresponding S3PN as follows: starting from the root of the LTM,
for each hidden variable H that takes k possible values {1, . . . , k} and that has r children nodes
{V1, . . . , Vr}, we create a sum node SH with k children product nodes {PH,1, . . .PH,k}, each of
which has r children sum nodes {SV1

, . . . ,SVr}. We set the weight from the sum node SH to its i-th
child product node PH,i as Pr(H = i|π(H) = j), if SH connects to the j-th child product node of
the parent hidden variable π(H) (for the root, the parent is empty). If the child Vt is a hidden variable,
we continue the construction similarly, while if Vt = Xi is an observed variable, then we replace the
sum node SVt with the density f ij(xi), assuming SVt is connected to the j-th child product node of
the parent hidden variable H . Algorithm 1 summarizes this construction, and Figure 1 illustrates the
idea using a simple latent class model (LCM) [21].

In Algorithm 1, we describe a procedure to convert a latent tree model (LTM) as described in (2) to a
self-similar SPN (S3PN). In Figure 6 we give another example to illustrate Algorithm 1.

Figure 6: Left shows a latent tree model with three binary hidden variables H = {h1, h2, h3} and
four observed variables X = {X1, X2, X3, X4}. The second figure shows the equivalent SPN
representing the latent tree. The blue edges imply that the hidden variable takes value 0 and the violet
edges mean it takes value 1. Only a subset of leaf distributions are explicitly shown in the figure.

In Figure 6, we consider a latent tree graphical model forming a balanced binary tree with three
binary hidden variables H = {h1, h2, h3} and four observed variables X = {X1, X2, X3, X4}. The
tree has 3 levels and is rooted at h1. The algorithm proceeds by going through each level one at a
time. In the first iteration, it encounters the root node h1 and creates a corresponding sum node in the
SPN. It then creates two (equal to all possible states of h1) product nodes as children to this sum node.
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The edge on the left (blue in the figure) denotes the edge when h1 = 0 and has weight Pr(h1 = 0)
and the edge on the right (violet) denotes edge when h1 = 1 and has weight Pr(h1 = 1). In the next
iteration, the algorithm proceeds to level 2 which has two hidden variables h2 and h3. The algorithm
processes these one at a time. First, it takes h2 and creates two sum nodes corresponding to h2, one
child each for each product node in the previous layer. Next, for two product nodes are created and
an edge is created between each of these product nodes and each of the sum node created before
corresponding to h2. The same procedure is then repeated for h3. Finally, for each observed variable,
a leaf distribution Pr(X|πX) is induced.

Algorithm 1 Converting an LTM into an S3PN

1: Input : A latent tree model with L levels and (X,H)
2: Output : An equivalent S3PN
3: for l← L to 1 do
4: Hl := {all nodes in current level from left to right order}
5: while Hl 6= ∅ do
6: h = Pop(Hl)
7: if h ∈ X then
8: for j ← 1 to |πh| do
9: create a leaf vj with distribution Pr(h|πh = j)

10: add an edge (vj , p
l−1
j )

11: end for
12: else
13: if πh 6= ∅ then
14: create |πh| sum nodes i.e. Slh := {sl1, sl2, · · · sl|πh|}
15: for j ← 1 to |πh| do
16: add an edge (slj , p

l−1
j )

17: end for
18: create |h| product nodes i.e. P lh := {pl1, pl2, · · · , plh}
19: for i← 1 to |πh| do
20: for j ← 1 to |h| do
21: create an edge (sli, p

l
j) with weight wi,j = Pr(h = j|πh = i)

22: end for
23: end for
24: else
25: create one sum node sh
26: create h product nodes i.e. Ph := {p1, p2, · · · , ph}
27: for i← 1 to |h| do
28: add an edge (sh, pi) with weight Pr(h = i)
29: end for
30: end if
31: end if
32: end while
33: end for
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B.2 dHTF ( HTF

Figure 7 shows the difference between HTF and dHTF. As is clear from the figure, dHTF allows
for only local connections and can be thought of as having pointwise multiplication between bases
densities. HTF is more general and can allow for cross connections.
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Figure 7: Top : A general HTF representation. The network has cross connections and calculates all
possible multiplications. Bottom : A dHTF with same bases functions. The representation allows for
local connections.
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B.3 Example for TMM as an LTM and S3PN

In fig. 8, we give a representation for fig. 2 without redundancy. The figure shows that a TMM can be
represented by an LTM and hence an S3PN.
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Figure 8: Left: A dimension-partition tree in HTF. The superscripts indicate the number of bases,
which should remain constant on each level. Middle: The equivalent S3PN. The leaf f ij is the j-th
basis of vector space Vi. Right: An equivalent TMM. The superscripts indicate the number of values
each hidden variable can take (again, remaining constant on each level).

B.4 Example for TMM ( LTM

In fig. 9 we give an S3PN that is equivalent to an LTM but not a TMM. It is evident from the figure
that the LTM consists of hidden variables at the same level with different number of possible states.
This arrangement, however, is not allowed in TMM.
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Figure 9: Left: A dimension-partition tree in HTF+. The superscripts indicate the number of bases.
Middle: The equivalent S3PN. The leaf f ij is the j-th basis of vector space Vi. Right: An equivalent
LTM. The superscripts indicate the number of values each hidden variable can take.

A compact representation of fig. 9 without redundancy is given in fig. 10.
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Figure 10: Left: A dimension-partition tree in HTF+. The superscripts indicate the number of bases.
Middle: The equivalent S3PN. The leaf f ij is the j-th basis of vector space Vi. Right: An equivalent
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B.5 TTM/HMM as LTM and S3PN

In fig. 11, we give an example of a Tensor Train Model (TTM) which is know to be equivalent to an
HMM. We show an equivalent representation of the TTM/HMM into an LTM and therefore an S3PN.
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Figure 11: Left: A dimension-partition tree in tensor-train. The superscripts indicate the number of
bases, which should remain constant for siblings. Middle: The equivalent S3PN. The leaf f ij is the
j-th basis of vector space Vi. Right: An equivalent HMM. The superscripts indicate the number of
values each hidden variable can take.
Figure 12 shows a simpler example to convert a TTM/HMM to an LTM and S3PN with no redundancy.
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Figure 12: Left: A dimension-partition tree in HTF+. The superscripts indicate the number of
bases. Middle: The equivalent S3PN. The leaf f ij is the j-th basis of vector space Vi. Right: An
“equivalent LTM.” The superscripts indicate the number of values each hidden variable can take. The
two densities of X3 are equal, i.e. f3

1 = f3
2 (hence X3 does not actually depend on H1).
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B.6 Example for LTM ( S3PN

In ?? we give an example of an S3PN whose resulting latent model has cycles and hence cannot be
represented as an LTM without increasing the size of the Latent tree exponentially w.r.t. to the size of
the latent model.

B.7 Example for S3PN ( SPN

In fig. 13, we give an example of an SPN that is not equivalent to S3PN. It is evident from the example
that the subtrees rooted at the first sum node have different variable partitions and hence the resulting
SPN is not sn S3PN. The figure on the right shows that converting this SPN to an S3PN will result in
an increase in the size of the network.

+

×

+

×

f1
1 f2

1

×

f1
2 f2

2

+

f3
1 f3

2

×

+

f1
3 f1

4

+

×

f3
3 f2

3

×

f3
4 f2

4

+

×

+

×

f1
1 f2

1

×

f1
1 f2

2

+

f3
1 f3

2

×

+

f3
4

+

×

f1
3 f2

4

×

f1
4 f2

4

×

+

f3
3

+

×

f1
3 f2

3

×

f1
4 f2

3

Figure 13: Left: An SPN but which is not an S3PN. The leaf f ij is the j-th basis of vector space Vi.
Right: The equivalent S3PN requires an increase in the size of the network.

C Proofs

Theorem C.1. Any SPN can be rearranged to have alternating layers of sum and product nodes
without any change in the size of the resultant standard SPN from the original SPN.

Proof. It is straightforward to show that consecutive combination of either sum nodes or product
nodes can be merged/collapsed into one layer of the corresponding nodes. This can be seen as follows:
consider a sum node v that has m sum nodes as children and denote the set as ch(v) := {vi}mi=1.
Then, the expression fv evaluated at v is

fv(x) =

m∑
i=1

αvifvi(x) (18)

However, since each vi ∀i ∈ [m] is also a sum node; denote the children of vi by the set ch(vi) :=
{v̂i,j}tij=1 for each i ∈ [m]. Thus,

fvi(x) =

ti∑
j=1

βv̂i,jfv̂i,j (19)

Therefore, fv(x) can be now be re-written as

fv(x) =

m∑
i=1

αvi

ti∑
j=1

βv̂i,jfv̂i,j (20)

=

m∑
i=1

ti∑
j=1

αviβv̂i,jfv̂i,j (21)

(22)
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Define a 1− 1 mapping between the tuple (i, j) i ∈ [m], j ∈ [ti] and [K] where K =
∑m
i=1 ti such

that k = j +
∑i−1
l=1 tl, k ∈ [K]. Then, we can re-write the above as

fv(x) =

K∑
k=1

γkfv̂K (23)

where γk = αviβv̂i,j and fv̂k = fv̂i,j . This shows that two consecutive layers of sum node can be
collapsed into one layer of sum layer while preserving the same size of the network. Similarly, it can
be shown for consecutive layers of product nodes.

Now, we give the procedure to convert any SPN into an SPN with alternating layers of sums and
products. Perform a top-down pass starting at the root node (W.l.o.g. assume the root node is a sum
node). For every children of the root node, if it is a sum node, merge the node into the root node.
This ensures that after this step the top layer and the next layer are alternating (including leaf nodes).
Proceeding similarly for every node in the network ensures the final network has alternating layers
throughout. This completes the proof.

Theorem 4.1. If a shallow SPN T, with leaf (input) nodes from G, represents the density mixtureW ,
then T has at least rank+(W) many product nodes. Conversely, there always exists a shallow SPN
that representsW using rank+(W) product nodes and 1 sum node.

Proof. Suppose the shallow SPN T represents the (homogeneous) mixture densityW . If the hidden
layer is all sum nodes, then the output node must be a product node. The claim trivially holds in this
case. If the hidden layer is r product nodes, then the output node is a sum node, with weight zγ to the
γ-th product node. The output of the SPN T, when expanded at the root, is in the following form:

T(x) =

r∑
γ=1

zγ

d∏
i=1

gγi (xi) =

r∑
γ=1

zγ〈w(γ)
1 ⊗ · · · ⊗w

(γ)
d , ~f1(x1)⊗ · · · ⊗ ~fd(xd)〉 (24)

= 〈
r∑

γ=1

zγw
(γ)
1 ⊗ · · · ⊗w

(γ)
d , ~f1(x1)⊗ · · · ⊗ ~fd(xd)〉 (25)

= 〈W, ~f1(x1)⊗ · · · ⊗ ~fd(xd)〉. (26)

Thus,W =
∑r
γ=1 zγ ·w

(γ)
1 ⊗ · · · ⊗w

(γ)
d , i.e., rank+(W) ≤ r.

Conversely, let r = rank+(W) with the decompositionW =
∑r
γ=1 w

(γ)
1 ⊗ · · · ⊗w

(γ)
d . Note that

each w
(γ)
i is nonzero, as otherwise we would be able to reduce the rank. We construct a shallow SPN

T to representW as follows: On the first layer we have r product nodes, with the γ-th one computing∏d
i=1 g

(γ)
i (xi), where

g
(γ)
i (xi) =

k∑
j=1

w̄
(γ)
ij fi,j(xi), w̄

(γ)
ij =

w
(γ)
ij

‖w(γ)
i ‖1

. (27)

Note that ‖w(γ)
i ‖1 :=

∑k
j=1 w

(γ)
ij > 0 hence the above is well-defined. Then, we add a sum node on

top of all product nodes, with weight ‖w(γ)‖1 :=
∏d
i=1 ‖w

(γ)
i ‖1 > 0 for the γ-th product node. The

output of the constructed shallow SPN is:

f(x) =

r∑
γ=1

‖w(γ)‖1
d∏
i=1

g
(γ)
i (xi) =

r∑
γ=1

d∏
i=1

k∑
j=1

w
(γ)
ij fi,j(xi) (28)

=

r∑
γ=1

〈w(γ)
1 ⊗ · · · ⊗w

(γ)
d , ~f1(x1)⊗ · · · ⊗ ~fd(xd)〉 = 〈W, ~f1(x1)⊗ · · · ⊗ ~fd(xd)〉. (29)

The proof is now complete.

Theorem 4.2. If a shallow SPN T, with leaf nodes from F , represents the density mixtureW , then
either T has at least nnz(W) product nodes or rank+(W) = 1. Conversely, there always exists a
shallow SPN that representsW using nnz(W) product nodes and 1 sum node.
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Proof. Suppose T has a hidden layer of sum nodes. Because T is standard, the product output is then
a mixture density of the following form:

T(x) =

d∏
i=1

k∑
j=1

wijfi,j(xi) = 〈w1 ⊗ · · · ⊗wd, ~f1 ⊗ · · · ⊗ ~fd〉 = 〈W, ~f1 ⊗ · · · ⊗ ~fd〉. (30)

Thus,W = w1 ⊗ · · · ⊗wd has nonnegative rank 1. On the other hand, if T has a hidden layer of
product nodes, then the output of the standard SPN T, when expanded at the root sum node, is in the
following form:

T(x) =

k∑
j1=1

· · ·
k∑

jd=1

zj1,...,jd

d∏
i=1

fi,ji(xi) = 〈W, ~f1(x1)⊗ · · · ⊗ ~fd(xd)〉. (31)

Thus,W = Z , in particular nnz(W) = nnz(Z), but the latter is exactly the number of product nodes
in T.

The converse part follows by reversing the above argument.

Theorem 4.3. Let an LTM T have d observed variables X = {X1, . . . , Xd} with parents Hi taking
ri values respectively. Assuming the CPTs of T are sampled from a continuous distribution, then
almost surely, the tensor representationW for T has rank at least

max
1≤m≤d/2

max
{S1,...,Sm,S̄1,...,S̄m}⊆X

m∏
i=1

min{ri, r̄i, ki, k̄i}, (3)

where ki (k̄i) is the number of (linearly independent) component densities that Si (S̄i) has, and Si
(S̄i) are non-siblings.

Proof. We present our proof using the equivalence between LTM and dHTF.

Recall that an HTF consists of a dimension-partition tree (DPT) T whose leaf nodes {i}, i ∈ [d]
represent d vector spaces with bases {vi1, . . . ,viri} respectively. At each internal node β with bβ
children nodes β1, . . . , βbβ , we have rβ coefficient tensors wβ,`[β] ∈ Rrβ1×···×rβbβ , `[β] ∈ [rβ ], and
rα denotes the number of bases at node α. Any tensorW living in the space at the root D of T can
thus be represented using rD coefficients {c`[D] : `[D] ∈ [rD]} in the following way (c.f. Eq (11.26)
of [13] for the special case when the DPT is binary):

W =

ri∑
`[i]=1
i∈[d]

 rα∑
`[α]=1
α∈T\L

c`[D]

∏
β∈T\L

w
β,`[β]
`[β1],...,`[βbβ ]

 d⊗
i=1

vi`[i]. (32)

For a dHTF, the coefficient tensors wβ,`[β]
`[β1],...,`[βbβ ] are diagonal, so in the summation above we can

only consider sibling nodes once as a group. The key observation is that the right-hand side of (32) is
a sum of many rank-1 tensors, henceW is likely to have a large rank.

Let {Si, S̄i : i = 1, . . . ,m} ⊆ X := {X1, . . . , Xd}, where Si’s are non-siblings and S̄i’s are also
non-siblings. Set ti = min{rir̄i, ki, k̄i}. For each Si, set its parent say Hi’s (diagonal) coefficient
tensor as follows:

w
Hi,`[Hi]
`[Si]

=

{
1, if `[Hi] = `[Si] = `[S̄i] ≤ ti
0, otherwise

. (33)

Similarly for each S̄i. For any remaining internal node β, set its (diagonal) coefficient tensor as:

w
β,`[β]
`[β1] =

{
1, if `[β] = 1

0, otherwise
. (34)

Under the above specification, we have

W ∝
t1∑
j1=1

· · ·
tm∑
jm=1

[
⊗mi=1v

Si
ji

]
︸ ︷︷ ︸
aj1,...,jm

⊗[
⊗mi=1v

S̄i
ji

]
︸ ︷︷ ︸
bj1,...,jm

. (35)
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Since {aj1,...,jm} and {bj1,...,jm} are linearly independent, respectively, through matricization we
know rank(W) ≥

∏
i ti. This shows that there exist coefficient tensors w so that rank(W) ≥

∏
i ti.

To extend our conclusion from a special realization above to the generic case, let us note that the
determinant of any submatrix of any matricization ofW is a polynomial function of the coefficient
tensors w. We have shown above this polynomial is not always zero, but then it follows immediately
that the zero set of this polynomial has measure zero [4], i.e., for a generic realization of the coefficient
tensors, we have rank(W) ≥

∏
i ti.

We constructed an explicit homogeneous mixture in the above proof whose rank is exponential. A
similar construction, in the discrete setting, is given below [18]:
Example C.2. Let xi ∈ {0, 1}∀i, k = 2 and d = 2m. Choose for all ∀i the basis (unnormalized)
densities fi,1(xi) = 1(xi = 1) and fi,2(xi) = 1(xi = 0) (wrt some non-degenerate counting
measure on {0, 1}). Consider the (unnormalized) multivariate density F on {0, 1}d (wrt the product
counting measure):

F (x) =

{
1, if xi = xi+m for all 1 ≤ i ≤ m
0, otherwise

. (36)

Clearly, F is a density mixture with input nodes from F and the associated tensor W satisfies
rank+(W) > 1. Hence, a standard shallow SPN needs at least nnz(W) = 2d/2 product nodes to
represent F , with input nodes from F . The density mixture F is the so-called EQUAL function in [18],
whose Theorem 24 follows immediately from our Theorem 4.2 since nnz(W) ≥ rank(W ) for any
matricization W ofW .

We note that F is also a density mixture with input nodes from G (elements of which are themselves
mixtures of fi,1 and fi,2), and rank+(W) ≥ rank(W ) = nnz(W) = 2d/2 ≥ rank+(W). Thus, any
standard shallow SPN with input nodes from G still requires 2d/2 product nodes to represent the
EQUAL function. In other words, an SPN with an input layer from F , a layer of sum nodes, a layer of
product nodes, and a single sum node as output, would still require 2d/2 product nodes in order to
represent the EQUAL function. This distinction between input nodes from F and input nodes from G,
to our best knowledge, has not been noted before.
Theorem 5.1. Fix ε > 0 and tensorW ∈ Rk1×···×kd . Then, for some (small) constant c > 0,

ε-rank∞(W) ≤ c‖W‖tr
ε2 , (5)

where ‖W‖tr is the tensor trace norm. A similar result holds for ε-rank∞+ (W). The dependence on ε
is tight up to a log factor.

Proof. Note that the `∞ norm is dominated by the `2 norm, so ε-rank2 ≥ ε-rank∞. Thus, givenW ,
we consider the approximation problem:

min
‖Z‖tr≤‖W‖tr

‖Z −W‖22. (37)

Obviously, the minimum is 0. Moreover, if we run the generalized conditional gradient of [12] with
initialization Z0 = 0, then after t iterations, we have

‖Zt −W‖22 ≤
c‖W‖tr

t
, rank(Zt) ≤ t, (38)

where c is some small universal constant. Here we are exploiting the property that each iteration of
the conditional gradient algorithm only increments the rank by at most 1. Setting c‖W‖tr/t = ε2

gives us

‖Zt −W‖∞ ≤ ‖Zt −W‖2 ≤ ε, rank(Zt) ≤
c‖W‖tr
ε2

, (39)

whence follows ε-rank∞(W) ≤ O(‖W‖tr/ε2).

The proof for the nonnegative rank is completely similar.

The inverse-square dependence on ε in Theorem 5.1 is almost tight, as shown below:
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Theorem C.3 ([1, Theorem 2.1]). Let W be a kd/2 × kd/2 matrix with |wi,i| = 1 ∀i and |wi,j | ≤
ε ∀i 6= j, where k−d/4 ≤ ε ≤ 1

2 . Then, for some absolute positive constant c,

rank(W ) ≥ cd log k

ε2 log( 1
ε )

(40)

The above theorem, through un-matricization, clearly implies that there exist tensors W with
ε-rank∞(W) lower bounded by cd log k

ε2 log(
1
ε )

, when ε is not too small.

A few remarks with regard to Theorem 5.1 are in order. We note first that our proof actually gives
the same upper bound for the epsilon-rank under any `p norm where p ∈ [2,∞]. Using the norm
inequality ‖W‖1 ≤ kd/2‖W‖2, we then immediately have from Theorem 5.1 that

ε-rank1(W) ≤ c‖W‖trkd

ε2
. (41)

Note however that there is still a factor of kd/4 gap between the upper and lower bounds in The-
orem D.2. It might be possible to optimize the lower bound in Theorem D.2 through different
matricizations.

There are at least two issues with Theorem 5.1. First, if we use it to naively bound the L1 norm
difference of the underlying densities, i.e.,

‖g − h‖1 =

∫
|〈W − Z, ~f1(x1)⊗ · · · ⊗ ~fd(xd)〉|dµ(x) ≤ kd‖W − Z‖∞, (42)

the big constant kd would pop out in the worse case. More disturbingly, in a practical application, we
usually do not have access toW (which is too large to maintain directly anyways), hence it is not
clear how to attain the bound in Theorem 5.1 algorithmically.

D `1 norm based ε-rank

In this section, we fix the norm ‖ · ‖ to be the usual `1 norm in definition (4), and we use the notation
ε-rank1

+ or ε-rank1 to signify this convention. Our next result provides a new lower bound on the
ε-rank, based on matricization.

Theorem D.1. Fix ε > 0 and letW ∈ Rk1×···×kd . Then,

ε-rank1
+(W) ≥ ε-rank1(W) ≥ min{i ≥ 0 : ε ≥ ‖W‖tr −

i∑
j=1

σi(W )}, (43)

where W is any matricization of the tensorW , ‖ · ‖tr is the matrix trace norm (i.e. sum of singular
values), and σi(W ) denotes the i-th largest singular value of W .

Proof. Since the nonnegative rank is lower bounded by the rank, which is in turn lower bounded by
the rank of any matricization, we clearly have

ε-rank1
+(W) ≥ ε-rank1(W) ≥ ε-rank1(W ), (44)

where W is an arbitrary matricization ofW (note that matricization does not change the `1 norm).
Moreover, for matrices, ‖ · ‖∞ ≤ ‖ · ‖sp (i.e., maximum singular value) hence ‖ · ‖1 ≥ ‖ · ‖tr, thanks
to duality. Therefore,

ε-rank1(W ) = min
‖∆‖1≤ε

rank(W + ∆) ≥ min
‖∆‖tr≤ε

rank(W + ∆) = min
‖W−Z‖tr≤ε

rank(Z). (45)

Using say [47, Theorem 1], we know that at the minimum we can choose Z to have the same singular
vectors as W . It is clear then that Z should match the singular values of W , from the biggest to
smallest, until the trace norm difference between Z and W falls under ε.
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The only prior work to Theorem D.1 that we are aware of is [18, Lemma 28], which only deals with
the identity matrix W = I and is loose by a factor of 2. [18] went on to construct a density function
based on the EQUAL function (where W = I , c.f. Example C.2) that cannot be approximated by a
polynomially-sized standard shallow SPN, up to some exponentially small ε. This existence result is
then strengthened by [7], who showed that under the HR model, for almost every random tensorW ,
there exists some ε (potentially depending onW), such that any polynomially-sized standard shallow
SPN cannot approximate W under ε. Based on Theorem D.1, we now present a complementary
result.

Theorem D.2. Fix any ε > 0, and sample each entry of the tensorW ∈ Rk1×···×kd independently
and identically from a standard Gaussian distribution, then with high probability,

ε-rank1(W) ≥ O(kd/2 − εkd/4). (46)

Proof. Consider the reshaped matrix W ∈ Rkd/2×kd/2 of the tensorW . Clearly, each entry of W is
again an iid sample from the standard Gaussian distribution. As shown in [42], the smallest singular
value ofW is Θ(k−d/4), with high probability. Let r = ε-rank1(W), then according to Theorem D.1,
we have

ε ≥
kd/2∑
j=r+1

σi(W ) ≥ (kd/2 − r)k−d/4. (47)

Rearranging we obtain the claimed lower bound.

The failure probability in Theorem D.2 depends on d only mildly: up to a small constant it approaches
0 at the rate ck

d/2

for some constant 0 < c < 1. Moreover, the standard Gaussian distribution can be
replaced with any subgaussian distribution, or more generally any distribution with a bounded 4-th
moment. To see the significance of Theorem D.2, let us note first that we can fix ε beforehand so
there is no dependence on the tensorW . Secondly, Theorem D.2 implies that with high probability,
for any mixture density f , even if we contend with a constant approximation accuracy ε = O(1), a
standard shallow SPN T would still need O(kd/2) many product nodes.

E More Related Works

The first attempts at rigorously analyzing the effect of depth in a network was in relation to the
computational complexity of boolean circuits. A classical result is due to [43] who showed that for
every integer I , there are boolean functions computed by a circuit with alternating AND and OR
gates of polynomial size and depth I; but if the depth is reduced to I − 1, an exponential sized circuit
would be required. A similar result was proven later by [37]. Another body of work in similar spirit
was by [46; 30] proving that solving the k-bit parity task by a circuit of depth 2 requires exponentially
many gates. A more recent result is due to [34] proving that bounded-depth boolean circuits cannot
distinguish some non-uniform input distributions from the uniform distribution. This work by [34]
solved a longstanding conjecture in the field.

Classical results for analyzing the expressiveness of neural networks involved results on universal
approximation by [35; 31; 38], and by [32] who studied the networks VC dimension. Although, these
early results provided general theoretical insights, they were restricted to shallow networks. Recently,
several studies have been undertaken to understand the effect of depth on the expressive capacity of a
deep network [41; 36; 45; 40; 39]. Most of these works provide separation results between the class
of functions that can be efficiently represented by a deep network and those by shallow networks.
However, one major limitation of these works is they consider pathological hand-coded network
weights that exhibit these extremal properties by design. It is not evident if these class of networks
and the hypothesis function class they encode resemble networks and functions used in practice.
Therefore, fundamental questions about the expressive power of depth for neural networks used in
practice is still not well understood.

Directly relevant to our contributions in this manuscript are recent works in analysing the effect
of depths in Arithmetic Circuits [9], Convolutional Arithmetic Circuits [7] and particularly in Sum-
Product Networks [24]. The first theoretical results for depth efficiency of SPNs was by [10]. They
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constructed two families of functions - F which formed a full binary tree - and - G which consisted of
n nodes in every layer with each node being connected to n− 1 nodes in the previous layer - using an
SPN with alternating sum and product layers. Their results establish that any n-dimensional function
f ∈ F can be computed by an SPN of polynomial size but would require a shallow SPN Ω(2

√
n)

hidden units to exactly represent f . They further show that for each d ≥ 4 there exists a function
gd ∈ G that can be computed by an SPN of depth d and size O(nd) but would require Ω(nd) sized
shallow SPN to compute. However, this work has several limitations. Firstly, the separation results
provided are restricted to depth 3 networks and networks in the family G and F ; it is not clear if a
similar separation result holds for intermediate depths. Secondly, as the authors themselves state,
it does not comment on any separation results when a deep SPN is only to be approximated by a
shallow SPN. Thirdly, the specific families of functions F and G considered by [10] are not shown to
be a relevant and universal hypothesis class that occurs in practice. Lastly, the SPNs considered in
this work are not valid SPNs i.e. they do not encode a probability density function. Furthermore, the
analysis is limited to only discrete variables with indicator leaf functions.

[18] extended the work in [10] by proving that there exist functions that can be efficiently computed
by a depth d valid SPN but would require super-polynomially size for a depth d−1 SPN. In particular,
they considered the EQUAL function on an array of Boolean variables x = (x1, x2, .., xn) defined as
follows : let A = {1, 2, 3, .., n/2} and B = (n/2 + 1, n/2 + 2, ..., n) be the index partition. Then,
EQUAL : {0, 1}n → {0, 1} where EQUAL(x) = 1 when xA = xB (i.e. the first half of the input is
equal to the second half) and 0 otherwise. They proved that a valid shallow SPN would require 2

n
2

units in the hidden layer to exactly represent EQUAL(x) while an SPN of depth 4 would require O(n)
size. Further, they also proved that a shallow SPN would still require 2n/2−2 nodes in the hidden layer
to approximate EQUAL(x)5. However, [18] also restricted their analysis in the paper to only Boolean
variables primarily because they used previous works from circuit complexity on arithmetic circuits
to derive their results. Further, for the separation results, they constructed an example restricted to
Boolean variables and indicator functions in the leaves; the proof does not generalize to valid SPNs
with arbitrary density functions. Most importantly, they use very specific hand-crafted functions to
prove separation results both for exact and approximate representation with no information on how
frequently these functions occur in practice. Therefore, it might be the case that expect for a few
hand-crafted pathological example, a shallow SPN can efficiently represent all functions derived from
a deep SPN.

Recently, [7] proposed a deep network which they called convolutional arithmetic circuits that
incorporates locality, sharing and pooling. They went on to show that this network corresponded to
the Hierarchical Tucker Tensor decomposition [13]. Their main theoretical result showed that except
for a negligible set of measure zero, all functions that can be represented by a deep convolutional
arithmetic circuits of polynomial size, require an exponential sized shallow network to be realized
exactly or approximated. The hypothesis class they considered was universal. However, a major
limitation of their main result is that it is an existence result. That is, they say, for any deep
convolutional arithmetic circuit, there exists an ε such that no shallow network of polynomial size
can approximate the deep network within this ε distance. However, they do not provide any explicit
relation with ε for the approximation. In other words, according to this analysis, this ε which requires
an exponentially sized shallow network to approximate a deep network may be infinitesimally small.
Therefore, a natural question to ask is : what is the ε-dependency of the size of a shallow network
approximating a deep network within some ε distance?

F Detailed Experiments

We perform experiments on both synthetic and real world data to reinforce our theoretical findings.
In appendix F.1, we present experiments on synthetic data to demonstrate the expressive power of
an SPN and the algorithm proposed in (7)-(8) which we call SPN-CG. Next, we present two sets of
experiments on real world datasets - in appendix F.2, we present results for image classification under
missing data. In ??, we compare the performance of SPN-CG to structure learning techniques for
SPNs on seven real world datasets used previously as benchmarks.

5We direct the reader to [18] for further details on the exact definition of approximation used and the proof.
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F.1 Synthetic data

In the first experiment, we generated 2000 samples from a 4 component and two dimensional GMM
with full covariance matrices for each component. We estimate this GMM using SPN-CG. In each
iteration, we add an additional SPN from TMM2,2 and learn its parameters and the mixing weights.
We use SGD with weight decay to learn the parameters in each iteration. This experiment helps us
to demonstrate that an SPN with univariate leaf distributions (thereby resulting in a mixture model
with factored distributions) can estimate a GMM with full covariance matrix. Figure 14 shows the
convergence of the model to the true negative log-likelihood on a held-out test set as a function of
number of iterations.

Figure 14: (Left) Convergence to true negative log-likelihood using SPN-CG (Right) Surface plots
for covariance matrices of the components

F.2 Image Classification under Missing Data

In this section, we demonstrate the efficacy of generative models like deep mixture models learned
using SPN-CG for image classification under missing data. We show that deep mixture models for
which marginalization is tractable lend themselves naturally for problems under the missing data
regime. We perform experiments on MNIST [15] for digit classification and small NORB [16] for 3D
object recognition. We keep the same settings for the experiment as described in [26] i.e. we test on
two settings of MAR missing distributions - (i) an i.i.d. mask with a fixed probability of missing each
pixel, and (ii) a mask obtained by the union of rectangles of a certain size, each positioned uniformly
at random in the image.

Our major aim with these experiments is to test our conditional gradient algorithm for high-
dimensional real world settings. Therefore, we directly adapt the experiments as presented in
[26]. Specifically, we adapt the code for the proposed HT-TMM for SPN-CG by following the
details as given in [26]. In each iteration of our algorithm, we add an SPN structure exactly similar
to HT-TMM. Therefore, the first iteration of our algorithm (i.e. SPN-CG1) amounts to a structure
similar to HT-TMM while additional iterations increase the network capacity. For each iteration, we
train the network by using AdamSGD variant of optimization for parameters with a base learning
rate of 0.03 and β1 = β2 = 0.9. For each added network structure, we train the model for 22,000
iterations for MNIST and 40,000 for NORB.

We compare our results to the following methods :

1. Data Imputation Methods : Data imputation methods are a common technique to handle
missing data using discriminative classifiers. The algorithm proceeds by completing missing
values via some heuristic and passing the results to a classifier trained on uncorrupted
data. In our approach, we use a ConvNet for prediction. We tested on the following data
imputation methods in our manuscript :

• Zero data imputation : completing all missing values with zeros.
• Mean data imputation : completing all missing values with the mean value over

the dataset
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Figure 15: Performance of SPN-CG on missing data (a) MNIST data with i.i.d missing pixels (b)
MNIST data with rectangles of missing pixels (c) NORB dataset with i.i.d. missing pixels (d) NORB
dataset with rectangles of missing pixels

• Generative Stochastic Networks [33]

• Non-linear Independent Components Estimation (NICE) [11]

• Diffusion Probabilistic Models (DPM) [44]

2. LearnSPN [24]: We used the original code to learn the structure augmented with the class
variable and learn the joint probability distribution using CCCP.

For all the algorithms except LearnSPN, we used the modified version of the code as suggested
by [26]. Most of the code can be publicly accessed at : https://github.com/HUJI-Deep/
Generative-ConvACs. We used the original code as suggested by the authors for LearnSPN. For
our algorithm, due to time constraints, we could only perform three iterations for both NORB and
MNIST dataset. We present the results for these three iterations denoted in the results as SPN-CG1,
SPN-CG2 and, SPN-CG3 in this manuscript (see fig. 15a - fig. 15d). Our implementation for SPN-CG
is available at : https://git.uwaterloo.ca/l4mou/SPN

The results show that SPN-CG performs well in the regime of missing data for both MNIST and
NORB. Furthermore, other generative models including SPN with structure learning perform com-
parably only when a few pixels are missing but perform very poorly as compared to deep mixture
models as larger amounts of data is missing suggesting that the structure of deep mixture models
is advantageous. These experiments on MNIST and NORB help us conclude that deep mixture
models learned using SPN-CG outperform other methods on image classification with missing pixels.
Our results compliment the results in [26] where such experiments with state of the art results were
presented.
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