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Abstract

Recently, deep multi-agent reinforcement learning (MARL) has demonstrated
promising performance for solving challenging tasks, such as long-term dependen-
cies and non-Markovian environments. Its success is partly attributed to condi-
tioning policies on large fixed context length. However, such large fixed context
lengths may lead to limited exploration efficiency and redundant information. In
this paper, we propose a novel MARL framework to obtain adaptive and effective
contextual information. Specifically, we design a central agent that dynamically
optimizes context length via temporal gradient analysis, enhancing exploration to
facilitate convergence to global optima in MARL. Furthermore, to enhance the
adaptive optimization capability of the context length, we present an efficient input
representation for the central agent, which effectively filters redundant information.
By leveraging a Fourier-based low-frequency truncation method, we extract global
temporal trends across decentralized agents, providing an effective and efficient
representation of the MARL environment. Extensive experiments demonstrate that
the proposed method achieves state-of-the-art (SOTA) performance on long-term
dependency tasks, including PettingZoo, MiniGrid, Google Research Football
(GRF), and StarCraft Multi-Agent Challenge v2 (SMACv2).

1 Introduction

Multi-agent reinforcement learning (MARL) has drawn increasing interest in recent years, which
provides a promise for facing many complex real-world challenging problems such as transportation
management [1], robot control [2], and finance [3]. However, due to the long-term dependencies
and non-rigorous Markovianity of complex tasks, contextual information is introduced to assist
policy making [4, 5, 6]. Accordingly, this places a substantial demand on how to leverage contextual
information and to what extent [7, 8].

Existing methods are mostly applied to single-agent reinforcement learning (RL), where contextual
information performs reasonably well in simple tasks [9, 10, 11]. In comparison, multi-agent
reinforcement learning (MARL) involves significantly more complex tasks [12, 13], where relying
solely on short context lengths or individual observations often results in suboptimal performance.
To address this, one natural approach is to extend the context length. However, the expansion of the
context length leads to two significant challenges: the first is an increase in necessary computation,
and the second is the difficulty of high dimensionality of the input representation and generalization
[14].
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To address the challenge of increasing computation, references [9, 15] optimized the needed context
length and the utilization efficiency; references [16, 17] adopted parallel computation; and reference
[18] enhanced the performance of modern hardware. However, the above methods involve a long-time
pre-training process, and eventually only obtain static context length. These static context lengths
are difficult to adapt to changing environments, which potentially leads to suboptimal solutions or
inefficient use of computational resources.

The challenge of input representation and generalization remains unresolved in the field of multi-agent
reinforcement learning (MARL) [14]. While recent improvements in processing long sequences
that came with attention models significantly alleviate requirements for generalization, an effective
representation is still crucial for obtaining optimal contextual information [19, 20, 21]. Regarding
the fields where the contextual information is also significant, natural language processing (NLP)
typically involves leveraging large language models (LLMs) to autonomously learn and generate
prompts, which does not align well with the principles of MARL [22, 23]. Therefore, a tailored input
representation for MARL is required.

According to the aforementioned analysis, we propose an adaptive context length optimization with
low-frequency truncation (ACL-LFT) for MARL. Specifically, a senior central agent is introduced
to adaptively optimize context length, and a tailored attention-based reward is designed to align
with the central agent. Via real-time interacting with environment, the central agent determines the
optimal context length to address the challenge of increasing computation. Besides, we apply the
Fourier transform to map the data from the time domain to the frequency domain, facilitating more
effective redundancy filtering compared to direct processing in the time domain. Via truncating the
low-frequency band, we obtain an effective input representation for the central agent, which captures
the global temporal trends from the decentralized agents. With the above designs, our method
effectively solves the dual challenges of increasing context length, achieving efficient leverage of the
contextual information.

We benchmark the proposed method across various environments including Sample Spread in
PettingZoo [24]; MiniGrid Soccer Game in OpenAI Gym [25]; Academy 3 vs 1 with Keeper, and
Academy Counterattack-Hard in Google Research Football (GRF) [26]; 3s5z_vs_3s6z, 5m_vs_6m,
and corridor in StarCraft Multi-Agent Challenge v2 (SMACv2) environments [27]. Combined with
several types of experiments, including state-of-the-art (SOTA) sequence processing algorithms
and different fixed-length methods, we show that the proposed method significantly enhances the
performance of the baseline algorithm in changing environments. The main contributions of this
paper are summarized as follows:

• To the best of our knowledge, ACL-LFT is the first framework to systematically address the
dual challenges of increasing context length in MARL. Equipped with the central agent, our
framework achieves adaptive and efficient leverage of contextual information to enhance the
decision-making of decentralized agents. Additionally, we present a theorem to theoretically
demonstrate the superior performance of adaptive context length over static ones in dynamic
environments.

• We propose a novel Fourier-based low-frequency truncation to obtain the global tempo-
ral trends from context, effectively addressing the challenge of representing the MARL
environment and providing an efficient input for the central agent.

• We empirically demonstrate that the proposed method outperforms SOTA sequence pro-
cessing algorithms across various long-term dependency environments. We also provide
experimental results to demonstrate the superior performance of the proposed method over
different fixed lengths in dynamic environments.

2 Preliminaries

2.1 Decentralized Partially Observable Markov Decision Process with Historical Information

The Decentralized Partially Observable Markov Decision Process with historical information is
defined as a tupleM = (N,S,A, P,R, γ), where N is the set of n agents, S denotes the global state
space, and A represents the joint action space. At time t, the environment evolves according to the
transition function P (s′t|st, at), which specifies the probability of reaching the next state s′t given the
current global state st = {s1t , s2t , · · · , snt }, s ∈ S and the joint action at = {a1t , a2t , · · · , ant }. The
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environment then produces a global reward rt = R(st, at). In this decentralized setting, each agent
follows a local policy π that seeks to maximize the expected cumulative discounted reward, given by
J(π) = E

[∑∞
t=0 γ

tR(st, at)
∣∣∣π], where γ ∈ [0, 1) is a discount factor that balances the importance

of immediate versus future rewards. The classical Markov property assumes that state transitions
depend only on the current state and action.

However, in decentralized partially observable environments, agents cannot directly access the full
global state st; instead, they rely on local observations that are incomplete and noisy. In many
scenarios, the assumption that decision-making can be based solely on the current observation is
insufficient. To address this, the framework incorporates **historical information** to approximate
the underlying dynamics and capture long-term dependencies. Formally, the extended model can
be written as M̃ = (N, S̃, Ã, P̃ , R̃, γ), where S̃ includes not only the current state S but also a
contextual information space S−1 representing observation histories, and Ã = A. At time t, the
transition is expressed as

P (s̃′t|s̃t, ãt) = P
(
s̃′ = s′t ∪ s′,−1

t

∣∣ s̃t = st ∪ s−1
t , ãt = at

)
,

and the reward is given by

R(s̃t, ãt) = R(s̃t = st ∪ s−1
t , ãt = at).

Unlike the standard Markov Decision Process, this extended Decentralized Partially Observable frame-
work enables modeling of complex dynamic environments with long-term temporal dependencies,
where leveraging historical information is essential for effective coordination among agents.

2.2 The Fourier Transform and Littlewood–Paley Theory

The Fourier transform provides a fundamental tool for analyzing functions in the frequency domain
by decomposing signals into their constituent frequency components. Formally, for a function
f ∈ L1(Rd), the Fourier transform is defined as:

Ff(ξ) = f̂(ξ) =

∫
Rd

e−i(x|ξ)f(x) dx, (1)

where (x|ξ) denotes the inner product in Rd. As a continuous linear map from L1(Rd) into L∞(Rd),
it satisfies |f̂(ξ)| ≤ ∥f∥L1 , ensuring boundedness in the transformed domain. Besides, for any
function φ ∈ L1 and an automorphism L on Rd, the transformation obeys:

F(φ ◦ L) = 1

|detL|
φ̂ ◦ L−1. (2)

By mapping state representations from the time domain to the frequency domain, the Fourier transform
captures underlying structural patterns, where low-frequency components effectively encode global
trends while filtering high-frequency noise [28][29].

Littlewood–Paley theory provides a decomposition that functions or distributions are easier to deal
with if split into countable sums of smooth functions whose Fourier transforms are compactly
supported in a ball or an annulus [30]. In the complex non-Markovianity environments, such
decomposition renders a localization procedure in frequency space, which the derivatives act almost
as homotheties on distributions. This property establishes fundamental bounds on the behavior
of derivatives in different Lp spaces, leading to the following Bernstein inequalities. Let C be an
annulus and B a ball. There exists a constant C such that for any nonnegative integer k, any pair
(p, q) ∈ [1,∞]2 with q ≥ p ≥ 1, and any function u ∈ Lp, the following holds:

Supp û ⊂ λB ⇒ ∥Dku∥Lq
def
= sup

|α|=k

∥∂αu∥Lq ≤ Ck+1λk+d( 1
p−

1
q )∥u∥Lp , (3)

Supp û ⊂ λC ⇒ C−k−1λk∥u∥Lp ≤ ∥Dku∥Lp ≤ Ck+1λk∥u∥Lp . (4)
The above inequalities highlight a key property: if a function’s Fourier spectrum is restricted within
frequency δ, its α-th order derivative amplifies high-frequency components by a factor of δ|α|. This
property enables an efficient truncation of low-frequency information, which serves as an effective
representation of contextual information while preserving stability in the decision-making process.
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3 Methodology

In this section, we propose a novel MARL framework for obtaining adaptive and effective contextual
information, which systematically tackles the dual challenges of increasing context length in MARL.
The overall framework is shown in Fig. 1, which is comprised of three main components: (1) the
Fourier-based low-frequency truncation module, (2) a central agent of adaptive select contextual
information, and (3) the structure of learning with spatio-temporal decoupling.
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Figure 1: Schematics of our ACL-LFT. At each time t, the historical state s−1
t is first processed via the

Fourier-based low-frequency truncation module. The central agent leverages the truncated information
sct as input and then adaptively optimizes the context length. Subsequently, the decentralized agents
then integrate the optimized contextual information s−opt

t with the current state to achieve decision-
making.

3.1 Fourier-based Low-Frequency Truncation

To achieve an efficient representation of the MARL environment and enhance its effectiveness as
input for the central agent, we introduce a low-frequency truncation method. By filtering out high-
frequency fluctuations while preserving low-frequency parts, this method captures global temporal
trends across decentralized agents and provides a more stable basis for downstream decision-making.
Specifically, given the discrete nature of historical state data s−1

t = {sj}t−1
j=0, we first leverage the

Discrete Fourier Transform (DFT) to convert time domain data to frequency domain data:

S[k] =

t−1∑
u=0

sue
−i2πku

t , k = 0, 1, . . . , t− 1, (5)

where S[k] represents the frequency-domain coefficient corresponding to frequency index k, while
each coefficient encodes a particular oscillatory component of the historical sequence. For real-valued
signals, the DFT exhibits conjugate symmetry: S[k] = S[t − k]∗, reflecting periodicity in the
frequency domain. This transformation effectively disentangles different frequency components of
the input sequence, allowing for a more interpretable and structured representation of historical states.

Building upon the Littlewood–Paley theory, we then introduce the Dyadic Partition of Unity method
and extend it to the discrete space to truncate the low-frequency information. The Dyadic Partition of
Unity method for measurable functions is provided in Appendix A.1. We extend this method to adapt
discrete frequency domain historical states. Specifically, we aim for the sum of the window functions
to approximate unity across the entire frequency domain:

X[k] +

J−1−m∑
j=0

Φj [k] ≈ 1, ∀k = 0, 1, . . . , N − 1, (6)

where X[k] is a low-pass window function that retains only the low-frequency components. Φj [k]
represents band-pass window functions that separate different frequency bands in a dyadic manner.
J is the maximum decomposition level, and for simplicity, we assume that t = 2J . m is a tunable
parameter that determines the truncation frequency, ensuring that 2m < t/2.

Within this method, the low-frequency region is defined for k ≤ 2m or k ≥ N − 2m, where we set
X[k] = 1 and ensure that Φj [k] = 0 for all j, thereby preserving the low-frequency information sc.
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In the band-pass regions, corresponding to frequency indices satisfying 2j+m ≤ k < 2j+m+1 (or
their symmetric counterparts), a single window function Φj [k] is activated with a value of 1, while
all other Φj′[k] remain zero for j′ ≠ j, ensuring a well-defined partitioning of frequency bands. At
transition points, such as k = 2j+m, minor gaps may arise due to non-overlapping support. But as
the signal length t increases, the gaps become negligible with an error proportionally decreasing as
O(1/t), thereby maintaining a stable approximation of equation 6.

The details of Dyadic Partition of Unity in Discrete Form and its rigorous proof are provided in
Appendix A.2. By leveraging low-frequency truncation, the above method effectively captures the
global temporal trends across decentralized agents, reducing the redundancy of contextual information
and serving as an efficient input representation for the subsequent central agent.

3.2 The Central Agent of Adaptive Contextual Information Selection

The central agent in our framework serves as a global information processor, adaptively determining
the optimal contextual information length for decentralized agents. It is designed to process and
analyze only historical information, without directly handling the current state. Specifically, its
decision-making process is structured around three key components: state representation, action
space, and reward formulation.

Firstly, the state of the central agent is derived through the Fourier-based low-frequency truncation
module, which is elaborated in section 3.1. For the discrete historical states s−1

t = {sj}t−1
j=0 at time t,

this module extracts the truncated representation sct , which effectively represents the global temporal
trends across decentralized agents.

Then, the action space of the central agent Ac is defined as the selection of different low-frequency
truncation levels, given by:

act ∈ Ac = {m1,m2, . . . ,mM}, (7)
where M represents the dimension of Ac, and each action mi corresponds to a different range of
preserved low-frequency bands, with each band representing temporal trends with varying degrees of
long-term dependency. Given the selected truncation level mi, the corresponding optimal contextual
information s−opt

t is obtained by truncation domain.

Finally, to guide its adaptation process, the reward of the central agent is tailored via the multi-head
attention mechanism, which weights the influence of decentralized agents. Specifically, the value
function estimates and the policy distributions of decentralized agents serve as keys, while the value
function estimate and the policy distributions of the central agent serve as the query. We denote the
concatenated representation of the value estimate and the policy distribution of agent i as Fi, and that
of the central agent as Fc. For each attention head g, Fi and Fc are projected into the query and key
spaces via transformation matrices W g

Q and W g
K :

Qg
c = W g

QFc, Kg
i = W g

KFi. (8)

The attention weight assigned to each decentralized agent is then computed as:

ωg
i =

exp
(

Qg
c ·(K

g
i )

T

√
dk

)
∑

i exp
(

Qg
c ·(Kg

i )
T

√
dk

) , (9)

where dk represents the dimensionality of the key matrix K, ensuring numerical stability. The
final attention weight for each agent at time t is obtained by averaging across all heads ωi

t =
1

head

∑head
g=1 ωg

i . At time t, for the weights {ωi
t}ni=1, the reward for the central agent is then derived

as a weighted aggregation of the rewards of decentralized agents rit:

rct =

n∑
i=1

ωi
tr

i
t. (10)

where
∑n

i=1 ω
i
t = 1.

Combined with these three components, the parameters of the central agent are updated using gradient-
based optimization with advantage estimation. The value function V (sct) is trained to approximate
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the expected return through the temporal difference error:

δct = rct + γV (sct+1)− V (sct), (11)

where sct+1 denotes the next state. The policy parameters θ are then adjusted by maximizing the
advantage-weighted objective:

θ ← θ + ζ∇θ log π(a
c
t |sct)δct , (12)

while simultaneously minimizing the value function error ∥δct∥2 through gradient descent.

Building upon the above design, the central agent achieves adaptive optimization of the context
length, ensuring that decentralized agents receive the optimal contextual information s−opt

t .

Furthermore, to theoretically establish a long-term advantage lower bound of the proposed method
over fixed-length methods, we present Theorem 1.

Theorem 1 (Long-Term Advantage Lower Bound of Adaptive Length) : At time t, let
Ladap be the adaptive context length, Lfix be the fixed context length, and the mutual infor-
mation loss of L be denoted as Lt(L). The expected cumulative reward difference between
adaptive and fixed context length satisfies the following regret bound:

T∑
t=1

(Lt(Lfix)− Lt(Ladap)) ≥ Ω(T )−O(Tα)

= Ω(T ) (when T is sufficiently large)

(13)

where 0 ≤ α < 1, with α being a non-deterministic parameter whose formal definition is
provided in Appendix B.

This theorem demonstrates the long-term advantage of adaptive length policies with the increasingly
unstable environment. The result suggests that adaptively adjusting the context length enables more
effective information retention over time, leading to significantly lower regret accumulation. The
details and proof are provided in Appendix B.

3.3 Structure of Learning with Spatio-Temporal Decoupling

In this section, we discuss how to leverage the spatio-temporal decoupling to train the proposed
learning framework. Specifically, the training process is divided into two components: the central
agent, which is responsible for selecting the optimal contextual information s−opt

t ; and the decen-
tralized agents, which leverage this information and their current state st to optimize their policies.
In this framework, the central agent is trained independently to optimize the temporal information
component, while the decentralized agents undergo joint training to refine their policies with filtered
temporal information and their spatial information. The policy-making and training process of the
ACL-LFT algorithm is illustrated in the pseudocode provided in Appendix C.3.

The global optimization objective of the framework is given by the expected sum of discounted
rewards over time for decentralized agents:

Ji(π) = E

[ ∞∑
t=0

γtRi(s̃t, ãt) | π

]
(14)

Besides, the central agent’s objective is to ensure goal alignment with decentralized agents through
gradient correlation. Specifically, the central objective is defined as

∇πJc(π) =

∞∑
t=0

γt
n∑

i=1

ωi
t∇πE[Ri | π]. (15)

∇π

 n∑
j=1

Jj(π)

 =

∞∑
t=0

γt
n∑

j=1

∇πE[Rj | π]. (16)
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Goal alignment holds when the gradients of the central and decentralized objectives are positively
correlated, that is, 〈

∇πJc(π),∇π

n∑
j=1

Jj(π)

〉
> 0 when ωi

t > 0.

This formulation ensures that the central agent’s optimization direction remains consistent with the
aggregated learning objectives of decentralized agents, thereby enhancing the stability and cooperative
efficiency of the overall framework.

By structuring training in this manner, our framework mitigates the challenge of the excessively large
parameter search space that typically arises from the joint optimization of both contextual and current
information, a factor known to hinder convergence. As a result, our framework not only accelerates
the learning process but also ensures that agents can efficiently leverage temporal trends, thereby
improving decision-making in complex multi-agent environments.

4 Experiments and Analysis

This section evaluates the proposed ACL-LFT framework across various MARL environments.
Section 4.1 outlines the experimental setup and baselines. Section 4.2 and Section 4.3 compare
ACL-LFT with sequence processing and fixed-length methods. Section 4.4 and Section 4.5 present
ablation and case analyses. Finally, Section 4.6 examines the decentralized setting without cross-agent
information sharing.

4.1 Experiment Setup

Environments We consider various tasks, including Sample Spread in PettingZoo [24], MiniGrid
Soccer Game in OpenAI Gym [25], Academy 3 vs 1 with Keeper, and Academy Counterattack-Hard
in Google Research Football (GRF) [26]. The overview of environments is shown in Fig. 2, while
the details of environments and their reward design are provided in Appendix C.1. All experiments
are implemented based on the Multi-Agent Proximal Policy Optimization (MAPPO) algorithm [31].
Furthermore, to verify the effectiveness of our proposed method under both complex and large-scale
scenarios, as well as to analyze the impact of removing the MAPPO backbone, we conduct additional
experiments based on MAPPO, QMIX [32], and QPLEX [33] in the StarCraft Multi-Agent Challenge
v2 (SMACv2) environments [27], including 3s5z_vs_3s6z, 5m_vs_6m, and corridor. The detailed
experimental results are presented in Appendix C.4.

(a) Sample Spread (b) Minigrid Soccer Game (c) 3 vs 1 with Keeper (d) Counterattack-Hard

Figure 2: Sample Spread (a) is a search game where agents learn to cover all the landmarks while
avoiding collisions. Minigrid Soccer Game (b) is a 15×15 environment where agents (triangles) earn
rewards by kicking the ball (circle) into same-colored goalmouths (squares). Academy 3 vs 1 with
Keeper (c) is a scenario where three offensive agents attempt to score against one defender and a
goalkeeper. Academy Counterattack-Hard (d) is a scenario where four agents must execute a rapid
counterattack while avoiding defenders.

Given the varying maximum episode lengths across different environments, we adapt the context
length accordingly for each case. Specifically, the maximum episode steps for Sample Spread,
MiniGrid Soccer Game, Academy 3 vs 1 with Keeper, and Academy Counterattack-Hard are 25,
512, 400, and 400, respectively. Therefore, the corresponding context lengths are set to 4, 64, 64,
and 64 steps. These values define the maximum selectable context lengths for the proposed method,
consistent with the central agent’s input dimension. Further details are provided in Appendix C.2.
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Baselines We first benchmark the sequence processing algorithms, including Transformer [34], Token
Statistics Transformer (ToST) [35], and AMAGO [36]. The introduction of these methods is provided
in Appendix C.2. Then, we benchmark the proposed method against different fixed context lengths.

4.2 Performance Comparison with Sequence Processing Methods

(a) Sample Spread (b) Minigrid Soccer Game (c) 3 vs 1 with Keeper (d) Counterattack-Hard

Figure 3: Performance Comparison with Sequence Processing Methods in Four Environments

In this section, we benchmark the proposed method against Transformer, ToST, and AMAGO. As
shown in Fig. 3, the performances are depicted via data from every 100 episodes and averaged over 5
seeds. It is seen that the proposed method outperforms in all scenarios. Specifically, Transformer
and ToST need more time to explore sophisticated policies and demonstrate large oscillations in
the exploration process. AMAGO demonstrates strong performance during the policy exploration
phase, owing to its effective handling of long sequences in parallel. However, due to the fact that
its contextual information is of fixed length, which tends to have a lot of noise, it performs poorly
compared to the proposed method after convergence.

In the Sample Spread, Academy 3 vs 1 with Keeper and Academy Counterattack-Hard, the proposed
method demonstrates the fastest exploration efficiency and consistently achieves the highest post-
convergence performance. Notably, as the complexity of the scenarios increases—from Sample
Spread to Academy 3 vs 1 with Keeper and Academy Counterattack-Hard—the performance gap
between the proposed method and the baseline methods becomes more evident. In the Minigrid
Soccer Game, the proposed method and AMAGO exhibit comparable exploration efficiency; however,
AMAGO converges prematurely and fails to achieve strong final results. In contrast, the proposed
method utilizes low-frequency truncation of historical information, significantly mitigating the impact
of redundant data. By adaptively selecting the optimal context length, the proposed method achieves
superior performance across all environments.

4.3 Performance Comparison with Fixed-Length

(a) 3 vs 1 with Keeper

(b) Counterattack-Hard

Figure 4: Performance Comparison with
Different Fixed Lengths on GRF

In section 3.2, we presented the Theorem 1, which demon-
strates the long-term advantage of adaptive length policies
over fixed-length. In this section, we benchmark the pro-
posed method against different fixed context lengths (8,
16, 32, and 64 steps) in Academy 3 vs 1 with Keeper and
Academy Counterattack-Hard.

We computed the average performance of the proposed
method and four fixed-length methods during two rela-
tively stable periods after convergence. Specifically, the
results were averaged from the 0.9 millionth to the 1 mil-
lionth episode in the Academy 3 vs 1 with Keeper, and
from the 1.4 millionth to the 1.5 millionth episode in the
Academy Counterattack-Hard. As shown in Fig. 4, the
proposed method significantly outperforms all fixed-length
methods, further demonstrating the effectiveness and ef-
ficiency of adaptive context length optimization. Notably,
among the fixed-length methods, the 16-step and 8-step
show the best performance in Academy 3 vs 1 with Keeper
and Academy Counterattack-Hard, respectively. These
findings suggest that longer context lengths do not neces-
sarily lead to better performance, as excessive historical
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information may introduce significant noise. This observation further underscores the critical role of
our low-frequency truncation in enhancing overall performance.

4.4 Ablation Experiments

Figure 5: Comparison of ablation studies:
(a) 3 vs 1 with Keeper; (b) Counterattack-
Hard.

To understand the contribution of each component in
the proposed ACL-LFT framework, we carry out ab-
lation studies to test the contribution of adaptive con-
text length (ACL) and low-frequency truncation (LFT).
Specifically, we utilize the best-performing fixed-length
configurations in the Academy 3 vs 1 with Keeper (32-
step) and Academy Counterattack-Hard (16-step) envi-
ronments. These configurations are applied to evaluate
ACL-LFT-NO-ACL and ACL-LFT-Raw, which test the
performance of the methods without ACL and without
both ACL and LFT, respectively. Furthermore, the ACL-
LFT-NO-LFT is input with 32 and 32 steps, which align
with the maximum step that can be selected by the ACL-
LFT.

As shown in Fig. 5, the most impact on performance is
the ablation of ACL, which further demonstrates the sig-
nificant effect of adaptive context length optimizing. Ad-
ditionally, the results reveal that ACL-LFT-NO-ACL out-
performs ACL-LFT-Raw, indicating that low-frequency
truncation (LFT) contributes notably to the overall per-
formance of the proposed framework. In conclusion, the
results highlight the critical importance of both ACL and
LFT in enhancing the efficiency and effectiveness of the
overall framework. Moreover, they demonstrate these
two components complement each other, contributing
synergistically to performance improvement, especially
in environments with varying complexities and temporal
dynamics.

4.5 Case Study

Table 1: Step-Reward Comparison on MiniGrid Soccer Game

Step ACL-LFT Transformer ToST AMAGO
0 0.00 (0) 0.00 0.00 0.00
5 2.71 (8) 2.96 0.00 0.00

10 1.52 (16) 1.73 2.17 2.63
15 1.77 (8) 1.94 1.59 2.08
20 2.41 (4) 1.65 1.26 1.54
25 3.19 (4) 2.36 1.85 1.93
30 3.85 (2) 2.07 2.26 2.45
35 3.30 (8) 2.85 2.51 2.16
40 4.06 (2) 3.57 2.90 2.48
41 14.31 (1) 3.45 2.97 2.65
45 / 4.12 3.36 3.03
47 / 13.98 3.52 3.41
50 / / 3.79 3.66
55 / / 4.09 3.85
56 / / 14.25 4.02
59 / / / 13.62

To intuitively demonstrate the
performance benefits brought by
the adaptive context length mech-
anism, we conduct a case study
on the MiniGrid Soccer Game.
This environment features a tai-
lored reward function, which is
highly sensitive to the agent’s
ability to leverage historical in-
formation for effective path plan-
ning and cooperative strategies.
Specifically, we set the maxi-
mum step of environment to 64.
Accordingly, all baseline meth-
ods use a fixed context length of
16, which aligns with the max-
imum selectable length for the
proposed method.

As shown in Table 1, we record
the reward value every 5 steps
and highlight the time step at
which the first goal is achieved in bold. The numbers in parentheses indicate the context length

9



adaptively selected by ACL-LFT at each time step. The results show that ACL-LFT quickly adjusts
its context length after obtaining positive rewards (e.g., step = 15, 20), enabling timely re-planning to
avoid inefficient exploration, while other methods remain in the aimless exploration phase. Notably,
ACL-LFT dynamically selects shorter yet effective context lengths (e.g., length 2 at step 40), signifi-
cantly improving path efficiency and ultimately achieving a goal by step 41. In contrast, methods
with fixed-length contexts adapt more slowly, require longer to identify viable paths. This indicates
that ACL-LFT enhances exploration efficiency and mitigates the impact of redundant information via
adaptive context length optimization, thereby achieving superior performance.

4.6 Ablation on the Absence of Cross-Agent Historical Information

To further examine the influence of centralized sequence processing and verify that our method does
not rely on cross-agent information sharing, we conduct an additional ablation study in which each
agent can only access its own local historical observations and actions, without any global or inter-
agent historical information. In this variant, the central agent is disabled from aggregating histories
across agents; instead, it independently processes the local sequences for each agent, ensuring that no
centralized communication channel exists during decision-making.

Table 2: Performance comparison without cross-agent historical information.

Task AMAGO Mamba ACL-LFT

3s5z vs 3s6z 76.1 ± 2.9 72.6 ± 3.2 78.9 ± 2.8
5m_vs_6m 48.1 ± 4.0 46.2 ± 4.5 52.7 ± 4.2
corridor 74.3 ± 4.8 69.0 ± 5.9 77.9 ± 5.3

As shown in Table 2, ACL-LFT consistently outperforms existing temporal modeling methods such
as AMAGO and Mamba even when no cross-agent historical information is available. This confirms
that the performance improvement of ACL-LFT originates from its proposed low-frequency temporal
representation and adaptive contextual-length optimization rather than from any implicit inter-agent
information sharing. Moreover, this ablation validates that ACL-LFT preserves the partially observ-
able nature of the SMACv2 environment and remains effective under purely decentralized historical
settings, demonstrating the soundness and generality of our framework.

5 Conclusion

To systematically address the dual challenges of increasing context length in MARL, we propose
an adaptive context length optimization with low-frequency truncation (ACL-LFT) for MARL. The
proposed method adaptively optimizes context length via a central agent. Equipped with a Fourier-
based low-frequency truncation, we address the challenge of representing the MARL environment
and provide an efficient input for the central agent. The experimental results demonstrate the proposed
method significantly enhances the performance of the baseline algorithm in changing environments.
In addition, we demonstrate both theoretically and experimentally the long-term advantage of adaptive
context length over fixed-length.
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Appendix Overview: In this Appendix we provide important details that could not be included
in the main text due to space constraints. First in Appendix A, we provide detailed proofs for
the low-frequency truncation in discrete space. Next in Appendix B, we provide the proof of the
approximately long-term advantage lower bound of the contextual information over static counterparts
in dynamic environments. Finally, in Appendix C we provide additional details about our experiments
discussed in the main text.

A Proof of Low-Frequency Truncation in Discrete Space

A.1 Dyadic Partition of Unity

Let C be the annulus defined as C = {ξ ∈ Rd | 34 ≤ |ξ| ≤
8
3}. There exist measurable functions χ

and φ, taking values in the interval [0, 1], belonging respectively to D(B(0, 4
3 )) and D(C), such that:

∀ξ ∈ Rd, χ(ξ) +
∑
j≥0

φ(2−jξ) = 1, (17)

and for all:
∀ξ ∈ Rd \ {0},

∑
j∈Z

φ(2−jξ) = 1. (18)

These functions satisfy the disjoint support conditions:

|j − j′| ≥ 2⇒ Suppφ(2−j ·) ∩ Suppφ(2−j′·) = ∅, (19)

j ≥ 1⇒ Suppχ ∩ Suppφ(2−j ·) = ∅. (20)
Defining the translated annulus C as Cdef = B(0, 2

3 ) + C, we note that C remains an annulus and
satisfies:

|j − j′| ≥ 5⇒ 2j′C ∩ 2jC = ∅. (21)
Furthermore, the functions χ and φ satisfy the bounds:

∀ξ ∈ Rd,
1

2
≤ χ2(ξ) +

∑
j≥0

φ2(2−jξ) ≤ 1, (22)

∀ξ ∈ Rd \ {0},
∑
j∈Z

φ2(2−jξ) ≤ 1. (23)

The aforementioned method establishes a smooth dyadic decomposition of frequency space using
radial functions χ and φ , ensuring a partition of unity while maintaining disjoint support conditions.
The construction guarantees that the frequency space is effectively covered while avoiding excessive
overlap, making it well-suited for applications in harmonic analysis and function space theory. The
inequalities further confirm that the decomposition remains stable, with bounded sums ensuring
proper reconstruction properties.

A.2 Proof of Dyadic Partition of Unity in Discrete Form

To extend this formulation to the discrete setting, we consider a similar approach where the continuous
frequency domain is replaced by a discrete grid. In this section, we first supplement the details of
some important definitions. Then supply the essential proofs of our method.

To facilitate a dyadic-like decomposition in the discrete frequency domain, we introduce a set of
window functions (the low-pass window function and the band-pass window functions) that partition
the frequency spectrum into complementary regions. These functions ensure that different frequency
components of a signal are captured separately, allowing for a structured analysis of its spectral
content. Specifically, the low-pass window function X[k] is defined as:

X[k] =

{
1, k ≤ 2m or k ≥ t− 2m,

0, otherwise,
(24)

where m is an integer satisfying 0 < m < J , which determines the cutoff for low-frequency
retention. This function effectively captures the low-frequency trends of a signal while discarding

14



high-frequency components.
In contrast, the band-pass window functions Φj [k] isolate specific frequency bands and are defined
as:

Φj [k] =

{
1, 2j+m ≤ k < 2j+m+1 or t− 2j+m+1 < k ≤ t− 2j+m,

0, otherwise,
(25)

for j = 0, 1, . . . , J − 1−m, each function spans a high-frequency dyadic band. These band-pass
functions systematically cover the frequency spectrum, ensuring that different frequency components
are separately analyzed while maintaining a structured partitioning. Using these window functions,
the signal s[u] can be decomposed into distinct components. The low-frequency component, which
encapsulates the long-term trend of the signal is obtained as discrete inverse Fourier transform. And
the band-pass components, which capture fluctuations at specific dyadic frequency scales are given
by:

∆js[u] = IDFT(Φj [k] · S[k])[u], j = 0, 1, . . . , J − 1−m. (26)
By summing these components, the original signal can be approximately reconstructed as:

s[u] ≈ ∆−1s[u] +

J−1−m∑
j=0

∆js[u]. (27)

This decomposition demonstrates that the essential features of the signal are effectively captured
across multiple frequency scales, allowing for a detailed analysis of its spectral characteristics.

A key property of our method is that the window functions form an approximate partition of unity
in the frequency domain. This ensures the decomposition provides a stable and comprehensive
representation of the signal. Specifically, the functions satisfy the relation:

X[k] +

J−1−m∑
j=0

Φj [k] ≈ 1, (28)

for most frequency indices k. This property can be verified by examining different frequency regions.

1. Low-Frequency Regions: When the frequency index falls within the low-frequency range,
the low-pass function fully retains the frequency components, while all band-pass functions
are inactive:

X[k] = 1, Φj [k] = 0, k ≤ 2m ∪ k ≥ t− 2m, ∀j. (29)

Consequently, the summation property holds:

X[k] +

J−1−m∑
j=0

Φj [k] = 1 +
∑

0 = 1. (30)

This ensures that the low-frequency components are preserved without interference from
high-frequency bands.

2. Band-Pass Regions: In the band-pass regions, the low-pass function does not contribute,
while exactly one band-pass function is active:

X[k] = 0, ∃! j s.t. Φj [k] = 1, 2j+m ≤ k < 2j+m+1. (31)

This guarantees that the sum remains unity:

X[k] +

J−1−m∑
j=0

Φj [k] = 0 + 1 = 1. (32)

Thus, each frequency component is assigned uniquely to one of the band-pass filters,
ensuring no overlap or redundancy.

3. Boundary Points: At the boundary points (k = 2j+m, 2j+m+1, t − 2j+m, t − 2j+m+1)
where transitions occur between different frequency bands, both the low-pass and band-pass
window functions may be inactive, leading to:

X[k] = 0, Φj [k] = 0, ∀j. (33)
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Consequently, at these discrete boundary points, the summation deviates from unity:

X[k] +

J−1−m∑
j=0

Φj [k] = 0. (34)

To further analyze the convergence properties of this decomposition, we define the error
function:

E[k] = 1−

X[k] +

J−1−m∑
j=0

Φj [k]

 . (35)

The set of indices where E[k] ̸= 0 is given by:

E = {k ∈ Z | E[k] ̸= 0}. (36)

Since E[k] is nonzero only at a finite number of boundary points, the measure of its support
satisfies:

|E| ≪ t. (37)

Thus, as t→∞, the fraction of affected indices vanishes, leading to an almost everywhere
convergence:

lim
t→∞

|E|
t

= 0. (38)

The above proofs ensure that the partitioning scheme provides a stable and asymptotically exact
decomposition in the frequency domain.

Another fundamental aspect of our method is the disjointness and independence of the window
functions, which guarantees that the extracted components remain distinct and do not interfere with
each other. This separation is maintained through the following two properties:

1. Between different band-pass windows: For any j ̸= j′, the support intervals of the
band-pass window functions are disjoint:

[2j+m, 2j+m+1) ∩ [2j′+m, 2j′+m+1) = ∅. (39)

As a result, the corresponding window functions satisfy:

Φj [k] · Φj′[k] = 0, ∀k. (40)

2. Between the low-pass and band-pass windows: The low-pass function X[k] is supported
in the low-frequency regions k ≤ 2m or k ≥ t− 2m. On the other hand, each band-pass
function Φj [k] is supported in the range 2j+m ≤ k < 2j+m+1. Since 2j+m > 2m, it
follows that the support of X[k] and Φj [k] are mutually exclusive, ensuring:

X[k] · Φj [k] = 0, ∀j, k.

Based on the above method, the annulus C is substituted with a corresponding set in the discrete
Fourier domain, and the dyadic scaling operations are adapted to respect the discrete nature of the
transform. The goal remains to construct a stable decomposition that preserves the essential properties
of the continuous case while accommodating the constraints imposed by discrete sampling.

B Proof of Long-Term Advantage Lower Bound of Adaptive Length

Theorem 1 (Advantage Lower Bound of Adaptive Length): At time t, let Ladap be the adaptive
context length, Lfix be the fixed context length, and the mutual information loss of L be denoted
as Lt(Lt). The expected cumulative reward difference between adaptive and fixed context length
satisfies the following bound:

T∑
t=1

(Lt(Lfix)− Lt(Ladap)) ≥ Ω(T )−O(Tα)

= Ω(T ) (when T is sufficiently large)

(41)
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where 0 ≤ α < 1, with α being a non-deterministic parameter that varies with the environment.

Proof: To prove this theorem, we first model the non-stationary environment, including the ob-
servation and its latent variable. Specifically, at each time t, the agent receives noisy observations
ot = g(ξt) + ϵt, where {ξt}Tt=1 represents the latent variable, and the error term ϵt ∼ N (0, σ2

ϵ ). The
latent variable sequence {ξt}Tt=1 governs environmental dynamics and follows a diffusion process:

dξt = µ(ξt)dt+ η(ξt)dWt, (42)

where Wt represents a standard Brownian motion, µ(·) and η(·) denote the drift and diffusion
coefficients, respectively.

For any window length L, the mutual information I(at; ξt|L) quantifies the information content of
the action at about the latent variable ξt:

I(at; ξt|L) = H(ξt)−H(ξt|at, L), (43)

where H(ξt) represents the entropy of ξt (prior entropy), and H(ξt|at, L) represents the conditional
entropy of ξt given at and window length L. With the theoretical optimal window length L∗

t , the
mutual information loss of L can be obtained:

Lt(L) = I(at; ξt|L∗
t )− I(at; ξt|L) (44)

Since the action at is generated from the observation sequence ot−L:t = {ot−L, . . . , ot} via the
stochastic policy π(at|ot−L:t), the data processing inequality implies:

I(at; ξt|L) ≤ I(ot−L:t; ξt|L). (45)

With the equation 43, we obtain:

I(ot−L:t; ξt|L) = H(ξt)−H(ξt|ot−L:t). (46)

Thus, the upper bound on the mutual information loss is given by:

Lt(L) ≤ I(ot−L:t; ξt|L∗
t )− I(ot−L:t; ξt|L) = H(ξt|ot−L:t)−H(ξt|ot−L∗

t :t
). (47)

Based on the Fourier-based truncation, the policies can approximately fully utilize the observed
information; thereby, we obtain:

Lt(L) ≈ H(ξt|ot−L:t)−H(ξt|ot−L∗
t :t
). (48)

where σ2
t|L represents the estimation accuracy of ξt given ot−L:t

Next, considering the general situation that the latent variable ξt can be regarded as a Gaussian
form for the posterior distribution p(ξt|ot−L:t). This setting is reasonable under several mild and
widely satisfied conditions: (i) the dynamics and observation models can be locally approximated
as linear or weakly nonlinear in the neighborhood of the true latent state L∗

t ; (ii) the observation
noise is Gaussian, consistent with the structure of the Kalman filter; and (iii) the functions µ(ξt)
and η(ξt), often parameterized by neural networks, are smooth and differentiable, allowing for local
Taylor expansions or moment-based approximations such as sigma-point propagation. Therefore, the
posterior distribution can be reasonably approximated as:

p(ξt|ot−L:t) = N (ξ̂t, σ
2
t|L), (49)

where ξ̂t denotes the posterior mean and σ2
t|L the posterior variance. Consequently, the conditional

entropy can be computed as:

H(ξt|ot−L:t) =
1

2
log(2πeσ2

t|L). (50)

Notably, this Gaussian approximation is particularly justified in policy optimization algorithms
such as PPO [37], where updates are constrained to remain close to the current policy, effectively
preserving local linearity in the latent-to-observation mapping.

Due to the fact that L∗
t is the optimal window length at time step t, we expect that the posterior

variance σ2
t|L behaves in a manner where it decreases as the window length approaches the optimal

value L∗
t . This behavior is common in many estimation problems, where the system’s performance
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improves as it gets closer to the optimal configuration. In particular, reference [38] suggests that
the most useful information for decision-making is concentrated around certain "bottleneck" points,
and small deviations from the optimal choice result in progressively diminishing returns in terms of
information processing. Given this intuition, the posterior variance, σ2

t|L, can be regarded as behaving
convexly in the neighborhood of L∗

t , because this ensures that small changes around the optimal
window length lead to an increase in variance, which represents a deterioration in the quality of the
estimation. Specifically, there exists a positive constant k > 0 such that:

σ2
t|L ≥ σ2

min +
1

2
k(L− L∗

t )
2, (51)

where σ2
min = σ2

t|L∗
t

denotes the posterior variance achieved at the optimal window length.

Combining equations 48 and 50, the mutual information loss can be lower bounded in terms of the
posterior variance ratio:

Lt(L) ≈
1

2
log

(
σ2
t|L

σ2
min

)
. (52)

Substituting the lower bound in equation 51 into equation 52, we obtain:

Lt(L) ≥
1

2
log

(
1 +

k(L− L∗
t )

2

2σ2
min

)
. (53)

Applying the inequality log(1 + x) ≥ x
1+x for x > −1, we further derive:

Lt(L) ≥
1

2
·

k(L−L∗
t )

2

2σ2
min

1 +
k(L−L∗

t )
2

2σ2
min

=
k(L− L∗

t )
2

4σ2
min + 2k(L− L∗

t )
2
. (54)

For a fixed window length Lfix, the total information loss over T time steps can then be bounded from
below:

T∑
t=1

Lt(Lfix) ≥
T∑

t=1

(
k

4σ2
min

(Lfix − L∗
t )

2 · 1

1 + k
2σ2

min
(Lfix − L∗

t )
2

)
. (55)

When |Lfix − L∗
t | exceeds a threshold ζ, the denominator in equation 54 is bounded, and the loss is

lower bounded by a positive constant c = kζ2

4σ2
min+2kζ2 . On the other hand, when |Lfix − L∗

t | < δ, the

quadratic term dominates and the loss scales as k
4σ2

min
(Lfix − L∗

t )
2. In both cases, we have that the

total loss satisfies:
T∑

t=1

Lt(Lfix) = Ω(T ), (56)

demonstrating that any fixed window length incurs linear cumulative loss over time unless it tracks
the optimal L∗

t .

Considering the adaptive strategy for selecting the context length Ladap at each time t. We adopt
the most universal polynomial rate to describe the adaptive policy converging to the optimal window
length:

|Ladap,t − L∗
t | ≤ ϵt = O(t−β), β > 0. (57)

which are commonly used in general convex problems and in stochastic algorithms. In contrast,
exponential convergence, etc., often requires extremely strong assumptions such as strong convexity
and global smoothness.

Next, based on the equation 52, for small deviations |L− L∗
t | < δ, applying the first-order approxi-

mation log(1 + x) ≈ x, we obtain:

Lt(L) ≈
k

4σ2
min

(L− L∗
t )

2. (58)

This shows that in a local region |L− L∗
t | < δ, the mutual information loss behaves quadratically

with respect to (L − L∗
t )

2. This local quadratic behavior is compatible with the global Lipschitz
condition via the boundedness of gradients and compactness of the parameter space.
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Moreover, in reinforcement learning algorithms such as TRPO [39] or PPO [37], the policy π(at |
ot−L:t) is updated under a trust-region constraint (e.g., a KL divergence threshold), which enforces
local smoothness of the policy:

∥θt+1 − θt∥ ≤ δ. (59)

This constraint implies a Lipschitz condition on the policy distribution in terms of Total Variation
(TV) distance:

∥π(· | ot−L:t)− π(· | ot−L∗:t)∥TV ≤ Cπ|L− L∗|, (60)

where Cπ is a constant dependent on the network structure.

By Pinsker’s inequality, when the deviation from the optimal context length is small, the TV distance
can be related to KL divergence:

∥π(· | L)− π(· | L∗)∥TV ≈
1

2

√
DKL(π(· | L)∥π(· | L∗)). (61)

Combining the equation 60 and the equation 61:

DKL(π(· | L)∥π(· | L∗)) ≤ 2C2
π|L− L∗|2. (62)

Considering mutual information I(at; ξt | L) is continuous with respect to the policy distribution
[40], there exists a constant CI > 0 such that:

|I(at; ξt | L)− I(at; ξt | L∗)| ≤ CI ·DKL(π(· | L)∥π(· | L∗)). (63)

Therefore, we obtain:

|I(at; ξt|L)− I(at; ξt|L∗)| ≤ CICπ|Ladap − L∗| := K|Ladap − L∗|. (64)

For any L,L∗, we consider two cases: (i) Local region (|L − L∗| < δ): In this case, we directly
apply the previously established equation 64 (ii) Global region (|L− L∗| ≥ δ): Since the mutual
information is upper bounded by the entropy H(ξt), we have:

|I(at; ξt|L)− I(at; ξt|L∗)| ≤ H(ξt) ≤
H(ξt)

δ
· |L− L∗|. (65)

Combining both cases, define:

K := max

{
CICπ,

H(ξt)

δ

}
, (66)

then for any L,L∗, the mutual information satisfies a global Lipschitz condition:

|I(at; ξt|L)− I(at; ξt|L∗)| ≤ K|L− L∗|. (67)

Further, we can obtain the following bound of adaptive context length on single-step mutual informa-
tion loss:

Lt(Ladap) = |I(at; ξt | L)− I(at; ξt | L∗)| ≤ K|Ladap − L∗| = O(t−β). (68)

This establishes the global Lipschitz continuity of mutual information with respect to the context
length L.

Summing over t = 1 to T , we get:

T∑
t=1

Lt(Ladap) ≤ K

T∑
t=1

t−β (69)

Now we apply standard results from numerical analysis of p-series:

• If β > 1, then the series
∑T

t=1 t
−β converges. Hence, the cumulative information loss is

bounded:
∑T

t=1 Lt(Ladap) = O(1).

• If β = 1, then the series becomes harmonic and grows logarithmically:
∑T

t=1 t
−1 =

O(log T ). Thus,
∑T

t=1 Lt(Ladap) = O(log T ).
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• If 0 < β < 1, then the series grows polynomially:
∑T

t=1 t
−β = O(T 1−β). Consequently,∑T

t=1 Lt(Ladap) = O(T 1−β).

In all cases, the cumulative information loss is sublinear in T , i.e., there exists α < 1 such that:

T∑
t=1

Lt = O(Tα). (70)

Combine with the equation 56 and the equation 70, we obtain:

T∑
t=1

(Lt(Lfix)− Lt(Ladap)) = Ω(T )−O(Tα)

= Ω(T ) (when T is sufficiently large) (71)

C Additional Details for Experiments

C.1 Environments

Sample Spread The Sample Spread environment is a cooperative multi-agent task where agents
must coordinate their movements to cover multiple static landmarks, aiming to minimize the overall
distance between agents and landmarks while avoiding inter-agent collisions. In the original setting,
the number of agents and landmarks is equal (3 each), which may lead to agents remaining stationary.
To encourage exploration and promote more dynamic coordination behavior, we modify the setting
to include 4 agents and 3 landmarks. The action shape is 5. The reward design is as follows:

• Each agent receives a local penalty of−1.0 for every collision with other agents, encouraging
collision avoidance.

• The global reward is defined as R = −
∑4

i=1 minj ∥pj − li∥, where pj and li denote the
positions of agent j and landmark i, respectively, encouraging agents to minimize the overall
distance to landmarks.

The observation shape is 24:

Table 3: The Observation Features of Sample Spread
Feature Dim Description
Self Velocity 2 Agent’s own velocity vector
Self Position 2 Agent’s own position in world coordinates
Landmark Relative Positions 8 Relative positions of 4 landmarks to the agent
Other Agents’ Relative Positions 6 Relative positions of the other 3 agents to the agent
Communication Vectors 6 Communication features from the other 3 agents
Total 24 Final observation dimension per agent

Minigrid Soccer Game The MiniGrid Soccer Game is a multi-agent, competitive and cooperative
environment in which agents must coordinate to score goals using shared balls. Agents can pass
the balls, intercept opponents, and strategically position themselves to influence the game outcome.
In our specific configuration, we use 4 balls (red), 3 teams (blue, green, and yellow), with 3 agents
per team, and each team is assigned a goal of corresponding color. The action-observation space
is partially observable. The rewards are global-shared, which all agents receive the same reward
whenever any agent scores or concedes a goal:

• Each agent receives a shared reward of +1 upon successfully picking up the ball from the
ground. Each ball only provides this reward once.

• A shared reward of +10 is given when any agent scores a goal into its own team’s designated
goal area.

• A shared penalty of −5 is applied if the ball is accidentally scored into an opponent’s goal.
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• When holding the ball, agents receive a step-wise penalty of −0.02 × dist based on the
distance between the ball and the agent’s own goal.

• When holding the ball, agents receive a dense reward of +0.2 × progress based on the
positive progress made toward their own goal.

Each agent observes a 3×3 local grid, and the shape of each cell is 6:

Table 4: The Observation Features of Minigrid Soccer Game
Feature Dim Description
Object Type 1 Type index (wall/door/agent/key/...)
Color 1 Color index (green/blue/...)
State 1 Object state (0-2 for door open/closed/locked)
Carried Type 1 Type of carried object (0 if none)
Carried Color 1 Color of carried object (0 if none)
Direction/Marker 1 Agent direction (0-3) or current agent flag (0/1)
Total 6

Academy 3 vs 1 with Keeper Academy 3 vs 1 with Keeper environment is a multi-agent scenario
where 3 offensive agents cooperate to score against a goalkeeper and a defender. The action space is
discrete with 19 actions, covering basic football behaviors like passing, shooting, and movement. The
reward structure is sparse: +100 for scoring a goal, –1 if the episode ends without scoring. Besides,
we evaluate the model every 100 training episodes, each time over 30 test episodes to compute the
average win rate. The observation shape is 26:

Table 5: The Observation Features of Academy 3 vs 1 with Keeper
Feature Dim Description
Ego Player Position 2 (x, y) position of the observing agent
Teammates Relative Positions 4 Relative positions of 2 teammates w.r.t. ego
Ego Player Direction 2 Velocity vector (direction) of the ego agent
Teammates Directions 4 Directions of 2 teammates
Opponents Relative Positions 6 Relative positions of 3 opponents w.r.t. ego
Opponents Directions 6 Directions of 3 opponents
Ball Relative Position 2 Ball position relative to ego
Ball Height 1 Ball z coordinate (height)
Ball Direction 3 Ball velocity in (x, y, z)
Total 26

Academy Counterattack-Hard Academy Counterattack-Hard environment is a multi-agent scenario
where 4 offensive agents cooperate to score against a goalkeeper and a defender. The action space is
discrete with 19 actions, covering basic football behaviors like passing, shooting, and movement. The
reward structure is sparse: +100 for scoring a goal, –1 if the episode ends without scoring. Besides,
we evaluate the model every 100 training episodes, each time over 30 test episodes to compute the
average win rate. The observation shape is 34:

Table 6: The Observation Features of Academy Counterattack-Hard
Feature Dim Description
Ego Agent Position 2 Agent’s own (x, y) coordinates
Teammates Relative Positions 6 Relative (dx, dy) of 3 teammates
Ego Agent Direction 2 Movement vector (vx, vy)
Teammates Directions 6 Movement vectors of 3 teammates (vx, vy)× 3
Opponents Relative Positions 6 Relative (dx, dy) of 3 opponents
Opponents Directions 6 Movement vectors of 3 opponents (vx, vy)× 3
Ball Relative Position 2 Ball (x, y) relative to ego agent
Ball Height 1 Ball z-coordinate (altitude)
Ball Direction 3 Ball velocity (vx, vy, vz)
Total 34
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C.2 Experiments with Sequence Processing Methods

All experiments were conducted using an NVIDIA A100 GPU, with the longest single training run
taking approximately one month.

Baseline Methods

• Transformer [34]: A deep learning architecture that utilizes self-attention and positional
encoding to model complex dependencies across sequences.

• Token Statistics Transformer (ToST) [35]: A recent Transformer variant, using a data-
dependent low-rank projection based on the second moment statistics of input token features,
and achieving linear computational complexity.

• AMAGO[36]: An in-context reinforcement learning algorithm that enables long-sequence
Transformers to process entire trajectories in parallel, overcoming the memory capacity and
long-term planning bottlenecks of traditional recurrent networks.

Hyperparameter We provide the hyperparameters used in each environments as follows:

Table 7: Hyperparameter Configuration
Parameter Value
Learning Rate 0.001
Discount Factor (γ) 0.98
GAE Coefficient (λ) 0.95
PPO Clip (ϵ) 0.2
Training Epochs 10
Batch Size (Sample Spread) 25
Batch Size (Minigrid Soccer Game) 128
Batch Size (Academy 3 vs 1 with Keeper) 50
Batch Size (Academy Counterattack-Hard) 50
Entropy Coefficient (β) 0.01
MLP Hidden Layers (Sample Spread) [256, 64, 16]
CNN Hidden Layers (Minigrid Soccer Game) [16, 32, 64]
MLP Hidden Layers (Minigrid Soccer Game) [256, 128, 64]
MLP Hidden Layers (Academy 3 vs 1 with Keeper) [1024, 256, 64]
MLP Hidden Layers (Academy 3 vs 1 with Keeper) [1024, 256, 64]
Activation Function ReLU
Optimizer Type Adam

Central Agent with Low-Frequency Truncation Based on the Dyadic Partition of Unity in Discrete
Form, we assign distinct low-frequency truncation lengths to each environment. Specifically, after
applying the Discrete Fourier Transform (DFT), we retain the first 4, 128, 64, and 64 frequency
components for the Sample Spread, MiniGrid Soccer Game, Academy 3 vs 1 with Keeper, and
Academy Counterattack-Hard environments, respectively. The above frequency components are then
inputted to the central agent, for which the input dimension is defined as k0. The action space for the
central agent in each environment is defined as follows:

Table 8: Central Agent Action Space
Environment (Step > Threshold) Action Space
Sample Spread 0, 0, 1, 2, 4
MiniGrid Soccer Game 0, 1, 2, 4, 8, 16, 32, 64
Academy 3 vs 1 with Keeper 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 8, 16, 32, 64
Academy Counterattack-Hard 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 8, 16, 32, 64

The action space of the central agent in each environment is adaptively constructed based on the
current time step using a dyadic partitioning rule. Specifically, for each environment, we define a
threshold step value: Sample Spread (t > 7), MiniGrid Soccer Game (t > 255), Academy 3 vs 1
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with Keeper and Academy Counterattack-Hard (t > 127). When the step t exceeds the corresponding
threshold, the action space is composed of a set of dyadic components {20, 21, . . . , 2k}, where
k = min(log2(k0), [log2 t]−1), and the vector is left-padded with zeros to match the fixed dimension.
The resulting component sets for each environment under this truncation rule are summarized in
Table 8.

This work develops an adaptive context length optimization method with Fourier-based low-frequency
truncation for multi-agent reinforcement learning (MARL). The proposed approach significantly
improves the efficiency and effectiveness of MARL systems, enabling better decision-making in
complex, dynamic environments.

The positive societal impacts of this research include advancing intelligent multi-agent systems
in diverse domains such as transportation management, robotics, and resource allocation. These
improvements can contribute to enhanced safety, reduced energy consumption, optimized traffic
flows, and overall better management of complex systems benefiting society.

By promoting more efficient learning and adaptation in multi-agent environments, this work helps
pave the way for scalable and practical AI applications that address real-world challenges with
improved reliability and performance.

C.3 ACL-LFT Algorithm

All methods in our experiments (including ours and the baselines) follow the same structural setting:
a centralized module processes only the historical information and transmits it to distributed agents
for decision-making. All methods share the same network architecture, ensuring a fair comparison
across all baselines. The pseudocode of the ACL-LFT training process under this unified framework
is provided in Algorithm 1.

Algorithm 1: ACL-LFT Policy-Making and Training Algorithm

Input: Distributed agents’ policies {θi}Ni=1, shared value function ϕ; central agent’s policy θc,
value function ϕc; horizon T ; epochs Kc, Kd.

Output: Updated policies {θi}Ni=1, θc and value functions ϕ, ϕc.
Initialize per-agent episode buffers {Bi}Ni=1; reset environment;
for episode = 1 to max_epi do

for t = 0 to T − 1 do
for i = 1 to N do

Extract historical state s−1
t and perform Fourier Transform;

Obtain low-frequency section sct ;
Obtain optimal contextual information s−opt

t ;
end
for i = 1 to N do

Obtain ait by s−opt
t and sit; perform ait;

Obtain sit+1 and rit;
Store transition τ it , sit+1 in Bi;

end
Obtain rct ; store center transition τ ct ;

end
Compute advantages Ac

t using GAE with ϕc;
for epoch = 1 to Kc do

Update policy θc, value function ϕc;
end
Construct centralized critic input sglobalt ;
Compute advantages Ai

t using GAE with ϕ(sglobalt );
Collect τ it into shared buffer B;
for epoch = 1 to Kd do

Update shared policy θi, value function ϕ;
end

end
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C.4 Additional Experiments

Table 9: Performance on SMACv2 with different MARL backbones and coordination mechanisms.

SMACv2
Task

RL-Method Transformer ToST AMAGO Mamba ACL-LFT

3s5z vs 3s6z
MAPPO 71.5 ± 3.9 72.2 ± 3.4 76.1 ± 2.9 72.6 ± 3.2 78.9 ± 2.8
QMIX 72.8 ± 3.7 73.7 ± 3.6 76.3 ± 3.1 75.1 ± 3.7 79.4 ± 2.9

QPLEX 73.6 ± 3.3 75.1 ± 3.6 77.5 ± 2.8 75.0 ± 3.3 80.1 ± 3.0

5m_vs_6m
MAPPO 44.5 ± 4.9 46.3 ± 4.4 48.1 ± 4.0 46.2 ± 4.5 52.7 ± 4.2
QMIX 44.3 ± 5.5 46.9 ± 4.8 48.3 ± 4.3 46.1 ± 5.1 52.4 ± 4.6

QPLEX 45.6 ± 5.7 47.3 ± 4.6 49.5 ± 4.8 47.8 ± 4.9 53.9 ± 4.3

corridor
MAPPO 65.6 ± 5.7 68.1 ± 6.6 74.3 ± 4.8 69.0 ± 5.9 77.9 ± 5.3
QMIX 68.5 ± 5.9 70.3 ± 6.8 75.0 ± 5.3 71.2 ± 6.2 78.6 ± 5.4

QPLEX 70.6 ± 4.7 72.9 ± 4.6 76.3 ± 5.8 73.5 ± 5.5 79.2 ± 4.9

As shown in Table 9, ACL-LFT consistently outperforms all evaluated baselines—including MAPPO,
QMIX, and QPLEX—across all SMACv2 scenarios, with average improvements of +2.6% to +4.6%
over the best-performing baseline (typically AMAGO).
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly summarize the paper’s main contributions
and accurately reflect its scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: he limitations of the work are briefly discussed in the appendix, including the
assumptions made and directions for future improvement.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The paper includes all necessary assumptions and complete proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides sufficient methodological details and experimental settings
to reproduce the main results.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide access to the core codebase and key experimental results in the
supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides comprehensive details on training and testing settings,
including data splits, hyperparameter choices, optimizer types, and selection criteria. Addi-
tional specifics are included in the appendix to ensure full reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports error bars and/or confidence intervals for key experimental
results. The sources of variability (e.g., random initialization, data splits) are clearly stated,
and the methods for calculating error bars are described. Assumptions related to the
statistical analysis are also discussed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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Justification: The paper specifies the hardware used and total computational resources
required.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research presented in this paper fully adheres to the NeurIPS Code of
Ethics. All experiments and data collection procedures comply with ethical standards,
including respect for privacy, avoidance of harm, and fairness. No conflicts with applicable
laws or regulations are present, and no special ethical concerns arise from the methods or
applications discussed.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Appendix for a discussion of potential broader societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not involve the release of high-risk models or datasets.
It proposes a novel framework for multi-agent reinforcement learning that operates on
simulated environments (e.g., PettingZoo, MiniGrid, GRF), which do not pose significant
risks of misuse or require special safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: This paper uses existing environments. All assets are properly cited in the
paper with references to their original sources, and their licenses and terms of use have been
fully respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release any new datasets, models, or other assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve any crowdsourcing or human subject research. All
experiments are conducted in simulation environments without human interaction.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve any human subjects or crowdsourcing experiments.
All experiments are conducted in simulation environments without human interaction.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The research does not use large language models (LLMs) as an important,
original, or non-standard part of its methodology. Any LLM involvement, if any, was limited
to general writing or editing assistance and does not impact the core scientific contributions.
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Guidelines:
• The answer NA means that the core method development in this research does not

involve LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)

for what should or should not be described.
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