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Abstract

To model complex real-world systems, such as traders in
stock markets, or the dissemination of contagious diseases,
graphon mean-field games (GMFG) have been proposed to
model many agents. Despite the empirical success, our under-
standing of GMFG is limited. Popular algorithms such as mir-
ror descent are deployed but remain unknown for their con-
vergence properties. In this work, we give the first last-iterate
convergence rate of mirror descent in regularized monotone
GMFG. In tabular monotone GMFG with finite state and
action spaces and under bandit feedback, we show a last-
iterate convergence rate of O(T_l/ 4). Moreover, when exact
knowledge of costs and transitions is available, we improve
this convergence rate to O(7 '), matching the existing con-
vergence rate observed in strongly convex games. In linear
GMFG, our algorithm achieves a last-iterate convergence rate
of O(T~'/%). Finally, we verify the performance of the stud-
ied algorithms by empirically testing them against fictitious
play in a variety of tasks.

Introduction

In many real-world applications, the presence of complex
systems including many interacting individuals or com-
ponents is indispensable. These systems manifest in vari-
ous forms, from the intricate networks of neurons within
human brains (Bullmore and Sporns 2009, 2012; Avena-
Koenigsberger, Misic, and Sporns 2018), to the dynamic in-
teractions of traders in stock markets (Bakker et al. 2010;
Bian, Xu, and Li 2016), and to the dissemination of conta-
gious diseases throughout societies (Newman 2002; Pastor-
Satorras et al. 2015). Due to the large number of interact-
ing individuals or components, these systems pose signif-
icant challenges for modeling. Mean field games (MFQG)
(Caines, Huang, and Malhamé 2006; Lasry and Lions 2007)
have emerged as a highly effective approach for addressing
this complexity, offering both scalability and robust theo-
retical guarantees in these multi-agent systems. MFG oper-
ates on the principle of weak interactions, positing that each
individual’s influence on the overall system is negligible.
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This framework has been successfully applied to many real-
world tasks, including social networks (Yang et al. 2018),
and swarm robotics (Cui et al. 2023).

The MFG framework leverages the assumption of agent
homogeneity and has demonstrated success across various
applications. However, this assumption becomes a hindrance
when dealing with heterogeneous agents. To address this
limitation, the Graphon mean field games (GMFG) (Parise
and Ozdaglar 2019; Aurell et al. 2022) framework has been
introduced as an extension of MFGs to accommodate het-
erogeneous agent modeling. The GMFG framework cap-
tures agent interactions through a graphical structure and is
shown to be successful in applications like modeling invest-
ment decisions in financial markets (Tangpi and Zhou 2024).
Despite the empirical success of MFG and GMFG, our the-
oretical understanding of this framework remains limited.

In monotone MFGs (Lasry and Lions 2007), and under
the access to the exact cost and transition functions, (Per-
rin et al. 2020) proposed a continuous time fictitious play
algorithm, where the averaged iterates policy converge to
a Nash equilibrium in O(T~!) iterations. For discrete-time
monotone GMFGs with access to exact cost and transition
functions, (Zhang et al. 2023) proposed a mirror descent-
based algorithm that converges to the Nash equilibrium in
O(T~1/?) iterations.

However, in real-world applications, approximating
continuous-time dynamics can be challenging, and exact
knowledge of cost and transition functions may not be fea-
sible. Agents typically only receive bandit feedback, mean-
ing they observe the cost and transitions associated with the
states and actions they have visited. Meanwhile, the existing
approaches only guarantee the convergence of the time aver-
age of the joint action profile, rather than the last-iterate con-
vergence, the convergence of the joint action profile. Last-
iterate convergence holds greater appeal as it offers a de-
scriptive account of the evolution of players’ overall behav-
ior. In contrast, while the trajectory of players’ joint action
converge in the time-average sense, it may exhibit cycling,
which is not suitable for practical deployment (Mertikopou-
los, Papadimitriou, and Piliouras 2018). The following ques-
tion thus arises.

How fast can discrete-time algorithms converge (in the last
iterate) to a Nash equilibrium in GMFGs with bandit
feedback?



In this work, we focus on the mirror descent-based algo-
rithm, which has been empirically verified to be successful
in GMFGs (Pérolat et al. 2022; Zhang et al. 2023). In tabular
monotone GMFGs (finite state and actions space) and under
bandit feedback, we show a O(T~'/4) last-iterate conver-
gence rate. When the exact knowledge of cost and transitions
is present, we show that the convergence rate can be im-
proved to O(T~1), matching the existing convergence rate
in strongly convex (but not mean field) games. To address
scenarios involving large or even infinite state spaces, we ex-
tend our analysis to linear GMFGs, where costs and transi-
tions adhere to a linear structure. In this context, we achieve
a last-iterate convergence rate of O(7~1/5). We validate the
effectiveness of the studied algorithm by empirically com-
paring them against the fictitious play in four different envi-
ronments.

Related Works

Mean Field Game (MFG) To address the challenge of
modeling a large number of agents in a game, the Mean
Field Game (MFG) was proposed by (Caines, Huang, and
Malhamé 2006; Lasry and Lions 2007). It considers the limit
case of a continuous distribution of homogeneous agents (all
anonymous and with symmetric interest) and reduces the
problem to the characterization of the optimal behavior of a
single representative agent. The classic approaches include
the numerical approximation approach for partial differen-
tial equation (Achdou and Capuzzo-Dolcetta 2010; Achdou,
Camilli, and Capuzzo-Dolcetta 2012; Achdou et al. 2020),
and the more recent deep reinforcement learning approaches
(Cui and Koeppl 2021a; Lauriere et al. 2022; Fabian, Cui,
and Koeppl 2023).

Recent efforts also introduced the traditional fictitious
play (FP) algorithm and combined it with machine learn-
ing techniques (Perrin et al. 2020). While FP achieves im-
pressive results and is shown to be convergent (Geist et al.
2022), it is hard to scale due to its low computational effi-
ciency, as it requires computing the best response at every
iteration. To address this, the policy mirror descent algo-
rithm is proposed, and its asymptotic convergence in con-
tinuous time is studied (Pérolat et al. 2022). Under a mono-
tonicity assumption and regularization, the average iterate of
the discrete-time mirror descent algorithm is shown to enjoy
linear convergence under the tabular case and with function
approximation (but with access to an approximation subrou-
tine) (Zhang et al. 2023).

Graphon Mean Field Game (GMFG) To capture the het-
erogeneity among agents, the Graphon mean field game
(GMEGQG) has been proposed by (Parise and Ozdaglar 2019),
where the heterogeneous interaction between agents is de-
scribed by graphon. By using a contraction condition, (Cui
and Koeppl 2021b) proposed an algorithm to efficiently ap-
proximate the Nash equilibrium. The average iterate of the
mirror descent algorithm is then shown to be convergent
(Fabian, Cui, and Koeppl 2023) (asymptotically) and in fi-
nite time (Zhang et al. 2023). To our best knowledge, there
is no last-iterate convergence guarantee of algorithms for
(graphon) mean field games.
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Last-iterate Convergence in Monotone (not Mean Field)
Game In strongly convex games with full gradient feed-
back, the linear last-iterate convergence rate is established
(Tseng 1995; Liang and Stokes 2019; Zhou et al. 2020).
When the gradient feedback is with a zero-mean noise,
(Jordan, Lin, and Zhou 2022) gave a O(T~1) last-iterate
convergence rate. When only bandit feedback is available,
(Bervoets, Bravo, and Faure 2020) established an asymp-
totic convergence rate if the equilibrium is unique. Subse-
quently, (Bravo, Leslie, and Mertikopoulos 2018) improved
this convergence rate of O(7~'/3), while the proposed al-
gorithm also ensured the no-regret property. Later works by
(Lin et al. 2021) further improved the last-iterate conver-
gence rate to O(T~'/2) using the self-concordant barrier
function.

Preliminary
We consider a GMFG defined as
(Ia Sa A7 {P}hG[H]7 {C}hG[H]7 {Wh}hG[H] y M1, H) with

infinitely many agents. Each agent corresponds to a point
a € TI. Let v be a positive measure on Z. The state and
action space (S and .A) are the same for each agent. We
further assume the state space is compact and the action
space is finite. The interaction among agents at time h is
captured through graphon W, a symmetric function such
that Wy (a, ) = Wy(B, «). The transition and reward of
each agent are affected by the collective behavior of all
other agents by an aggregate z. At time h, the aggregate

for agent « is defined as zj} = [, Wh(a,ﬁ)ugdu(ﬁ),

where ,uf is the state distribution of agent 5. We as-
sume each agent has access to the aggregate z;'. We

N §;=S8
also let pZ(s) limNﬁwM denote the

state distribution of all agents. On state s7 and when
the agent takes action af}, the state transits according to
sp .~ Pu(- | s7,a%,2;). The agent o will also incur a
cost of cp (s, afy, z5)).

Define the value functions as

Vha (Sa,ﬂ'a,/LI)

H
=Ere | Do (saf 2 (b)) [s =57, ()
t=h
o (s*a%, m, pt)
=cp (s%,a%, 2) + Era p, [Vﬁ_l (Sﬁﬂﬂf‘)‘,uz)
| siy = 5% ap =a®]. 2)

Following the standard settings studied in GMFG and
Markov games, we investigate the convergence with the reg-
ularized value function, which enables faster convergence
(Zhang et al. 2023; Cen, Wei, and Chi 2021; Shani, Efroni,
and Mannor 2020). The A-regularized value functions are



defined as

Vh)"a (sa,wo‘,,uz) =E o

H
Z Ch (S?, a?a Z;&l (IU'I))
t=h

AT (af | 57) | s = 5°]

b
3)
27(1 (8a7aa77ra7uz) = ch (S(X’aa’zg)
A,
+Ere p, [Vhﬁ (s‘}fﬂ,ﬁo‘,uz)

| sff = s ap =a”] .

)
Without loss of generality, we further assume the rewards are
bounded between [0, 1]. Then, ||Q) (5,7, uf) Hoo <
H, for any h, cr, s. We define cumulative reward as
JU(m, 1) =By, [Vi(s®,mopm)]
T, ) = By [V, )] -

A common solution concept in GMFG is Nash equilib-
rium, which equilibrium state where no agent can gain in
value by unilaterally changing its action. Formally, the Nash
equilibrium is defined as follows.

Definition 1 (Nash equilibrium). An NE of the \-regularized
MFG is a pair (7T*’I, ,u*’z) that satisfies

* Agent rationality:

JA,a (ﬂ_*,a’u*,l') — %c{rélll_’[lH J)\,a (ﬂ,ahu*,l) ,
forall o € T up to a zero measure set on L with respect
to v.

* Distribution consistency: The distribution flow p*7 is
equal to the distribution flow induced by implementing
the policy ©Z.

To ensure the existence of a Nash equilibrium in a A-
regularized GMFG, we maintain the following assumptions
of the game.

Assumption 1. The GMFG satisfies

e The cost function and the transition function are contin-
uous.

e The graphon is a continuous function.

Remark 1. The above model also includes games with
Sfinitely many players. For a finite graph, G = (V, E) with N
nodes denoting the agents, and I denotes the set of edges
that models the relationship between agents. We can par-
tition a unit interval [0,1] into N intervals, Ir,...,In of
equal length. Then we can let the graphon W assign a con-
stant value on each square I; x I;, 1,7 € V. It is equal to
one if there is an edge between i, j in G, and zero otherwise.
Although this is not continuous, one can smooth it so that it
is continuous (Fabian, Cui, and Koeppl 2023).

Theorem 1 (Theorem 4.4 (Zhang et al. 2023)). Under As-
sumption 1, for all X > 0, there exists a Nash equilibrium in
a A-regulairzed GMFG.
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To ensure the uniqueness of Nash equilibrium, we further
maintain the following weakly monotonicity assumption of
the game. The following condition is a generalization of the
monotonicity condition in games (Lin et al. 2020, 2021; Du-
vocelle et al. 2023), and is commonly seen in literature in
GMFG (Zhang et al. 2023).

Assumption 2 (Weakly monotone condition). A GMFG is
said to be weakly monotone if for any p*, p* € A(S x A)?
and their marginalizations on the states u*, it € A(S)7,
we have

5>

acA
—cp, (s, a, zjy (ﬁl))) dsdv(a) >0,

for all t. It is strictly weakly monotone if the inequality is

strict when p* # p*.

When a A-regularized GMFG admits Assumption 2, there
exists a unique Nash equilibrium and satisfies the follow-
ing property. An example of such a weakly monotone game
is the multi-population predator-prey model described in
(Pérolat et al. 2022).

Proposition 1 (Proposition 5.3 of (Zhang et al. 2023)). Ifa
A-regularized GMFG satisfies the weakly monotone condi-
tion, then for any two policies %, 7% € II and their induced
distribution flows p*, it € A, we have

/ J)\,a (ﬂ_a7MI) + J)\,a (%a7ﬂ1)
z

— P T) = T (5, ) () > 0.

If the A-regularized GMFG satisfies the strictly weakly
monotone condition, then the inequality is strict when % #
~7
.

/S (0°(5,) — 7°(5.)) (e (5,0, 28 (1))

Algorithms

In this section, we introduce our algorithm for solving Nash
equilibrium in regularized GMFG. Our algorithm extends
the celebrated mirror-descent algorithm, for which its effi-
ciency in solving Nash equilibrium has been demonstrated.
The last-iterate convergence properties of mirror descent has
been investigated in many works (Cen, Wei, and Chi 2021;
Lin et al. 2021; Cai et al. 2023; Duvocelle et al. 2023).

At each iteration t, the agent o execute {7rt°‘ wHL | for H
steps and receive costs {cp, (¢, ay, 22)}L . Then, depen-
dent on the information available, the agent computes a gra-
dient g; p(s®,-) and updates it with a mirror descent step.
Algorithm 1 provides a summary of our algorithm.

We now discuss how one can construct the gradient esti-
mator in a full information setting, tabular bandit feedback
setting, and linear GMFG setting.

Tabular GMFG with full information feedback When
the cost function and the transition kernel are known to the

agent, the agent can set G, 5, (s*,-) = ;\,? s e ut ),
which can be computed via value iteration,
Ao (L a T\ _ « a a a Ao
t,h (8 y T 5 [ ) =Cn (S 7'7zh) +Ph (S 7'7Zh)Vh+1’



Algorithm 1: Tabular online mirror descent for \-
regularized GMFG

Input: Learning rate {7, }]_,, regularization constant
A

1fort=1,...,Tdo

2 forh=H,...,1do
3 Execute 73", and receive costs
cn(sh> ap, 21);
4 end
5 forh=H,...,1do
6 Compute gradient g, ,(s7, -) according to
Equation (5), or (8);
7
morin( | s7)
= argminn; (gr,n(sp, )
+Alog(my'), 7(- | s7,))
+ Dk, (7*(- | Sp ) Ten (-l s7))
8 end
9 end

then V23 (s, i) = (@ (s, my i) o |
5%)).

Tabular GMFG with bandit feedback Under the tabular
bandit feedback model, the agent does not have exact knowl-
edge of the cost and transition kernel. Instead, they can only
observe the cost corresponding to the state, action, and state
distribution that they have visited. In this case, we compute
the gradient as follows, which is similar to the gradient esti-
mator on multi-agent tabular Markov games (Jin et al. 2022).
Let k = N, 5 (s) be the number of times state s is visited at
step h up to time t. Then we first approximate the value func-
tion as

VM (s, uF) = max{H +1—h,
5% T
(1= Br)Vi™ (s, g, w)
+ Br (cn(sy, afy, z5)
A, T
+Vii5 (Shg1s s o ))}
As we have no access to the cost associated with each action,

we estimate the gradient with respect to all actions using
importance sampling

Gt,n(sh,a%) =
t ( h ) ’/T?,h(a’a | S%)_’_,yt

&)
To avoid unbounded gradient estimation and to encourage
exploration, we add a -, factor. For the initialization step,
we set V (s, 75, ut) = 0, for all s.
Linear GMFG with bandit feedback When the state and

action space are large, maintaining a tabular value func-
tion may become infeasible. Therefore, we consider learning

Hag =} (en + V35 (st i) )
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within a linearly parameterized GMFG, which extends the
tabular GMFG and accommodates the potential enormity of
state and action spaces.

Definition 2 (Lincar GMFG). A linear GMFG has a lin-
early structured transition

Ph(' | S(I):?a(}):?'zg) = 9;@5(5%,(1%,2’%)7

Vh,sy € S,aj € S where ¢ is a known feature mapping.
Further, we assume

1 Sups,a,z “¢(S,a,2)||2 < 1) and
2. [T ;|| < Vd, for any ||v||ee < 1 and all h.

Given the linear structure of the transition kernel, it re-
mains to estimate 6, accurately to compute the value func-
tion. Let 05, (s®) be a one-hot vector that has zero everywhere
except that the entry corresponding to s* is one, and denote

no= Pu(- | si,af,2y) — On(sf,). Conditioned on the

history generated on all previous episodes up to episode ¢,
Hy.p, we have E[e? | H; ] = 0. Therefore ¢ acts as an
unbiased estimate of P;,.

At iteration ¢, step h, we consider using all previous inter-
actions Dy , = {55, a5, zﬁh};;llto estimate the 6} . Once

we have an estimate 6;,, we can use value iteration to com-
pute the value function. With the dataset D, ;, one could es-
timate P, using ridge regression

t—1
Ou = argmin} (|00 (55050 20) = On (5504) |

h j=1
+110nll*,

for which the closed-form solution is

t—1
ét,h = Z On (5?,h+1) o (Sjof}u a’?,ha Z})fh)T (At)_l , (6)
j=1

t—1
i
Ae =" b (550 50 25) & (500 050, 250) + 1
j=1

)

Using the estimate, we then update the value function using
value iteration.

ANa (o o _a T
t,h (sh,af, 7', 1)

THT , . T
=Chn (Sg’ag72}?)+¢(savaa> Ht,h (S}?Jrl’ﬂ-?uu ) .
Similar to the tabular case, as we only have information on
the state and action we have visited, we estimate the gradient
using importance sampling,
A, z
7 Haf = a*}Q;y (s, af,m, yiF)

B T (sh) +

P Wet
Vh+1

®)

ge.n(sp,a”)

Convergence Analysis

In this section, we present our main results on the last-
iterate convergence to the Nash equilibrium in a regularized
GMFG. To measure the distance to the equilibrium, we use
the following convergence metric.



Convergence metric Define D (77) as

H
[ 3 B D o s (| s dvl).
T h=1
Note that this measures the weighted KL divergence be-
tween the policy computed and the Nash equilibrium, where
the weights are the Nash equilibrium distribution flow p*.

At equilibrium, the metric is zero. We also note that this is
used in (Zhang et al. 2023).

Tabular GMFG with full information feedback When
we have access to the exact cost and transition function, The-
orem 2 shows we can converge linearly.

Theorem 2. Let n; =t~ 1. We have
H3
D <7Tt1+1)

< —.
.Y

We first fix a tuple h, o, s7. To obtain Theorem 2, we first

use the mirror descent update rule to obtain the following

relationship on D, <7r*’°‘(- |s5), iy n( | 5%)>,
Dgy (7 | si), min( 1 s7))

< Dy (7 | si), w1 si)) +

F 0 (7| sh) = mgn( | sh),

Q™ (58wl %) + Mog(min (- 7)) -

We then use the third term and the monotonicity condition

g H*
2

to obtain a recursion on Dk, (7r*7a(- | s5)s e n (| 5%))
The observation is that the A parameter acts as a regulariza-
tion for making the game more convex. Under )\ regulariza-
tion, notice that Qy* (s, -, 7, u¥) + Alog(m®(- | s3)) is
the gradient. In the following, we let the expectation to be a
conditional expectation that condition on s¢ = s%. One can
then show that
[ H

>

h=1
+Xlog(m* (- | s5)), m (- | s7) — 7h (- | s7))]
< (W (0w ) = Ve (5w )

A«

i h

z (s(f){a‘,ﬂavﬂ’tz)

*,
™ sHE

H
~AE ez [ Y Dice (n( | si),mi (- | si)] -
h=1
Using the monotonicity condition, one can show that the first

term is non-positive. Taking summation over H and integrat-
ing over all agents, we have

H
| Y By (D (75wt s8)] o)

h=1
H
< (1—mN) / S B, (D, (7 | 55),
h=1

mon( [ si)] dv(e) + 7 H.

13783

The A-regularization can also be interpreted as it regularize
the game to be strongly convex with respect to KL diver-
gence. As a result, one can anticipate the algorithm’s con-
vergence rate to be akin to established methods for strongly
monotone games, often converging at a linear rate (Lin et al.
2020; Cen, Wei, and Chi 2021; Jordan, Lin, and Zhou 2022).

Tabular GMFG with bandit feedback We now consider
the case where we only observe the cost ¢y, (s, a, z) for the
state, action, and state distribution that we have visited. In
this case, we use importance sampling with implicit explo-
ration (Eq.5) to estimate the gradient. We show that our al-
gorithm then achieves the following last-iterate guarantee.

tl%’ By = ZEL We have
D (WtIH) be upper bounded by

H+t
5 (Alog(t) L Vlos(4/5) > :

$3/4 $3/4
where O hides the logarithmic dependency on S, A, H, T.

Theorem 3. Take n; = tg% V=

H3

t1/4

log(1/4)

t1/2

We first fix a tuple h, «, sf. Then, similar to Theorem 2,
using the mirror descent update, we can obtain the following

relation on Dk, <7r*>0‘(~ | s5), ey n (| s‘ﬁ))
Dy (7 | s7), 71 n( | 7))

i H?
< Dy, (7°%(- | si), mon (- 1 s8)) + 55
27;
A,
e (70| i) = i |5, Q@ (il )
+Alog (i, (- | s7)))
e (7| si) = i (- | sR)s Gen (s )
A,
7Qh “ (5%7 '77TE7MI>> .
As we use gradient estimation §; ;, instead of the exact
gradient, we would need to characterize the estimation error

T
(S%, K TrtB Y )
to utilize our proof outline for Theorem 2. This gradient es-
timation error can be further refined to the estimation error
of the value function

P We'
L6b+1

Ao

gt,h(szv ) — Wy

I A, z
(sﬁﬂ,wf,u ) - Vh+6; (8%4*1’7(?’” ) .
Using the update rule, we can upper bound the error as

O (s ) = V2 (s )

VA,a

< ht1

(m, 1") (57, a%))]

M-

Exe, [8((Pn = By)

i=1

(37;:+17 i ut)).

Subsequently, using a martingale concentration inequal-
ity allows us to upper bound the first term at the or-
der of O <\/1 /t) Through an induction argument and

leveraging the choice of learning rate J;, we show

i (YA, peY
(V' - Vh+1

ti h+1 (‘91;;1’ iy “I)

+
@
>



that V3" (s, mft, p%) — Vi (s, i, p) is also upper

bounded by O (~ /1 /t).

Having characterized the estimation error, we then follow
the same proof outline as outlined in Theorem 2 and obtain
Theorem 3 by carefully choosing the parameters.

Linear GMFG with bandit feedback Under a linearly
parameterized GMFG, we use ridge regression to estimate
the model parameter 6; (Equation (6)). Subsequently, we
utilize value iteration alongside importance sampling with
exploration to estimate the gradient (Equation (8)). Our al-
gorithm provides the following convergence guarantee for
the last iterate.

Theorem 4. Take 1y = 717, = 1175 We have
H?® VAPH? A log(A/6)
7
D (ﬂ-t-&-l) <0 <t3/5 + t1/5 #1/5 +2/5

where O hides the logarithmic dependency on S, A, H,T.

Similar to the analysis of Theorem 3, the key to deriv-
ing Theorem 4 lies in characterizing the estimation error
Ge.n(sy,a”). This is then affected by the estimation error
of our value function, and the estimation of },. Leveraging
a uniform convergence lemma (Lemma ??), we can effec-
tively upper bound the error as:

29 We

a o B T A, a o B T
h (Shvahvﬂtvﬂ“ )_ h (Shvah»ﬂ—tvﬂ' )
T /A T
J— [e% [e% « *
= @(sy, ap, 2) (et,h - oh)

< O (am)o(sg, af 28l aot ) -

V)\,a

ht1 (S%Hv T, NI)

Employing the same argument as Theorem 2, we obtain a
recursion on D (), which involves a summation of this es-
timation error

H t
/I SN el By [AH (550 0 2 a | dv().

h=1k=1

Lastly, we bound the summation of this term using an ellip-
tical potential lemma and recursively apply the relationship
of D(m;) to obtain the final bound.

Experiments

To verify the effectiveness of our algorithm, we analyze
it empirically on four environments, Predator Prey, Crowd
Avoidance, Crowd modeling, and Periodic Aversion. To as-
sess the performance of our algorithm, we use exploitability,
which is defined as

exploitability(7) = / J(m, puF) — min J (7, ur).

z
To ensure reproducibility, we repeat each set of environ-
ments with 5 random seeds and present the result with one
standard deviation.
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Basline algorithm

For the baseline algorithm, we use fictitious play, a method
known for providing a robust approximation of Nash equi-
librium. Fictitious play iteratively computes the best re-
sponse against the distribution induced by averaging past
best responses. This method is known to perform well in
various games, including mean-field games. However, since
it needs to compute the best response every iteration, it is
much more computationally heavier than our algorithm. We
use the setup of fictitious play from (Perrin et al. 2020) and
follow the implementation from OpenSpiel.

Enviornment set ups

For all the environments described below, we use the Open-
Spiel implementation of the games.

Crowd Modeling The Crowd Modeling game also re-
ferred to as the beach bar process, presents a simplified ren-
dition of the renowned Santa Fe bar problem (Greenwald,
Mishra, and Parikh 1997). Following the dynamic modeling
and cost functions outlined in (Perrin et al. 2020) (section
4.2), we conduct our experiment with 10 states and 3 ac-
tions. A beach bar is located in one of the states. In a scorch-
ing weather condition, agents aim to position themselves in
proximity to the bar while avoiding excessively crowded ar-
eas.

Crowd Avoidance The crowd avoidance problem is a sim-
ple two-population game. The game has 7 states and 5 ac-
tions (stay, up, down, left, and right). The agents will receive
a cost of 1 if they collide with each other, and a cost of 0 if
otherwise. We follow the implementation from OpenSpiel.
While trying to avoid congestion, the agent must also avoid
the forbidden states.

Predator Prey We follow the setup described in section
5.4 of (Pérolat et al. 2022). This game features three pop-
ulations and bears a close resemblance to the popular out-
door game for children, Hens-Foxes-Snakes. In this context,
hens endeavor to capture snakes, snakes pursue foxes, and
foxes are inclined to prey upon hens. Although the popula-
tion sizes are predetermined, the cost structure incentivizes
agents to chase the population they dominate.

Periodic Aversion The periodic aversion game was first
introduced in (Almulla, Ferreira, and Gomes 2017) and
served as is an approximation of a continuous space, contin-
uous time model introduced to study ergodic MFG with an
explicit solution. We follow the implementation from Open-
Spiel and the description from (Elie et al. 2020). Each agent
has a position on a torus 7' = [0, 1] with periodic boundary
conditions. The cost is then determined by a combination of
the current position on the torus, the action, and the conges-
tion of the agents.

Parameters and experiment configuration

For all of our experiments, we choose the learning rate to
be 7, = 0.1 and the exploration rate ¢ = 0.1. We repeat
the experiments with 5 different random seeds. We ran all
experiments with a 10-core CPU, with 32 GB memory.
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Figure 1: Experimental results for the mean field games described.

Experimental results

We show the results of the four environments described
above. As evident in Figure 1, the mirror descent algorithm
attains comparable performance as the fictitious play in two
out of four environments, while enjoying much better com-
putational complexity as it does not require the computation
of the best response at each iteration. By approximating the
value function with a linear structure, the mirror descent al-
gorithm gains improvement in the results in two out of four
environments.

Conclusion

In this work, we present the first last-iterate convergence rate
for monotone GMFGs with a mirror-descent algorithm. In
tabular monotone GMFGs and under bandit feedback, we
obtain a O(T~1/4) last-iterate convergence rate. Under ac-
cess to the exact cost and transition functions, we improved
the rate to O(T~!). In linear GMFGs, we achieve a last-
iterate convergence rate of O(7~'/%) under bandit feed-
back. Our study improves the understanding of mean-field
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games and the commonly used algorithms by providing in-
sights both theoretically and numerically.
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