
Scalable and Sound Low-Rank Tensor Learning

Hao Cheng] Yaoliang Yu∗ Xinhua Zhang‡ Eric Xing∗ Dale Schuurmans†

University of Washington] CMU∗ NICTA and ANU‡ University of Alberta†

Abstract

Many real-world data arise naturally as ten-
sors. Equipped with a low rank prior, learn-
ing algorithms can benefit from exploiting the
rich dependency encoded in a tensor. De-
spite its prevalence in low-rank matrix learn-
ing, trace norm ceases to be tractable in ten-
sors and therefore most existing works resort
to matrix unfolding. Although some theoreti-
cal guarantees are available, these approaches
may lose valuable structure information and
are not scalable in general. To address this
problem, we propose directly optimizing the
tensor trace norm by approximating its dual
spectral norm, and we show that the approx-
imation bounds can be efficiently converted
to the original problem via the generalized
conditional gradient algorithm. The result-
ing approach is scalable to large datasets,
and matches state-of-the-art recovery guar-
antees. Experimental results on tensor com-
pletion and multitask learning confirm the
superiority of the proposed method.

1 Introduction

Real-world data are complex and usually exhibit rich
structures that learning algorithms can significantly
benefit from. For instance, data in the vectorial form
can be sparse while in the matrix form can have low
rank. More general multi-way correlations are often
observed in tensor form data, i.e. multi-dimensional ar-
rays [1]. Examples include multi-channel images, video
sequences, chemical compound processes, brain EEG
signals, etc. Additionally, tensors are often used as im-
portant tools for modeling and estimation. Most no-
tably, they can be applied as the high order moments
in latent variable models [2] such as independent com-
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ponent analysis, mixture and topic models, etc. Due
to the wide applicability, a lot of works have focused
on factorizing, completing, and learning a tensor of
interest.

The most straightforward solution to low-rank ten-
sor decomposition is arguably alternating least squares
(ALS) or block-coordinate based methods [1, 3]. With
relatively high efficiency, they are generically applica-
ble in practice. In the case of completing a d × d × d
tensor using z observed entries, the complexity is only
O(zr), where r is the intended rank. However, they are
based on nonconvex optimization whose globally opti-
mal solution is generally intractable to find. Therefore,
the analysis of sample complexity and recovery bounds
is generally hard, leaving the recent results restricted
to strong assumptions such as the absence of noise or
the access to the truth rank [e.g. 2, 4, 5].

A prevalent class of theoretically sound approaches are
based on convex relaxations of the rank function. In
low-rank matrix learning, the utilization of trace norm
has achieved remarkable success since the seminal work
of [6]. Extension to tensors is conceptually straightfor-
ward, based on the generic framework of atomic norm
[7]. Recently, [8] provided excellent theoretical sup-
port for the tensor trace norm. However, many com-
putational tractability properties of matrices do not
carry over to tensors. For instance, the tensor rank
can (far) exceed the maximum dimension, and a low-
rank approximation may not even exist [9]. Indeed, it
is also NP-hard to decide the tensor rank and tensor
trace norm, see e.g. [10].

To work around the tractability barrier, approxima-
tions are in order. A large body of algorithms unfold
the tensor into matrices, and then apply well estab-
lished matrix techniques, e.g., minimizing the (matrix)
trace norm as a proxy of the rank [11–16]. However,
this may be unsatisfying because a genuinely “low-
rank” tensor can nevertheless have large or even full
rank in all matrix unfoldings. It also brings about
scalability issues as the most efficient implementation
of proximal gradient methods or ADMM costs at least
O(zd) time. As a result, most matricization based al-
gorithms do not scale to large tensors.

1114



Scalable and Sound Low-Rank Tensor Learning

The aim of this paper is therefore to design approxi-
mate models which are both scalable and theoretically
sound. Instead of directly approximating the tensor
trace norm, we resort to its dual norm—tensor spec-
tral norm, because it is much easier to approximate.
We provide a simple algorithm to compute the tensor
spectral norm with sound approximation bounds, and
its computational cost is similar to that of ALS (Sec-
tion 4). A key challenge is then to utilize this approxi-
mation as an oracle, and to find a solution for the orig-
inal optimization problem with suboptimality guaran-
tee. We show that this translation can be achieved
by using the recent generalized conditional gradient
algorithm [17, 18], and furthermore O(1/ε) rates of
convergence can be derived for this approximate ora-
cle setting. Finally we study the sample complexity
of the proposed algorithm in Section 5, and demon-
strate that it does match the state-of-the-art bounds
of matricization based models. Therefore, we obtain
an algorithm which is efficient in both computation
and inference. In experiments on tensor completion
and multitask learning, our method significantly out-
performs existing methods in generalization and effi-
ciency.

2 Preliminaries

We first review some preliminaries. A tensor is identi-
fied as a multi-dimensional array A ∈ Rd1×d2×···×dK ,
where K is the order and dk is the dimension of the
k-th mode. Without loss of generality, we assume
throughout that d1 ≥ d2 ≥ · · · ≥ dK . Following [1],
we define the mode-k multiplication of a tensor with

some matrix U∈Rd̂k×dk as

(A×k U)i1,...,ik−1 ,̂ık,ik+1,...,iK =
∑dk

ik=1
Ai1,...,ik−1,ik,ik+1,...,iKUı̂k,ik .

Note that the dimension of the k-th mode of the prod-
uct A×kU changes from dk to d̂k. As usual, we define
the inner product of two tensors with the same size as
〈A,B〉 :=

∑
i1,...,iK

Ai1,...,iKBi1,...,iK . and the induced

Frobenius norm ‖A‖F :=
√
〈A,A〉.

We can unfold (or flatten) a tensor into a 2-D matrix

as follows. For any 1 ≤ k ≤ K, A(k) ∈ Rdk×(
∏

j 6=k dj),

with its
(
ik, 1 +

∑K
j=1,j 6=k(ij − 1)

∏K
m=j+1,m6=k dm

)
-th

entry beingAi1,...,iK . Like matrices, we can decompose
a tensor into a linear combination of primitives. First,
we define rank-1 (pure) tensors as T = u⊗v⊗ · · ·⊗ z,
where the K factors u ∈ Rd1 , . . . , z ∈ RdK form the
outer product Ti1,i2,...,iK = ui1vi2 · · · ziK , ∀i1, . . . , iK .
Then, the Candecomp-Parafac (CP) decomposition of
the tensor A refers to

A =
∑r
i=1 ui⊗vi⊗ · · ·⊗ zi, (1)

and the lowest possible value of r is called the rank of
A. Surprisingly, the tensor rank could well exceed any
dimension dk. In general, a well known bound states

∀k, rank(A(k)) ≤ rank(A) ≤∏j 6=k rank(A(j)), (2)

where recall that rank(A(k)) is upper bounded by the
k-th dimension dk. Note that even when the tensor
rank is small, the mode-k unfolding A(k) can still have
large or even full matrix rank for all k, which suggests
that treating a genuine tensor as a folded matrix could
lose a lot of structure.

Numerically finding a CP decomposition or the ten-
sor rank is intractable [10]. Block coordinate descent,
i.e. alternatively optimizing each factor matrix with
all others fixed, can lead to a local optimum. We cau-
tion that when K > 2, deflation, i.e. finding the rank-1
factors successively, can be far from optimal [19].

3 Low-Rank Tensor Learning

Learning a low-rank tensor can be formulated as the
following optimization problem:

infW `(W) + λ · rank(W), (3)

where λ ≥ 0 is the regularization constant. The loss
function ` measures the discrepancy between the es-
timate tensor W and the data tensor X (suppressed
in our notation). Some useful instantiations of ` can
be found in Section 6, and here we use as a concrete
example the tensor completion problem, with `(W) =

`tc(W) = ‖P(W −X )‖2F, where P : Rd1×···×dK →
Rd1×···×dK is the (linear) sampling operator that fills
unobserved entries with 0. We are particularly inter-
ested in finding a low-rank estimate, induced by pe-
nalizing the tensor rank. This bias can be beneficial
in multiple ways: a). It is a valid prior in many ap-
plications; b). It leads to simpler models with po-
tentially better generalization performance; c). It im-
proves scalability by reducing the cost in computation
and storage, as we shall see.

Although appealing in theory, the tensor rank is com-
putationally intractable [10]. For matrices, the trace
norm relaxation [6, 20] has been remarkably success-
ful, serving as a convex surrogate of the matrix rank.
It is thus natural to extend this principle to tensors,
using the atomic norm framework of [7]. We start with
a set of atoms (primitives), convexify it if necessary,
and then construct the Minkowski gauge function as
the appropriate regularizer for promoting the atoms.
It is demonstrated in [7] that this yields the “best”
convex regularizer in an appropriate sense.

Adapting to the low-rank tensor learning problem (3),
we choose the atoms to be rank-1 tensors:

A := {u1⊗ · · ·⊗uK : ∀k,uk ∈ Rdk , ‖uk‖2 ≤ 1}. (4)
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Upon convexification we can construct the tensor trace
norm [TTN, e.g. 21, 22]:

‖A‖tr := inf{ρ ≥ 0 : A ∈ ρ · conv(A)}. (5)

Clearly (5) is a norm on Rd1×···×dK, and its dual
norm—tensor spectral norm (TSN)—is given by

‖A‖sp := max‖B‖tr≤1 〈A,B〉 = maxB∈A 〈A,B〉 (6)

= max∀k,‖uk‖2≤1 〈A,u1⊗ · · ·⊗uK〉 . (7)

Specializing to matrices (K = 2) we recover the famil-
iar trace norm and the usual spectral norm.

3.1 Main formulation

We can now obtain a convex relaxation of (3) by re-
placing the tensor rank with the TTN,

minW `(W) + λ · ‖W‖tr . (8)

Assuming ` is convex, (8) is a convex problem. This
convexity appears to be a significant step towards
tractability, and numerous efficient algorithms have
been proposed for the matrix case (K = 2). However,
almost no1 significant effort has been made for K ≥ 3.
[8], for instance, proved some theoretical advantages of
using TTN, but no practical algorithm was provided.
The underlying reason is that TTN, albeit being con-
vex, is itself intractable [10]! Consequently, one might
wonder what is the benefit of replacing the original
intractable problem (3) with another convex but still
intractable one (8)? The answer in short is: the latter
provides more favorable approximation bounds and fa-
cilitates more effective algorithms in practice—not all
intractable problems are equally “hard”.

Indeed, it is a standard practice to attack NP-hard
problems with approximate guarantees (additive or
multiplicative). We recall the definition of a multi-
plicative α-approximate algorithm:

Definition 1. Consider a class of optimization prob-
lems 0 ≤ OPTf = infw f(w), where f belongs to some
function class F . Fix α > 0. An algorithm is α-
approximate if for all f ∈ F it always outputs w∗f such

that f(w∗f ) ≤ 1
αOPTf .

There is a hierarchy of NP-hard problems that can be
solved approximately: some admits polynomial time
approximation (e.g. Knapsack); some admits a con-
stant approximation (e.g. max-cut); and still some
has guarantees depending on the problem size, which
is the case in (6) as will be shown below. We will de-
velop an efficient α-approximate algorithm for solving
the relaxation (8). The convexity in (8), although not
leading directly to tractability, will play a key role in
our reasoning and development.

1After this work was completed, N. Rao kindly brought
to our attention a related work [23], which also applied an
improved conditional gradient to tensor completion, but no
approximation guarantee was provided.

4 Efficient Approximate Algorithm

The most straightforward attempt to solve (8)is to ap-
proximate the TTN. However, different from the ma-
trix trace norm, it is not the sum of (natural) “singular
values”, and the definition in (5) does not provide an
explicit form that allows convenient and analyzable ap-
proximation. By contrast, the definition of TSN in (6)
exhibits much “simpler” and more explicit structure
(though also NP-hard), where the constraints decou-
ple over modes with variables uk lying in standard
Euclidean balls. So a natural strategy is to first ap-
proximate the TSN with good guarantee, and then de-
sign optimization algorithms that convert this bound
to the optimization bound of the original problem (8).

4.1 Approximating the Tensor Spectral
Norm

To design an efficient algorithm for approximating
TSN, we first resort to a celebrated result from convex
geometry [24]. Let Bd2 be the Euclidean norm ball in
a d dimensional space (d is a superscript in Bd2). We
can find in polynomial time (at most) d points {pi},
such that their convex hull Pd (a polytope) satisfies
Pd ⊆ Bd2 ⊆ c

√
dPd, where c is some universal constant.

In particular we can use the unit L1 ball Bd1: clearly
Bd1 ⊆ Bd2 ⊆

√
dBd1. By counting the volume, it can be

proved that the factor
√
d here is the best possible [25].

Specializing to the TSN, we simply replace each Eu-
clidean ball constraint with an L1 ball, and evaluate
the inner product in (6) at each of the vertices of the
polytope. Since the matrix trace norm is tractable,
we need only execute this polytopal approximation for
the last K − 2 modes, i.e., solving the approximation

max 〈A,u1⊗ · · ·⊗uK〉 , s.t. ∀i ≥ 3, ui ∈ Pdi , (9)

where also u1 ∈ Bd12 ,u2 ∈ Bd22 .

For each of the
∏K
k=3 dk vertices p3⊗ · · ·⊗pK , we

evaluate the matrix spectral norm ‖A ×3 p3 · · · ×K
pK‖2 and take the maximum among them. Since the
vertices of L1 balls are canonical basis vectors, this
amounts to taking each matrix slice of A, hence we
call it the slicing approach. It yields the optimal
solution for (9), and translates to an α=

∏K
k=3

√
1/dk

approximate solution for the TSN (6). The overall

computational cost is O(
∏K
k=1 dk), which can be fur-

ther reduced after embarrassing parallelization. This
is much faster than existing matricization approaches
[11–16], which cost O(

∏K
k=1dk

∑K
k=1dk) due to multi-

ple full matrix SVDs.

A number of approximations of TSN is available in the
literature [e.g., 26], all leading to the same α guarantee
here. We can easily combine them by picking the best
one. Although the approximation ratio depends on
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the problem size, it is only a worst case bound which
is likely not tight. Perhaps more surprisingly, this is
(up to logarithmic factors) the best result that we are
aware of, despite being derived from such a straightfor-
ward polytopal approximation (more delicate tradeoff
between computational cost and approximation qual-
ity is available in Appendix B). Significantly new ideas
seem necessary for further improvement. In practice
it is much more effective to perform block coordinate
ascent (BCA) over (6) through all uk, initialized with
the solution of (9). This is the strategy we use in our
experiment. However, we also observed that randomly
initializing BCA did not yield a result as good—a prov-
ably good initialization such as using (9) turns out to
be crucial.

Computational efficiency. A key advantage of
this scheme is that the computational efficiency can be
further improved by utilizing the sparsity in A. Sup-
pose A has z nonzeros entries. Then the optimization
in (9) can be solved in Õ(z) time (independent of di-
mension), because the cost of computing the spectral
norm of a matrix is linear in the number of nonzero
entries. The subsequent BCA can also be performed
in Õ(z) time per iteration, and [27] proposed a highly
optimized algorithm.

4.2 Conditional Gradient with Approximate
Spectral Norm

Equipped with an effective approximation of TSN, the
challenge remains to design an efficient optimization
algorithm which leverages this approximation guaran-
tee and finds an α-approximate solution to the original
TTN regularized problem (8). We discover that this
conversion can be accomplished by the recently devel-
oped generalized conditional gradient [GCG, 17, 18],
which extends the traditional conditional gradient al-
gorithm [28] to the (unconstrained) regularized prob-
lem. Technically, we further assume ` is smooth (i.e.
its gradient is Lipschitz continuous),

The basic GCG algorithm in [17] successively linearizes
the loss ` at the current iterate Wt, finds an update
direction in the unit ball of TTN:

Oracle: Zt ∈ argminZ:‖Z‖tr≤1 〈Z,∇`(Wt)〉 , (10)

and update byWt+1 = (1−ηt)Wt+ηtβtZt, with some
step size ηt ∈ [0, 1] and scaling factor

βt = argminβ≥0 `((1− ηt)Wt + ηtβZt) + λ · ηtβ. (11)

It is crucial to observe that the oracle problem (10) is
exactly the same as the optimization involved in the
definition of TSN (6). Therefore the above approxima-
tion of TSN readily provides an α-approximate solu-
tion to the oracle problem here. So the final question

to resolve is whether or how GCG is “robust” against
such approximate oracles. Theorem 1 provides an en-
couraging answer.

Theorem 1. Let ` ≥ 0 be convex, smooth, and have
bounded sublevel sets. Denote f(W) = `(W) + λ ·
‖W‖tr. Suppose in each iteration t, we find Zt that
solves the oracle (10) α-approximately, Then for allW
and for all t ≥ 1, running GCG with ηt = 2

t+2 leads to

f(Wt) − f(W)
α ≤ 2C

t+3 , where C is some constant that
does not depend on t or α.

The proof is relegated to Appendix C. Theorem 1 en-
sures that the GCG procedure is (asymptotically) α-
approximate when equipped with the α-approximate
oracle in (10). For instance, if α = 1/2, then GCG is
at most twice worse than the (possibly intractable)
optimum. We note that [29] considered a different
multiplicative approximation, requiring in each step
an approximate solution of min‖Z‖≤1 〈Z,∇`(Wt)〉 −
〈Wt,∇`(Wt)〉 . Unfortunately, this is usually hard to
achieve due to the second changing term. On the
other hand, [29] were still able to prove exact opti-
mality while Theorem 1 here yields only an approxi-
mate guarantee. We noted in passing that a similar
strategy appeared independently in [30] for hard ma-
trix factorizations. In Appendix C, we further show
that Theorem 1 can be generalized by replacing TTN
with any convex positive homogeneous function.

Note this conversion is enabled by the convexity of f ,
which is facilitated by the use of TTN despite its own
intractability. The polytopal approximation technique
used for TSN, however, cannot be directly applied to
the original problem (8), or in other numerical algo-
rithms (e.g., proximal gradient). It is enabled by the
linearization step (10) in GCG, where constraints in
(6) decouple over modes and Euclidean balls can be ap-
proximated analytically and efficiently. Happily, any
improvement on computing TSN immediately trans-
lates to the same amount for the tensor learning prob-
lem (8).

4.3 Local acceleration

A very efficient acceleration strategy was proposed in
[17] for matrices. Pleasantly, we can extend their trick
to the new tensor setting, starting with a variational
form for the tensor trace norm:

Theorem 2 (Variational formula). Fix A ∈
Rd1×···×dK and let t ≥∏K

k=1 dk. Then,

‖A‖tr = min
{

Σ
t
i=1 ‖ui‖2 · · · ‖zi‖2

}
(12)

= min
{

1
K Σ

t
i=1 ‖ui‖K2 + · · ·+ ‖zi‖K2

}
, (13)

where the minimum is taken w.r.t. all factorizations
A=

∑t
i=1ui⊗ · · ·⊗ zi, ui∈Rd1 , . . . , zi∈RdK .
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Algorithm 1: α-Approximate GCG for solving low-rank tensor learning (8) with local search

1 Set W0 = 0, U0 = . . . = Z0 = [ ], s0 = 0.
2 for t = 1, 2, . . . do
3 find (ut, . . . , zt) that yields α-approximate spectral norm of −∇`(Wt−1) ; // §4.1
4 (at, bt)← argmina≥0,b≥0 `(a · Wt−1 + b · ut⊗ · · ·⊗ zt) + λ(a · st + b) ; // §4.2
5 Uinit ← ( K

√
atUt−1,

K
√
btut), . . . , Zinit ← ( K

√
atZt−1,

K
√
btzt) ;

6 find Ut, . . . , Zt such that Ft(Ut, . . . , Zt) ≤ Ft(Uinit, . . . , Zinit) ; // §4.3
7 Wt ← It ×1 Ut · · · ×K Zt ; // Implicitly maintained in implementation

8 st ← 1
K

∑t
i=1 ‖(Ut):i‖

K
2 + · · ·+ ‖(Zt):i‖K2 ; // Upper bound on TTN, Thm 2

The first equality is well-known thanks to
Grothendieck’s work on the tensor product of
Banach spaces. Our proof in Appendix C gives an
explicit bound on t, the number of rank-1 factors.
In Appendix D we argue that the above variational
forms should be preferred than some existing ones.

We now make use of Theorem 2 to further acceler-
ate GCG. The entire procedure for solving the tensor
learning problem (8) is summarized in Algorithm 1.
After the (t−1)-th iteration of GCG (line 7), we get an
explicit low-rank representation of the current iterate
Wt−1 =

∑t−1
i=1 ui⊗ · · ·⊗ zi. Instead of using the fixed

step size ηt = 2
t+2 to combine Wt−1 and the newly

found atom ut⊗ · · ·⊗ zt (line 3) as in Theorem 1, we
optimize it along with the scaling factor β (line 4, after
change of variable to a, b). To improve convergence, we
locally minimize the surrogate function (line 6):

Ft(Ũ , . . . , Z̃) := `(Σ
t
i=1 Ũ:i⊗ · · ·⊗ Z̃:i) + (14)

λ
K Σ

t
i=1 ‖(Ũ):i‖K2 + · · ·+ ‖(Z̃):i‖K2 ,

simply replacing the intractable TTN with the vari-
ational form (12). We expect the surrogate prob-
lem (with fixed t) to be reasonably close to the
original problem (8), hence a local (smooth) uncon-
strained minimization of (14) should improve the it-
erate Wt−1 of GCG. Adopting proper initialization to
ensure monotonic progress (line 5), the convergence
guarantee in Theorem 1 is retained.

Although local optimization does not improve conver-
gence rate in the worst case, empirically it much ac-
celerates convergence by allowing the factors found in
past iterations to be re-optimized in the context of new
ones. This provides much more freedom than merely
optimizing their weights as in the vanilla GCG. Faster
convergence also results in simpler models which im-
proves generalization performance in general. Interest-
ingly, GCG with local search bears much resemblance
to ALS, but with the key difference being that the
number of factors is not fixed, and new factors are
incorporated in a greedy fashion. This potentially al-
leviates the issue of local optimum suffered by ALS.

Computational efficiency. Note in Algorithm 1,
Wt is always represented via CP decomposition Wt =∑t
i=1 ui⊗ · · ·⊗ zi, which is cheap to maintain and un-

derpins the seamless integration of GCG and local
search. The most costly step in Algorithm 1 is com-
puting the gradients ∂`

∂ui
, . . . , ∂`∂zi

given ∇`(Wt−1), for

which a naive approach takes O(K
∏K
k=1 dk) time. We

show in Appendix E that this cost can be reduced to
O(
∏K
k=1 dk) via dynamic programming.

A key merit of GCG lies in its ability to effectively
utilize both the sparsity in tensor completion, and
the low rank of the optimal solution. Assuming the
tensor has z nonzeros, the approximate oracle costs
O(z) time, and at iteration t the gradients in local
search cost O(zt) [27], on par with ALS. t is typi-
cally low since the optimal solution has low rank, al-
lowing GCG to converge fast. As a result, its overall
cost is much cheaper than matricization based meth-
ods, which require O(z

∑
k dk) computation for singu-

lar value thresholding on a sparse matrix that is not
necessarily low-rank in intermediate steps. Finally, the
space cost is only O(z + t

∑
k dk), much less than the

O(
∏
k dk) of matricization approaches.

5 Sample Complexity Comparisons

Arguably, for any tractable approximation of TSN, we
can directly use its dual in the optimization objective
(8), in lieu of TTN. This raises the question of why
not directly analyze their sample complexity, and why
do we analyze its deviation from TTN. This is be-
cause using TTN as a gold standard allows us to infer
suggestively that a solution based on tighter approxi-
mation of TSN will lead to as good or better sample
complexity. For example, once we establish the sample
complexity for the slicing algorithm (below), then in-
tuitively it should not deteriorate when conjoined with
BCA, which improves the approximation of TSN. We
leave a rigorous analysis for future work.

To give some theoretical underpinnings, let us consider
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concretely the tensor completion problem:

min
W

∑q

i=1
‖Li(W)‖(i) s.t. 〈Ai,W〉 = bi, (15)

where each Ai is a Gaussian random tensor, e.g.,
the entries of Ai are i.i.d. standard normal, and
bi = 〈Ai,W0〉 for some unknown low-rank tensor W0.
For simplicity, let d1 = · · · = dK = d. The linear maps
Li are fromRd×· · ·×Rd toRmi , and the norm ‖·‖(i) is
defined on the corresponding range space Rmi . In par-
ticular, we will compare the following two approaches:

• Matricization: q = K, and for i = 1, . . . , q, Li :

Rd×· · ·×Rd → Rd×RdK−1

,W 7→ W(i), and ‖ ·‖(i)
is the matrix trace norm on Rd ×RdK−1

.

• Slicing: q = dK−2, and for i = 1, . . . , q, Li : Rd ×
· · · ×Rd → Rd ×Rd, W 7→ W:,:,i3,...,iK , and ‖ · ‖(i)
is the matrix trace norm on Rd × Rd, where i =∑K
j=3 d

j−3ij is the d-ary expansion.

The matricization case has been widely studied in [e.g.
11–15, 31], while the slicing case does not appear to
be widely appreciated. We used slicing in Section 4.1
to approximate the TSN.

We are interested in deciding the least number of ob-
servations m that still allows recoveringW0 (with high
probability) by solving (15). Obviously, the recovery
is successful iff W0 is the unique minimizer of (15).
Let us recall the following result:

Theorem 3 ([31, 32]). Suppose W0 6=
⋂
i≤q null(Li).

For each i, define Li = sup06=x∈Rmi

‖x‖(i)
‖x‖F . Set κi =

dK‖Li(W0)‖2(i)
L2

i ‖Li‖2‖W0‖2F
. Then for m ≤ O(mini κi), with high

probability W0 is not the unique minimizer of (15),
while for m ≥ O(maxi κi), with high probability W0 is
the unique minimizer.

We apply this theorem to the matricization and the
slicing approach above. Note first that in both cases
Li =

√
d and the operator norm ‖Li‖ = 1. Thus, for

successful recovery we need to compare:

dK−1

‖W0‖2F
max
i
‖(W0)(i)‖2tr vs. dK−1

‖W0‖2F
max
i
‖(W0):,:,i3,...,iK‖2tr.

Clearly, both are on the same orderO(dK−1) but we al-
ways have maxi ‖(W0)(i)‖2tr ≥ maxi ‖(W0):,:,i3,...,iK‖2tr,
i.e., the slicing approach (latter) always has a smaller
problem dependent constant. This can make a big dif-
ference: We could obtain the correct order O(dK−1) by
using say even the `1 norm with Li :W 7→ W:,i2,...,iK .
Only the problem dependent term inside the max func-
tion reflects how different norms match the problem
structure (e.g. low-rank). We note that by using a
more balanced unfolding, [31] was able to improve the

order O(dK−1), at the expense of potentially increas-
ing the problem dependent term. On the other hand,
the slicing norm is particularly computational friendly:
it can be embarrassingly parallelized. Moreover, when
Ai are sampling operators, the problem becomes com-
pletely separable and we need only complete each slice
independently.

We wish to point out a second difference between
the matricization approach and the proposed α-
approximate GCG with the slicing norm: The latter
not only recovers a low-rank tensor, it also finds a CP
decomposition that certifies the low-rank assumption.
In contrast, the matricization approach can only re-
cover the tensor, but it never explicitly finds a usable
CP decomposition.

A large body of works deal directly with the tensor
rank function, e.g. [1, 33, 34]. Nonconvex optimiza-
tion tools are employed to get a local minima, whose
formal guarantee, to our best knowledge, is largely
unknown. Under the restrictive orthogonal CP as-
sumption (which may not exist in general), [4] justified
an extended form of power iteration while [2] proved
strong guarantees by restricting the rank. It may be
possible to strengthen our results by combining ideas
from them.

6 Experiments

We study the empirical performance of Algorithm 1
on two low-rank learning problems: tensor comple-
tion and multitask learning. Local optimization (14)
in GCG was solved by LBFGS. ALS was tested in all
cases, with gradients computed by the state-of-the-art
algorithm for efficiency [27].

6.1 Low-Rank Tensor Completion

Two state-of-the-art algorithms were used for compar-
ison: HaLRTC [14] which uses the weighted matrix
trace norm; and a tighter relaxation by [35], referred to
as RpLRTC. [14, Eq 11] also considered a non-convex
Parafac regularizer that is similar to the variational
form of tensor trace norm. Since its performance has
been shown inferior to HaLRTC, we will not include it
in the comparison. Also note the analysis of [4] does
not consider our noisy setting. For all methods, we se-
lected the value of λ via a validation set, which always
consisted of 10% of the whole dataset. The rank in
ALS was set to the true value on synthetic data, and
was selected via a validation set on real data.

Synthetic data. We first generated a 3-order tensor
Z0 ∈ Rd×d×d using the CP decomposition (1), where
ui,vi, zi were drawn i.i.d. from the standard normal
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Figure 1: Test RSE on synthetic data generated by CP decomposition. RpLRTC is not included in (b) because
it gets very slow when d ≥ 200.

distribution. So rank(Z0) ≤ r and we loosely call r the
rank. Zi,j,k := (Z0

i,j,k − mean(Z0)) /(d1.5std(Z0)) +
ξi,j,k, where mean and std stand for the mean and stan-
dard deviation, respectively, and ξi,j,k are i.i.d. Gaus-
sians with zero mean and variance 0.12. We randomly
picked p% elements of Z as observations for training,
and the reconstructed tensor W was compared with
Z0 on the rest (90 − p)% entries. The whole process
was repeated 10 times, and we report the average of
RSE :=

∥∥Wte −Z0
te

∥∥
F
/
∥∥Z0

te

∥∥
F

[14].

Figures 1(a) to 1(c) show the test RSE as a function
of density p of the training data, the size d, and the
CP rank r respectively. In all plots, parameters not
varying in the x-axis were set to the default values:
p = 1, r = 10, and d = 100. Clearly, in all cases
GCG yields significantly more accurate completions
than ALS, HaLRTC, and RpLRTC. Fixing d and r,
GCG clearly outperforms when the tensor is sparse
(p = 1 or 2). In real datasets such as Yelp and Nell
below, less than 1% entries are observed, and there-
fore it is indeed an interesting regime. ALS exhibits
higher variance suggesting susceptibility to local min-
ima. With fixed p and r, increasing the size of tensor
allows both ALS and GCG to reduce test RSE. But it
benefits GCG much more thanks to its convexity. Fi-
nally, increasing the CP rank makes the problem chal-
lenging for all methods. This is reasonable because
the sample size is fixed. Overall, the results confirm
higher faithfulness of GCG in low-rank tensor comple-
tion than nonconvex methods and matricization based
regularizers when the tensor is sparse.

Computational time is another key aspect of compari-
son. To make the comparison fair, we set d = 100, p =
8, r = 10 so that ALS and GCG achieve similar RSE.
HaLRTC and RpLRTC are not included because they
scale much more poorly. Figure 1(d) shows that GCG
is much more efficient than ALS in reducing the test
RSE.

Image inpainting. Images are naturally repre-
sented as a “width (259)” × “height (247)” × “RGB

(3)” tensor. We used an image of facade [14] and ran-
domly sampled p% pixels from the original color image
for training. All pixel values were rescaled to [0, 1]. In
addition to the competing methods used above, we
also compared with the latent Schatten norm [15] as
the dataset does not necessarily have low CP rank
any more. Figure 2 reports the RSE on the remain-
ing (90 − p)% pixels with varied p. Clearly, GCG is
superior in propagating global structure from a small
number of observed pixels. Again ALS exhibits high
variance, probably due to local minima.

Multiway recommendation. We next study ten-
sor completion for recommendation systems, and the
focus is on large-scale real data. The Yelp dataset
is from the Yelp Data Challenge [36] which contains
(user, items, word) triples for business reviews. It
is sized 46K × 12K × 85K with 9.9 million nonze-
ros. The Nell dataset is from [37] which consists of
(noun phrase 1, context, noun phrase 2) triples. It is
sized 12K × 9K × 29K with 77 million nonzeros, and
we randomly subsampled 10% for experiment. None
of the matricization based methods can scale to such
large datasets, and therefore we only compared GCG
with ALS. We varied the number of training (observed)
entries, used another 10% entries for validation, and
tested on the rest entries. The random partition was
repeated for 10 times, and the mean test RSE is pre-
sented in Figure 3 and 4. For a range of training set
size, GCG yields significantly lower error than ALS.

6.2 Multitask Learning

Restaurant recommendation [13]. The tasks are
to predict the rating that a restaurant would receive
from each of the I2 = 138 customers, in I3 = 3 aspects
(food, service, overall). So there are I2 × I3 tasks,
with each task employing a I1 = 45 dimensional weight
vector. The I1 × I2 × I3 weight tensor is assumed
to have low rank. Each of the 3483 data points is a
restaurant represented by an I1 dimensional feature
vector (e.g. location and cuisine type), as well as its
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Figure 6: School grade prediction

I2 × I3 number of ratings. Predicting these ratings
constitutes I2 × I3 regression problems, each with an
`2 loss.

GCG was compared with ALS, a convex multilinear
multitask learning model (MLMTL-C) [13], and scaled
latent trace norm proposed recently in [38]. They have
been shown to predict more accurately than a num-
ber of other multitask algorithms (hence not included
here). We randomly sampled m ratings (across all
tasks) for training, 250 ratings for validation (used by
GCG only), and the rest for testing. All competing al-
gorithms selected models by optimizing the test mean
squared error (MSE), an extra advantage that was not
available to GCG. Figure 5 plots the test MSE as a
function of m, averaged over 20 random repetitions.
Clearly, GCG yields significantly lower test error over
a range of training set sizes, with the edge diminish-
ing as the sample size grows. It is also more efficient.
For example, it took 0.5 seconds for GCG to train
on 1500 examples, while MLMTL-C and scaled latent
norm spent about 9 seconds and 12 seconds respec-
tively.

School grade prediction. Following [38], we used
multitask learning to model the Inner London Educa-
tion Authority dataset. It records the score of 15,362
students at 139 schools over 3 years, with each stu-
dent represented by 24 attributes. The weight tensor
is 24 × 139 × 3, and following [38] we measured the

percentage of explained variance: 100·(1 - (test MSE)
/ (variance of score)). Model selection in GCG was
based on a validation set of 1000 samples, while all
competing algorithms were allowed to select models by
directly optimizing the test measure. As shown in Fig-
ure 6, GCG again achieves the highest performance,
and is particularly advantageous when the sample size
is small (2000 to 6000). The results of MLMTL-C and
scaled latent norm recover those in [38].

7 Conclusion

Learning a low-rank tensor is an important task in
many real-world applications. In this work we con-
sider the genuine tensor trace norm regularization, as
a proxy of the nonconvex tensor rank function. Build-
ing on a simple polytopal approximation of the dual
spectral norm, we demonstrate how to solve the tensor
trace norm problem using the recent GCG algorithm.
We establish the O(1/t) rate of convergence of GCG
with such an approximate dual spectral norm. Further
accelerations using an unconstrained smooth surrogate
is discussed. Compared to matricization approaches,
our algorithm achieves the same order of sample com-
plexity but with potentially a smaller problem depen-
dent constant. Computationally, our algorithm bene-
fits from both the sparse and low-rank structure hence
scales much better. Experiments on a variety of real
datasets confirm the effectiveness of our algorithm.
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A Matricization

A tensor A can be unfolded into a matrix A in various ways. We focus here on 2-way unfoldings that specify
a proper partition of {1, . . . ,K} := [K] = {m1, . . . ,mp} ∪ {n1, . . . , nq}, an integer-valued row index function r,
and a column index function c, such that Ai1,...,iK 7→ Ar(im1 ,...,imp ), c(in1 ,...,inq )

. This is simply a rearrangement
of the entries in A hence preserves its Frobenius norm. We use the notation A(r,c) for the 2-way unfolding under
the index functions r and c.

The above tensor unfolding interacts conveniently with the mode-k multiplication, once we define a suitable
matrix Kronecker product. Fix two row index functions r and r̂. The Kronecker product of p matrices U ∈
Rd̂m1

×dm1 , . . . ,W ∈ Rd̂mp×dmp is a matrix that has size
∏p
k=1 d̂mk

×
∏p
k=1 dmk

and satisfies

(U � · · ·�W )ı̂,i = Uı̂m1 ,im1
· · ·Wı̂mp ,imp

, (16)

where ı̂ = r̂(̂ım1
, . . . , ı̂mp

) and i = r(im1
, . . . , imp

).

Similar definitions can be made using two column index functions c and ĉ. It is just algebra to verify that

(A×1 U1 · · · ×K UK)(̂r,ĉ) = (Um1 � · · ·� Ump) A(r,c) (Un1 � · · ·� Unq )>, (17)

where the first and second group of Kronecker product use (̂r, r) and (ĉ, c) respectively.

Example 1 (Mode-k unfolding A(k)). To illustrate the above definition, let us consider the partition [K] =
{k} ∪ {1, . . . , k − 1, k + 1, . . .K} and the index functions

c(i1, . . . , ik−1, ik+1, . . . , iK) = 1 +
∑
j 6=k

(ij − 1)
∏

m>j,m 6=k

dm,

and r(ik) = ik. This is called the mode-k unfolding, together with the notation A(k). Here � reduces to the usual

matrix Kronecker product, and (A×k U)(k) = UA(k). For matrices, we simply have A(1) = A, A(2) = A>, and

A×1 U ×2 V = UAV >.

Example 2 (Balanced mode-k unfolding A[k]). The mode-k unfolding above yields an extremely unbalanced
matrix with size dk ×

∏
j 6=k dj. A more balanced unfolding is proposed in [31], consisting of the partition [K] =

{1, . . . , k} ∪ {k + 1, . . .K} and the index functions

r(i1, . . . , ik) = 1 +

k∑
j=1

(ij − 1)
∏

k≥m≥j+1

dm

c(ik+1, . . . , iK) = 1 +

K∑
j=k+1

(ij − 1)
∏

m≥j+1

dm,

with r̂, ĉ similarly defined. The resulting matrix, denoted as A[k], has size
∏k
j=1 dj ×

∏K
j=k+1 dj. For k = bK/2c,

the unfolding is more like a square matrix, which can be beneficial in completion tasks [31].

B Approximating Tensor Spectral Norm

Let Bd2 be the Euclidean norm ball in a d dimensional space (d is a superscript in Bd2). We can approximate
Bd2 with a polytope, based on a celebrated result from convex geometry [24]: For any d, n ≥ 2 we can find in
polynomial time (at most) dn points {pi}, such that their convex hull Pd satisfies

Pd ⊆ Bd2 ⊆ 1
c

√
d

n log dP
d, (18)
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where c is some universal constant. For n = 1, we can simply take the unit ball of the 1-norm, denoted as Bd1,
and get a similar result

Bd1 ⊆ Bd2 ⊆
√
dBd1. (19)

By counting the volume, it can be proved that the factors in (18) and (19) are the best possible respectively [25].

Specializing to the tensor spectral norm, we simply replace each Euclidean ball constraint with its polytopal
approximation as suggested in (18) or (19), and evaluate the inner product at each of the vertices of the polytope.
Since the matrix trace norm is tractable, we need only execute the polytopal approximation for the last K − 2
balls, i.e., solving the approximation

max
u1∈B

d1
2 ,u2∈B

d2
2 ,u3∈Pd3 ,...,uK∈PdK

〈A,u1⊗ · · ·⊗uK〉 . (20)

So for each vertex p3⊗ · · ·⊗pK (with
∏K
k=3(dk)n of them), we evaluate the matrix spectral norm ‖A×3p3 · · ·×K

pK‖2 and pick the maximum. This yields the optimal solution for (20), which immediately translates to an

α = O(
∏K
k=3

√
nd−1k log dk) approximate solution for the tensor spectral norm (6). If we set n = 1 and use (19),

then α =
∏K
k=3

√
1/dk and only

∏K
k=3 dk matrix spectral norms need to be checked. The overall computational

cost is O(
∏K
k=1 dk). It is also easy to reduce each factor dk to the smaller constant rank(A(k)), or simply

rank(A). For n ≥ 2 we get a log dk factor improvement in the approximation guarantee, at the expense of a
more complicated and costly implementation.

C Proofs omitted in Section 4

Theorem 1. Let ` ≥ 0 be convex, smooth, and have bounded sublevel sets. Denote f(W) = `(W) + λ · κ(W).
Suppose in each iteration t, we find Zt that satisfies

κ(Zt) ≤ 1, 〈Zt,∇`(Wt)〉 ≥ α · max
κ(Z)≤1

〈Z,∇`(Wt)〉 . (21)

Then for all W and for all t ≥ 1, running GCG with ηt = 2
t+2 leads to f(Wt) − f(W)

α ≤ 2C
t+3 , where C is some

constant that does not depend on t or α.

Recall that the function ` is smooth if its gradient is Lipschitz continuous with respect to some norm ‖·‖, namely
that for all W and Z,

`(Z) ≤ `(W) + 〈Z −W,∇`(W)〉+
L

2
‖Z −W‖2, (22)

for some constant L := L‖·‖ ≥ 0. The least squares loss in fact satisfies (22) with equality and L = 2.

Proof. Let W be arbitrary and s = κ(W). Let W̃t+1 be the output of GCG at iteration t+ 1 and Wt+1 be the
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improved iterate after local search. The following chain of inequalities can be easily verified:

f(Wt+1) ≤ f(W̃t+1)

= `(W̃t+1) + λ · κ(W̃t+1)

= ` ((1− ηt)Wt + ηtβtZt) + λ · κ((1− ηt)Wt + ηtβtZt) (definition of W̃t+1)

≤ ` ((1− ηt)Wt + ηtβtZt) + λ(1− ηt)κ(Wt) + ληtβtκ(Zt) (sublinearity of κ)

≤ ` ((1− ηt)Wt + ηtβtZt) + λ(1− ηt)κ(Wt) + ληtβt (definition of Zt)

≤ `
(

(1− ηt)Wt + ηt
s

α
Zt
)

+ λ(1− ηt)κ(Wt) + ληt
s

α
(definition of βt)

≤ f(Wt) + ηt

〈 s
α
Zt −Wt,∇`(Wt)

〉
+
L
∥∥ s
αZt −Wt

∥∥2
2

η2t − ληtκ(Wt) + ληt
s

α
(inequality (22))

≤ min
Z:κ(Z)≤1

f(Wt) + ηt 〈sZ −Wt,∇`(Wt)〉+
L
∥∥ s
αZt −Wt

∥∥2
2

η2t − ληtκ(Wt) + ληt
s

α
(definition of Zt)

= min
Z:κ(Z)≤s

f(Wt) + ηt 〈Z −Wt,∇`(Wt)〉+
L
∥∥ s
αZt −Wt

∥∥2
2

η2t − ληtκ(Wt) + ληt
s

α
(homogeneity of κ)

≤ min
Z:κ(Z)≤s

f(Wt) + ηt(`(Z)− `(Wt)) +
L
∥∥ s
αZt −Wt

∥∥2
2

η2t − ληt · κ(Wt) + ληt
s

α
(convexity of `)

= (1− ηt)f(Wt) + ηt min
Z:κ(Z)≤s

(`(Z) + λ · s
α

) +
L
∥∥ s
αZt −Wt

∥∥2
2

η2t

≤ (1− ηt)f(Wt) + ηt
f(W)

α
+
L
∥∥ s
αZt −Wt

∥∥2
2

η2t (` ≥ 0 and α ∈ (0, 1]).

Therefore,

f(Wt+1)− f(W)

α
≤ (1− ηt)

(
f(Wt)−

f(W)

α

)
+
L
∥∥ s
αZt −Wt

∥∥2
2

η2t .

Recall that ηt = 2
t+2 . An easy induction argument establishes that

f(Wt+1)− f(W)

α
≤ 2C

t+ 3
,

where C := supt L
∥∥ s
αZt −Wt

∥∥2 ≤ 2L(κ2(W)/α2 + D2) < ∞, since Wt is in the sublevel set of {Z : f(Z) ≤
f(W1)}, whose radius is assumed to be bounded by D.

Theorem 2. Fix A ∈ Rd1×···×dK and t ≥
∏K
k=1 dk, then

‖A‖tr = min
{

Σ
t
i=1 ‖ui‖2 · · · ‖zi‖2

}
(23)

= min
{

1
K Σ

t
i=1 ‖ui‖

K
2 + · · ·+ ‖zi‖K2

}
, (24)

where the minimum is taken w.r.t. all factorizations A =
∑t
i=1 ui⊗ · · ·⊗ zi, ui ∈ Rd1 , . . . , zi ∈ RdK .

Proof. We first note that the atomic set A in (4) is compact, so is its convex hull conv(A). Moreover, A is
connected. Recall that the trace norm is defined in (5) via the gauge function κ. Since conv(A) is compact with
0 in its interior, we know the infimum in (5) is attained. Thus there exist ρ ≥ 0 and C ∈ conv(A) so that A = ρC
and ‖A‖tr = κ(A) = ρ. Applying Caratheodory’s theorem we know C =

∑t
i=1 σiûi⊗ · · ·⊗ ẑi for some σi ≥ 0,∑

i σi = 1, ûi⊗ · · ·⊗ ẑi ∈ A and t ≤
∏K
k=1 dk. Let ui = K

√
ρσiûi, · · · , zi = K

√
ρσiẑi we know ‖A‖tr is at least the

right-hand side of (24).

On the other hand, for any A =
∑t
i=1 ui⊗ · · ·⊗ zi, denoting σi = ‖ui‖2 · · · ‖zi‖2 (6= 0 w.l.o.g.), we have

A = (
∑
i σi) ·

∑t
i=1

σi∑t
j=1 σj

Ai, where Ai := ui

‖ui‖2
⊗ · · ·⊗ zi

‖zi‖2
∈ A. Thus, appealing to the definition (5) we

know ‖A‖tr ≤
∑
i σi, i.e. (23) holds with ≤.
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To complete the proof, we apply the arithmetic-geometric mean inequality:∑
i
‖ui‖2 · · · ‖zi‖2 ≤

1
K

∑
i
‖ui‖K2 + · · ·+ ‖zi‖K2 .

(Of course, other elementary symmetric functions can be similarly used in Theorem 2.)

D Comparison with alternative variational forms

We compare the variational forms in Theorem 2 to some existing ones in the tensor literature. Firstly, the
regularization function ∑

i
‖ui‖22 + · · ·+ ‖zi‖22 , (25)

is extensively used in finding CP decompositions, since otherwise the factors could blow up in a way that
still maintains their sum, the so-called degeneracy problem [9]. A second reason for employing (25) is that it
adds strict convexity w.r.t. each factor hence guarantees the convergence of block coordinate ascent. However,
both reasons to promote (25), albeit valid, are weak; there are certainly other, perhaps even better, candidate
regularizations. For instance, (24) enjoys both properties, with the additional equivalence to the trace norm,
which potentially could lead to a low rank solution. The second variational form, appeared in [13], is

‖C‖2F + ‖U‖2F + · · ·+ ‖Z‖2F, (26)

where A = C ×1 U · · · ×K Z is the Tucker decomposition. [13] used (26) to avoid the scaling ambiguity—a weak
motivation for the particular form (26) indeed. Let us show that neither (25) nor (26) is equivalent to the trace
norm. From this regard, the variational forms in Theorem 2 are advantageous and perhaps should be favored
more often in practice.

Example 3. We first prove (25) is not equivalent to the trace norm. Let A = σu⊗ · · ·⊗ z be a rank-1 tensor
with σ > 0 and ‖u‖2 = · · · = ‖z‖2 = 1. It is easy to see that ‖A‖tr = σ. Consider the function:

f(A) := min
{∑

i
‖ui‖22 + · · ·+ ‖zi‖22

}
,

where the minimum is taken w.r.t. to all factorizations A =
∑
i ui⊗ · · ·⊗ zi. Clearly,

f(A) ≤ K · σ2/K .

Choose an appropriate σ > 1 we thus have f(A) < ‖A‖tr. Of course, for any positive constant c, we can choose
appropriate σ such that c · f(A) < ‖A‖tr. Thus (25) is not proportional to the trace norm.

For the function (26), we similarly define

g(A) := inf
{
‖C‖2F + ‖U‖2F + · · ·+ ‖Z‖2F

}
,

where the infimum is taken w.r.t. all Tucker decompositions A = C ×1 U · · · ×K Z. This removes the dependence
of (26) on a particular Tucker decomposition (which may not be unique). Consider the same rank-1 tensor A as
above, we have g(A) ≤ (K + 1)σ2/(K+1) while ‖A‖tr = σ. Again, choosing σ large we have c · g(A) < ‖A‖tr for
any positive constant c. Note that even for K = 2, g(A) is not proportional to the trace norm.

E Efficient gradient computation

An efficient implementation for the surrogate problem (14) using state-of-the-art solvers (e.g. L-BFGS) relies on
the efficient computation of the gradient of `. For simplicity, consider t = 1 hence W = u1⊗ · · ·⊗uK . The idea
generalizes straightforwardly to all t. Let G = ∇`(W). Using the chain rule,

∂`
∂uk

(W)=G ×1 u>1 . . .×k−1 u>k−1 ×k+1 u>k+1. . .×K u>K .

The chain of product on the right-hand side costs O(
∏
k dk), thus a naive implementation for all factors would

cost O(K
∏
k dk). Fortunately, using the identity in (17) we can reduce the cost by a factor of K. Define the

forward and backward accumulators
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Fk := G ×1 u>1 . . .×k−1 u>k−1, Bk := uk+1 ⊗ . . .⊗ uK ,

with F1 := G and BK := 1. Then we have
∂`
∂uk

(W) = Fk ×k+1 u>k+1 . . .×K u>K = (Fk)(k)Bk.

So we need only compute {Fk,Bk}, costing O(
∏
k dk). Since for all k the multiplication (Fk)(k)Bk costs

O(
∏
j≥k dj), the overall time and space costs are both O(

∏
k dk). Clearly the computational savings are possible

due to our explicit low-rank representation, which is not available in other matricization approaches.

F Comparison on completing tensors with low-rank Tucker decompositions

We repeated all comparisons conducted for low CP rank on low Tucker rank: Z0 = S ×1 U1 ×2 U2 ×3 U3, where
S ∈ Rr×r×r and Ui ∈ Rn×r. Our setting here is exactly the same as Section 6.1. Again, all entries of S and Ui
were drawn i.i.d. from a unit normal. We set the default p=20, σ=0.1, r=5 (hence CP rank ≤ 25), and n=50.
Figure 7 shows that even in this case TTN still outperforms HaLRTC and RpLRTC (abbreviated as RP).
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Figure 7: Test RSE on synthetic data generated by Tucker decomposition with rank r × r × r.
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Figure 8: RPCA on amino acid data. p = 40 in c-d.

Higher-order RPCA (HoRPCA), introduced in [16], solves ‖W − Z‖1 + λΩ(W), where Ω(W) is, say the sum of
matrix trace norms of all mode unfoldings. The `1 loss used here aims to instill robustness to (large) outliers.
To apply GCG to our proposed TTN as Ω, we smoothed the `1 loss using a quadratic prox-function as in [39].

Amino acid fluorescence data. This dataset of 3-mode tensor records the fluorescence intensity of 5 solutions
(mode 1), with 201 intervals of emission wavelength (mode 2) and 61 intervals of excitation wavelength (mode
3) [40]. Since the solutions contain three amino acids, the tensor has approximately low rank of 3. To mimic
scatter outliers in chmometrics like [16], we randomly selected 10% entries on which i.i.d. corruptions uniformly
distributed in [−100, 100] were added. Like above, we observe only a fraction, p%, of the entries.

Figure 8(a) shows the RSE on the remaining (90−p)% entries, measured on the tensors recovered by using TTN
and HoRPCA. Over a wide range of p, TTN achieves significantly lower RSE. For a more intuitive illustration,
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we plot in Figure 8(b) the original loading (CP factor) for mode 2, as well as the loadings recovered by TTN and
HoRPCA in Figures 8(c) and 8(d), respectively. Clearly TTN discovers a more faithful reconstruction of the CP
factors in the presence of noise. Loadings for mode 3 are provided in Figure 9.
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Figure 9: Loadings for mode 3 (excitation) with RPCA on amino acid data. p = 40 in b-c.

We also experimented on another fluorescence dataset: Dorrit. It is a 23×116×18 tensor whose modes have
the same meanings as in the amino acid data. However, it already contains scattering noise hence we no longer
corrupted it. In Figure 10(c) and 10(d), we plot the loading for mode 2 recovered by TTN and HoRPCA, with
comparison to that obtained from the noisy raw tensor (Figure 10(b)). All methods used the full tensor with
no subsampling. Referring to the pure component loadings copied to Figure 10(a) from [41, Figure 2], one can
observe that TTN attains a higher level of faithfulness than HoRPCA.

environment the excitation ranging from 200 to 230 nm and the
emission below 250 was excluded from the data set before further
analysis. This gives a data set with dimensions (27� 116� 18). A
four-component PARAFAC model seems to be the most suitable
[13,25]. The excitation and emission loadings that should be
obtained are depicted in Figure 2.
All samples contain severe Rayleigh scatter, which are element-

wise outliers. Moreover, from previous investigations four samples
(sample number 2, 3, 5, and 10) were marked as outlying samples
[13]. However, Engelen and Hubert [1] investigated the data by
robust PARAFAC and found that sample 10 is rather a border case
that an outlier.
Hence, the Dorrit data set comprises both types of outliers,

which makes these data highly suitable for comparing the
proposed combined robust PARAFAC model with the model

obtained from the classical PARAFAC method and the sample
robust PARAFAC approach and the automated scatter identifi-
cation procedure in combination with classical PARAFAC. The
results of fitting the four PARAFAC algorithms are shown in terms
of estimated excitation and emission spectra in Figure 3.
The proposed combined PARAFAC algorithm was the only one

providing excitation and emission loadings which are in agreement
with the pure component spectra shown in Figure 2. The other
three methods lacked accuracy, because the outlying samples and
outlying elements deteriorated these models.
Furthermore, outliers of type 1 were marked in a similar way as

by the robust sample PARAFAC procedure. The diagnostic plot,
introduced for these purposes in Engelen and Hubert [1], could
also be applied to the combined method. Only the computation
of the residual distance, which is placed on the vertical axis of the

Table IV. Simulation results for data containing scatter and bad leverage points

Method Classic Scatter Sample Combined

Bad leverage points 10% 20% 10% 20% 10% 20% 10% 20%

MSE 0.128 0.149 0.103 0.129 0.103 0.106 0.0627 0.0659

Angle (B,B̂) 0.218 0.228 0.166 0.192 0.243 0.233 0.0643 0.0607

Angle (C,Ĉ) 0.199 0.221 0.176 0.204 0.105 0.105 0.0406 0.0401

PVE 0.682 0.678 0.743 0.721 0.744 0.770 0.845 0.858

Table V. Simulation results for data containing scatter and residual outliers

Method Classic Scatter Sample Combined

Residual outliers 10% 20% 10% 20% 10% 20% 10% 20%

MSE 0.119 0.138 0.0701 0.0884 0.112 0.131 0.0629 0.0602

Angle (B,B̂) 0.240 0.264 0.0920 0.148 0.236 0.254 0.0564 0.0503

Angle (C,Ĉ) 0.153 0.209 0.0971 0.156 0.136 0.194 0.0396 0.0399

PVE 0.708 0.672 0.828 0.791 0.724 0.690 0.845 0.858
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Figure 2. The pure component emission (left) and excitation (right) spectra of the Dorrit data.
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Figure 10: Loadings for mode 2 (emission) with RPCA on Dorrit data. p = 100 in c-d.

environment the excitation ranging from 200 to 230 nm and the
emission below 250 was excluded from the data set before further
analysis. This gives a data set with dimensions (27� 116� 18). A
four-component PARAFAC model seems to be the most suitable
[13,25]. The excitation and emission loadings that should be
obtained are depicted in Figure 2.
All samples contain severe Rayleigh scatter, which are element-

wise outliers. Moreover, from previous investigations four samples
(sample number 2, 3, 5, and 10) were marked as outlying samples
[13]. However, Engelen and Hubert [1] investigated the data by
robust PARAFAC and found that sample 10 is rather a border case
that an outlier.
Hence, the Dorrit data set comprises both types of outliers,

which makes these data highly suitable for comparing the
proposed combined robust PARAFAC model with the model

obtained from the classical PARAFAC method and the sample
robust PARAFAC approach and the automated scatter identifi-
cation procedure in combination with classical PARAFAC. The
results of fitting the four PARAFAC algorithms are shown in terms
of estimated excitation and emission spectra in Figure 3.
The proposed combined PARAFAC algorithm was the only one

providing excitation and emission loadings which are in agreement
with the pure component spectra shown in Figure 2. The other
three methods lacked accuracy, because the outlying samples and
outlying elements deteriorated these models.
Furthermore, outliers of type 1 were marked in a similar way as

by the robust sample PARAFAC procedure. The diagnostic plot,
introduced for these purposes in Engelen and Hubert [1], could
also be applied to the combined method. Only the computation
of the residual distance, which is placed on the vertical axis of the

Table IV. Simulation results for data containing scatter and bad leverage points

Method Classic Scatter Sample Combined

Bad leverage points 10% 20% 10% 20% 10% 20% 10% 20%

MSE 0.128 0.149 0.103 0.129 0.103 0.106 0.0627 0.0659

Angle (B,B̂) 0.218 0.228 0.166 0.192 0.243 0.233 0.0643 0.0607

Angle (C,Ĉ) 0.199 0.221 0.176 0.204 0.105 0.105 0.0406 0.0401

PVE 0.682 0.678 0.743 0.721 0.744 0.770 0.845 0.858

Table V. Simulation results for data containing scatter and residual outliers

Method Classic Scatter Sample Combined

Residual outliers 10% 20% 10% 20% 10% 20% 10% 20%

MSE 0.119 0.138 0.0701 0.0884 0.112 0.131 0.0629 0.0602

Angle (B,B̂) 0.240 0.264 0.0920 0.148 0.236 0.254 0.0564 0.0503
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Figure 2. The pure component emission (left) and excitation (right) spectra of the Dorrit data.
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Figure 11: Loadings for mode 3 (excitation) with RPCA on Dorrit data. p = 100 in c-d.


