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Abstract

Complex event detection on unconstrained Internet
videos has seen much progress in recent years. However,
state-of-the-art performance degrades dramatically when
the number of positive training exemplars falls short. Since
label acquisition is costly, laborious, and time-consuming,
there is a real need to consider the much more challeng-
ing semantic event search problem, where no example video
is given. In this paper, we present a state-of-the-art event
search system without any example videos. Relying on
the key observation that events (e.g. dog show) are usually
compositions of multiple mid-level concepts (e.g. “dog,”
“theater,” and “dog jumping”), we first train a skip-gram
model to measure the relevance of each concept with the
event of interest. The relevant concept classifiers then cast
votes on the test videos but their reliability, due to lack
of labeled training videos, has been largely unaddressed.
We propose to combine the concept classifiers based on
a principled estimate of their accuracy on the unlabeled
test videos. A novel warping technique is proposed to
improve the performance and an efficient highly-scalable
algorithm is provided to quickly solve the resulting opti-
mization. We conduct extensive experiments on the lat-
est TRECVID MEDTest 2014, MEDTest 2013 and CCV
datasets, and achieve state-of-the-art performances.

1. Introduction

Multimedia event detection (MED) refers to the task of
ranking a sequence of unseen videos according to their like-
lihood of containing a certain event, e.g. birthday party. Un-
like concept/attribute (e.g. actions, scenes, objects) recog-
nition, an event is a high level abstraction, possibly con-
sisting of multiple concepts and spreading over the entire
duration of long videos. For example, the marriage pro-
posal event can be described by multiple objects (e.g. ring,
faces), scene (e.g. in a restaurant), actions (e.g. talking,
kneeling down) and acoustic concepts (e.g. music, cheer-
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ing). Due to its apparent complexity and enormous utility
in retrieval tasks, MED has drawn a lot of research atten-
tion in the computer vision and multimedia communities
[14, 15,29, 31,9, 54, 12, 13].

A usual MED system first extracts low-level features
from videos of interest to capture salient gradient [34, 5],
color [51] or motion [52] patterns, and then encode these
with a pre-trained codebook to get a succinct representa-
tion. With labeled training data, sophisticated statistical
classifiers, such as support vector machines (SVM), are then
applied on top to yield predictions. With enough labeled
training examples, these systems have achieved remarkable
performance in the past [29, 47, 31]. However, it is ob-
served that performance decreases rapidly when the number
of positive training exemplars falls short. Since in practice
label acquisition is costly, laborious, and time-consuming,
and also because of the constant need to handle new unseen
events, the National Institute of Standards and Technology
(NIST) initiated the zero-example search (OEx for short)
in TRECVID 2013 [1] and 2014 [2]. Promising progress
[43, 53, 16, 21, 20, 11] has been made in this direction, but
further improvement is still anticipated.

In this work we mainly focus on the semantic event
search problem, where no example videos are provided for
training whatsoever. Our system is built on the observation
that an event is a composition of multiple mid-level con-
cepts [30, 39, 10]. These concepts are shared among events
and can be collected from other sources (not necessarily re-
lated to the event search task). We then train a skip-gram
language model [37] to automatically identify the most rel-
evant concepts to a particular event of interest. For exam-
ple, the most relevant concepts for the marriage proposal
event might be “face,” “ring,” “kissing,” “kneeling down,”
etc. Such concept bundle view of event also aligns with
the cognitive science literature, where humans are found to
conceive objects as bundles of attributes [45]. The concept
scores on the test videos are combined to yield a final rank-
ing of the presence of the event of interest. However, this
approach, as well as most existing works on semantic event
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Figure 1: The proposed framework for large-scale semantic event search (§3), illustrated on the particular horse riding
competition event. The relevance of concept classifiers to the event of interest are measured using the skip-gram language
model (§3.2), followed by some further refinements (§3.3). To account for their reliability, the concept scores are combined

through the warped spectral meta-learner (§3.6) and solved using the efficient GCG algorithm (§3.7).

search [43, 53, 16, 21, 20], ignore the fact that not all con-
cept classifiers are equally reliable, especially when they
are trained from other source domains. For example, “face”
in video frames can now be reasonably accurately detected,
but in contrast, the action “brush teeth” remains hard to rec-
ognize in short video clips. Consequently, a relevant con-
cept can be of limited use or even misuse if its classifier
is highly unreliable. Therefore, when combining concept
scores, we propose to take their relevance, predictive power,
and reliability all into account. This is achieved through a
novel extension of the spectral meta-learner in [40], which
provides a principled way to estimate classifier accuracies
using purely unlabeled data. Figure 1 gives an overview of
our entire system.

Contributions. To summarize, we make the following

contributions in this work:

e To account for the unreliability of concept classifiers, we
propose to use the warped spectral meta-learner to esti-
mate the concept accuracies and combine them in a prin-
cipled and purely unsupervised manner (§3.5 and §3.6).

e We provide an efficient implementation based on the re-
cent generalized conditional gradient (§3.7), which is the
key to conduct event search in large-scale video datasets.

e We conduct experiments on three real video datasets
(MEDTest 2014, MEDTest 2013 and CCVy,), and
achieve state-of-the-art performances (§4).

2. Related works

Complex event detection on unconstrained Internet
videos remains a very challenging task due to the large qual-
ity variations of Internet videos, the inherent complexity
in event definitions, the limited number of positive train-
ing examples, and also the irregular appearance of the event
in hour-long videos. Nevertheless, significant progress has
been made in the past [29, 31, 47]. These approaches first
extract low-level features (including appearance, motion,
acoustic) from local spatial or spatial-temporal patches, and
then aggregate them through coding [7, 41] and pooling

[8, 49] to arrive at a succinct fixed-dimensional represen-
tation. Sophisticated supervised classifiers [33, 50] are then
applied on top to yield predictions. With enough labeled
training data, superb predictions can be achieved, but the
performance of these supervised approaches drops dramat-
ically when the number of positive examples decreases. In-
stead, we consider the more challenging semantic event
search problem where no labeled exemplar data is provided.

Event detection with no training examples is called OEx
for short. It mostly resembles a real-world video search sce-
nario, where users search desired videos without providing
any example video. Recent works have begun to explore in-
termediate semantic concepts [9], and achieved limited suc-
cess on the OEx problem [43]. [53, 16, 21, 20] also consid-
ered selecting more informative concepts. However, none
of these works considered the unreliability of the concept
classifiers for event detection. [23] is closest to us in spirit,
and considered unreliability for image classification with-
out labeled training data. The limitation of their method is
that they rely on the labeled validation data to account for
attribute prediction unreliability. In our setting, no labeled
validation data is provided. Hence, we cannot directly apply
their algorithm to our problem.

We build on recent advances [17, 22, 40, 42] in estimat-
ing classifier accuracy using unlabeled data, which has re-
ceived considerable attention in medical applications and
more recently in crowdsourcing [44]. However, our work
is the first to apply these techniques to the semantic event
search problem, enhanced with a novel warping technique
that significantly improves performance and an efficient im-
plementation that allows scaling to real video datasets.

3. Semantic event search

In this work we mainly consider the semantic event
search problem, where the learning algorithm is asked to
rank unlabeled test videos according to their likelihood of
containing a certain event of interest, for instance, birthday
party. The significant challenge here is that we do not sup-
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ply the learning algorithm with any labeled training data.

3.1. Concept classifiers

Without labeled training data, we can no longer train a
supervised statistical classifier but resort to rule based learn-
ing. The key observation is that each object class can be
described as the composition of a set of semantic concepts,
i.e., middle-level interpretable attributes. For example, the
event marriage proposal can be described as the composi-
tion of multiple objects (e.g., ring, faces), scene (e.g., in
a restaurant), and actions (e.g., talking, kneeling down).
Since concepts are shared among many different classes
(events) and each concept classifier can be trained indepen-
dently on datasets from other sources, semantic event search
can be achieved by combining the relevant concept classifi-
cation scores, even in the absence of event labeled training
data. Different from the pioneer work [30], which largely
relied on human knowledge to decompose classes (events)
into attributes (concepts), we seek below an automated way.

3.2. Semantic concept relevance

Events come with short textual information, e.g., an
event name or a short description. For example, the event
dog show in the TRECVID MEDTest 2014 [2] is defined as
“a competitive exhibition of dogs.” We exploit this textual
information by learning a relevance score between the event
description and the pre-trained concept (attribute) classi-
fiers. Since the concept classifiers are trained without any
event label information, the relevance score makes it pos-
sible to share information between the concept space and
the event space. More precisely, we pre-train a skip-gram
model [37] using the English Wikipedia dump'. The skip-
gram model infers a D-dimensional vector space represen-
tation of words by fitting the joint probability of the co-
occurrence of surrounding contexts on large unstructured
text in the embedding vector space. Thus it is able to cap-
ture a large number of precise syntactic and semantic word
relationships. For short phases consisting of multiple words
(e.g., event descriptions), we simply average its word-vector
representation. After properly normalizing the respective
word-vectors, we compute the cosine distance of the event
description and all individual concepts, resulting in a rele-
vance vector w € [0, 1]™, where wj, measures a priori rele-
vance of the k-th concept and the event of interest. Similar
approaches have appeared before in e.g. [36, 38, 53].

3.3. Concept pruning and refining

In the above we have introduced the relevance score vec-
tor w € [0,1]™ that measures the similarity between the
m concepts and the event of interest. We further prune and
refine these weights for the following reasons: 1). Some
concepts, although relevant to the event of interest, may not
be very discriminative (low predictive power). For example,

Thttp://dumps.wikimedia.org/enwiki/
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the concept people is relevant to the event Birthday party,
but it appears almost in every video hence does not pro-
vide much discriminative power. 2). Some concepts may
not be very reliable, possibly because they are trained on
different domains. In the experiments, we use the (unla-
beled) MED 2014 Research dataset’ to crudely refine the
concepts as follows: We first compute a similarity score be-
tween the concept names and the text description of each
video in the research dataset, which acts as a concept label,
i.e. the likelihood of each video to contain a particular con-
cept. Then we run concept classifiers on each video in the
research dataset, and use the aforementioned concept labels
to compute the average precisions. Concepts with low pre-
cision or low predictive power (such as concept people) are
then dropped. Importantly, our procedure does not require
any manual annotation on the research dataset.

3.4. Combine the classifier ensemble

Suppose for event e we have selected m concepts’, each
with a weight w; € [0,1], ¢ = 1,..., m. Then, for any test
video v, the i-th concept classifier generates a confidence
score s;(v) € [—1,1]. Since different concept classifiers
result in different confidence scores, we need a principled
way to combine them, preferably also taking their relevance
w into account. This can be treated as an ensemble learning
problem, and there are many different ways to approach it.
For instance, we can use each concept classifier ¢ to induce
a total ordering among n test videos, namely,

video k ranked above video ! <= s;(vg) > s;(v). (1)

Then we can use rank aggregation techniques [18, 55] to
combine the resulting ranks. A very intuitive and straight-
forward approach is to use the weighted score vector

s=> 1", w;s; ()
and its induced ranking as in (1). This is known as the
Borda count in social choice theory, and has been explored
in [4, 26, 36, 38] when no labeled training examples are
given. In our later experiments, Borda works reasonably
well. However, rank aggregation techniques can still be
suboptimal, because the concept classifiers are obtained
from other domains thus their accuracy on the test domain
differs a lot. This motivates us to consider a recent ap-

proach that explicitly estimates the inaccuracy using unla-
beled data.

3.5. Spectral meta-learning

Assuming for a moment that each score vector is binary,
i.e.s;(v) € {—1,1}. We assume that the videos v are i.i.d.

2This adheres strictly to the NIST standard: “research set may be used
for training concepts and assigning importance weights.”

3Different events may use different concepts. For notational clarity,
throughout we omit the dependence on the event e.
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samples from an unknown distribution. The accuracy of the
i-th concept classifier is defined as follows®:

pi = Pr(si(v) =1jy = 1), 3)
n; = Pr(s;(v) = -1y = —1), 4)
™ = (pi +ni)/2, &)

where vy is the true event label of the test video v, and 7; €
[0, 1] is the average accuracy. Since we do not have labeled
data, it is not immediately clear how we can estimate ;.
The following assumption is standard for estimating
classifier accuracy using unlabeled data [17, 22, 40]:

Assumption 1 (Conditional Independence)

Pr(si(v),s;(v)ly) = Pr(si(v)ly) - Pr(s;(v)ly) ~ (6)
In other words, given the label y, the classifiers make inde-
pendent predictions. In our setting, the concept classifiers
are trained from different sources, therefore the conditional
independence assumption is reasonable.

Based on the conditional independence assumption, the
following key observation is made in [40]:

Lemma 1l Lerb = Pr(y = 1) — Pr(y = —1) be the class
imbalance, p; = Ky (s;(v)) be the mean prediction of the i-
th concept classifier, and the population covariance matrix

Qij = Ey[(si(v) = i) (s;(v) = p5)]- ()

Then, under the conditional independence assumption,

_ -l
Q= {(m - D2 - (- 1),

=7

o 3)

iF]
Crucially, from Lemma | we see that, except the diago-

nals, the population matrix @) arises from a rank-1 matrix,

whose leading eigenvector u satisfies

u; o< (2m; — 1). ©)

This immediately leads to a principled way to estimate the
accuracies 7; (up to a scale factor), since the covariance ma-
trix () can be easily estimated using unlabeled data. Con-
sider the sample covariance matrix

. 1 &

Qij = > (si(ve) = fui)(s;(ve) = fij),  (10)

k=1

n—1

where [i; = % Y iy 8i(vi). Clearly, Q is an unbiased es-
timator of the population covariance matrix (), and it can
be shown that [|Q — Q|| = Op(%). Therefore, for a large
number of unlabeled data, we can estimate the accuracy 7;
by solving the following problem:

Z(Qij — Rij)%. (11
i#j

Note that it is important to exclude the diagonals of (). In-
deed, as shown in [40], the leading eigenvector of @ is a

min
R>0, rank(R)=1

4We implicitly assume that the scores are positively related to the label.

biased estimator of the accuracy 7;, and the bias depends
on the number of classifiers m and the class imbalance b.

Unfortunately, (11) is a non-convex problem hence may
be hard to solve. Instead, we turn to the following alterna-
tive, which uses the trace (since R is constrained to be pos-
itive semidefinite) as a convex surrogate for the nonconvex
rank constraint:

min Y (Qij — Rij)? + Atr(R). (12)

R-0

i#]

The regularization constant A\ controls the desired rank of
the optimal solution. [40] proposed to solve (12) using
generic semidefinite programming (SDP) toolboxes, which
unfortunately do not scale very well. In Section 3.7 we will
provide a much faster O(m?) time algorithm.

After solving R from (12), we extract the accuracy 7;
from its leading eigenvector u. Now the question is can we
combine the classifiers more smartly by taking their accu-
racy into account? The answer is yes, and traces back to
[17], which considered the maximum likelihood estimator:

m

y" = sign Z(SZ(V) log a; +log ) | , (13)
i=1
Qi bini Bi = M (14)

T @) —m)

To get o and B from the accuracy m, [40] considered
Taylor expansion of the MLE at the most inaccurate set-
ting p, = n; = 1/2. This yields the spectral meta-learner
(SML):

J=sign |:Z si(v)(2m; — 1)] ~ sign |:Z sz(v)u1:| ,  (15)

i=1 i=1

ni(l — ni)

where recall that u is the leading eigenvector of the min-
imizer R of (12). Interestingly, the spectral meta-learner
is essentially a weighted majority voting rule, where the
weights come from the estimates of the accuracy. Intu-
itively, it gives more weight to classifiers whose estimated
accuracy is high, and vice versa. We note that it is possi-
ble to construct the meta-learner using more sophisticated
tensor approaches [22].

3.6. specialization and extension

In this section we specialize the spectral meta-learner
above to our semantic event search framework.

Probabilistic classifiers. Recall that we obtain m con-
cept classifiers from other domains and apply them to n
unlabeled test videos, resulting in the score vectors s; €
[-1,1]",¢ = 1,...,m. The theory in section 3.5 requires
s; to be binary, but this can be easily addressed by treat-
ing each score vector s; as probabilistic classifiers, namely,
we classify the k-th test video as positive with probability
s;(vk), independently of everything else. Under this inter-
pretation we can still derive Lemma 1, the sample covari-
ance Q and the spectral meta-learner as before, without the
need of thresholding the score vectors.
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Warping functions. Next, we wish to incorporate the rel-
evance vector w that we constructed in section 3.2 and re-
fined in section 3.3. To see why this is desirable, let us first
note that Lemma 1 applies to any classifiers, as long as they
satisfy the conditional independence assumption. More pre-
cisely, for transformations f; that do not depend on the un-
seen test video v or its unknown label y, we can consider
the “warped” classifiers

ti(v) = fi(si(v)), (16)
Clearly, the warped classifiers t are conditionally indepen-
dent if and only if the original classifiers s are so. Therefore
Lemma 1 still holds, and we can construct the sample co-
variance matrix

N
Qij =

1=1,...,m.

LS alve) — DG v — D). A

n—1
k

where as before [L{ = L5, ti(vy). The spectral meta-
learner for the warped classifiers is thus given as:

i = sign [fjfi(si(v»ui},

where u is the leading eigenvector of R, the minimizer of
(12) where we use ij instead.

(18)

Warped spectral meta-learner. Straightforward as it is,
the extension using different warping functions f; can lead
to a significant performance improvement. This is because
the accuracy of the spectral meta-learner 3 in (15) depends
on the accuracies of the base classifiers s;: SML is a smart
way to combine the base classifiers, but we should not ex-
pect it to improve the accuracy much if the base classifiers
are themselves near random. After all, garbage in garbage
out. The warping functions f; provide an extremely sim-
ple way to adjust the base classifiers. Since the relevance
vector w we constructed in Section 3.2 provides a crude
assessment of the relevance between the concept classifiers
and the event of interest, we consider the following warped
concept classifiers:

s WinSm), 19)
although other warping functions can similarly be used. In-
tuitively, the weight w; is the a priori co-occurrence fre-
quency of the i-th concept and the event of interest while
s; is the confidence likelihood of detecting the ¢-th concept.
As we will see in the experiments, this simple warping trick
significantly improves the performance.

t = (wysq,..

Few exemplars. The warped spectral meta-learner above
can also be applied for few-exemplar event detection, where
few (say 10) labeled training videos are provided. In this
case, we can train an additional classifier (or few) using the
provided labeled videos. Due to the small training size, the
accuracy of the resulting supervised classifier is likely also
low. We combine the supervised classifier with the concept
classifiers but give it the maximum weight w = 1. Then we
apply the warped spectral learner to get the final prediction.
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Algorithm 1: The warped SML algorithm.

Construct concept classifiers s and relevance vector w.
Apply warping t = (f1(81), .-, fm(Sm))-
Assemble the sample covariance Qf .
Set U1 =0.
fort=1,2,...do
R+ UngtT ;
Gij < 0 A l 7‘7. ;
Rij = Qij, i#]
u <« leading eigenvector of —G ;
(a¢,b;) < arg min 3 (aRyj + buju; — Qij)?
a,b>0 i£j

+ Aatr(R) +b);
Uit = (va:U—1, Vbyu) ;
U; < local minimizer of (23), initial with Ujp; ;
u < leading eigenvector of R ;
Rank test videos using (18).

1
2
3
4
5
6

3.7. Optimization using GCG

Lastly, we provide a fast algorithm for solving the
semidefinite program (12). This is crucial if we want to
combine a large number of concept classifiers.

We use the generalized conditional gradient (GCG, a.k.a
Frank-Wolfe) algorithm in [57, 10], with essential modifi-
cations to take the positive semidefinite constraint into ac-
count. In each iteration, GCG first computes the gradient

G:VR[Z#J,(RH—QHF . (20)
Then it finds a rank-1 update
u = argminz' Gz, 21

llzll2<1

which amounts to the leading eigenvector of —G. This step
takes into account the trace regularizer, and is essentially its
dual operator (spectral norm). Finally, GCG augments the
previous iterate R with the new rank-1 update:

R+ a-R+b-uu', (22)

where the positive coefficients a, b are found by line search.
To accelerate convergence, we consider the following
smooth unconstrained problem:

min D ((UUT)ij = Qij)* + AR,
i#]

which, unlike the original problem (12), is nonconvex. But
we can combine the global GCG algorithm with a local fast
solver for the nonconvex problem (23). The intuition is that
both (12) and (23) share the same set of global minimizers,
and by combining them we gain both global optimality and
local fast convergence, especially because the latter non-
convex problem has no constraint at all. We summarize the

(23)
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entire procedure in Algorithm 1. Following a similar argu-
ment as in [57], we can prove that Algorithm 1 converges
globally to an e-optimal solution of (12) in at most O(1/¢)
steps. In practice, once we arrive at the true rank of the min-
imizer, the local solver (e.g. 1bfgs) for the nonconvex prob-
lem (23) usually finds the solution at once. The per-step
time complexity is O(m?) since the most time-consuming
step is computing the rank-1 update in (21).

4. Experimental results

In this section we conduct thorough experiments to vali-
date our warped spectral meta-learner for both the semantic
event search and few-exemplar event detection tasks.

4.1. Speed comparison on synthetic data

We first verify the efficiency of the GCG Algorithm 1.
We randomly generate m score vectors s; € R™ ¢
1,...,m, and vary m from m = 2 to m = 100 (largest we
were able to try). As can be seen from Figure 2, the running
time of the naive SDP implementation (using YALMIP) in-
creased sharply with the number of concepts. In compari-
son, the running time of our GCG implementation remains
negligible (when achieving the same stopping criteria). It
is clear that without our efficient GCG implementation, it
is impossible to apply the (warped) spectral meta-learner to
the large video datasets in the next section.

1000 1000

. ‘-WGCG . B-GCG

w |©-SDP O -©-SDP

[0} [0)

£ £

~ 500 ~ 500

D [o))

[ = =
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(@) A=1le3 (b) A=1le-2

Figure 2: Efficiency comparison between GCG and SDP.
4.2. Experiment setup on real datasets

Datasets. We run experiments on three real datasets:
MED14: The TRECVID MEDTest 2014 dataset [2]
is collected by the NIST for all participants in the
TRECVID competition. There are in total 20 events,
whose description can be found in [2]. We use the of-
ficial test split released by the NIST, and strictly follow
its standard procedure [2]. In particular, we detect each
event separately, treating each of them as a binary classi-
fication/ranking problem.

MEDI13 [1]: Similar to MED14. Note that 10 of its 20
events overlap with those of MED14.

CCVup: The official Columbia Consumer Video dataset
[27] contains 9,317 videos in 20 semantic classes, in-
cluding scenes like “beach,” objects like “cat,” and events
like “baseball” and “parade.” Since our goal is to detect
events, we only use the 15 event categories.
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We evaluate the performance using the mean Average Pre-
cision (mAP). Parameters of all compared algorithms are
similarly tuned by grid search.

Concept detectors. 3,135 concept detectors are pre-
trained using TRECVID SIN dataset (346 categories),
Google sports (478 categories) [28, 24], UCF101 dataset
(101 categories) [46, 24], YFCC dataset (609 categories)
[3, 24] and DIY dataset (1601 categories) [56, 24]. We first
extracted the improved dense trajectory features (including
trajectory, HOG, HOF and MBH) using the code of [52]
and encode them with the Fisher vector representation [41].
Following [52], we first reduce the dimension of each de-
scriptor by a factor of 2 and then use 256 components to
generate the Fisher vectors. Then, on top of the extracted
low-level features, we trained the cascade SVM [19] for
each concept detector. Using these concept detectors we
obtain a 3,135-dimensional score vector for each video.

Competitors. We compare the following algorithms:

e Prim [20]: Primitive concepts, separately trained.

Sel [35]: A subset of primitive concepts that are more
informative for each event.

e Bi [43]: Bi-concepts discovered in [43].

e OR [20]: Boolean OR combinations of Prim concepts.

e Fu [20], Fu+: Boolean AND/OR combinations of Prim
concepts, w/o concept refinement.

Bor: The Borda rank aggregation in (2), with equal
weights on the discovered semantic concepts.

Bor+: Borda rank aggregation with equal weights on the
refined semantic concepts.

wBor: Borda rank aggregation with relevance weights on
the discovered semantic concepts.

wBor+: Borda rank aggregation with relevance weights
on the refined semantic concepts.

SML: Spectral meta-learner (15) on discovered semantic
concepts.

SML+: SML on refined semantic concepts.

e wSML: Warped SML (18) (with warping function (19))
on discovered semantic concepts.

wSML+: Warped SML on refined semantic concepts.

The last eight methods are first proposed here. The refined
concepts are subset of discovered semantic concepts, after
dropping inaccurate, low predictive, and irrelevant ones.

Note that we did not compare with approaches that use
multiple modalities of features, e.g. [25, 53], since we only
considered the visual feature. In future work we plan to
exploit speech and OCR information.

4.3. Semantic event search

We report the full experimental results on the TRECVID
MEDTest 2014 dataset in Table 1 and also a summary on
the MEDTest 2013 dataset and the CCV,, dataset. We
first consider the semantic event search setting where no la-
beled training video is available. As is clear from Table 1,
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MEDTest 2014

[ [ ID ] Prim [ Sel | Bi [ OR [ Fu [ Fu+r | Bor [ Bor+ [ SML [ SML+ [ wBor [ wBor+ [ wSML [ wSML+
E021 2.12 298 [ 264 | 389 | 397 | 443 | 267 [ 346 [ 429 [ 514 | 3.12 4.64 5.37 6.48
E022 075 | 0.97 | 0.83 1.36 149 | 215 [ 0.76 | 0.82 1.01 1.58 1.15 1.48 1.85 2.43
E023 33.86 | 36.94 | 35.23 | 39.18 | 40.87 | 42.62 | 35.65 | 37.22 | 38.19 | 41.73 | 38.68 | 41.78 | 43.26 50.55
E024 264 | 375 [ 3.02 | 466 | 4.92 535 | 298 [ 326 | 3.84 [ 4.02 | 4.11 4.87 5.12 5.69
E025 054 [ 076 | 062 | 0.97 [ 1.39 1.87 | 052 [ 0.75 [ 0.92 1.06 | 0.84 1.01 1.26 1.43
E026 0.96 1.59 1.32 | 2.41 2.96 | 3.17 1.03 1.84 [ 248 | 311 1.96 2.65 3.23 3.74
E027 11.21 | 13.64 | 12.48 [ 15.93 | 16.26 | 18.56 | 12.52 | 12.73 | 13.96 | 15.62 | 15.12 | 16.47 | 18.63 20.56
E028 0.79 [ 0.67 1.06 1.57 | 1.95 [ 3.4 [ 0.75 1.46 | 2.51 3.28 1.72 2.25 3.04 4.56
E029 8.43 [ 10.68 | 12.21 | 14.01 | 14.85 | 16.52 | 9.64 | 10.25 | 11.93 | 13.48 | 13.19 | 14.75 [ 16.69 18.84
E030 035 | 0.63 | 048 | 0.91 0.96 1.35 | 0.21 032 [ 038 045 | 0.36 0.48 0.52 0.67
E031 32.78 | 53.19 | 45.87 [ 69.52 | 69.66 | 72.59 | 54.29 | 61.82 | 65.75 | 70.43 | 67.49 | 72.64 | 76.45 82.86
E032 312 | 5.88 | 437 | 812 | 845 | 988 | 4.69 | 523 | 7.31 8.96 | 7.54 8.65 | 10.38 11.65
E033 15.25 [ 20.19 | 18.54 | 22.14 | 22.23 | 25.07 | 17.66 | 18.71 | 19.49 | 22.04 | 21.53 | 23.26 | 25.64 28.93
E034 028 [ 0.47 | 0.41 0.71 075 | 0.88 [ 032 ]| 048 [ 0.69 | 087 | 053 0.76 0.94 1.25
E035 9.26 | 13.28 | 11.09 | 16.53 [ 16.68 | 19.26 | 12.74 | 14.95 | 16.28 | 19.49 | 15.82 | 18.65 | 20.78 25.39
E036 1.87 | 263 | 214 | 315 | 339 | 3.92 1.98 | 229 [ 292 | 385 2.88 3.76 4.47 5.36
E037 216 | 452 | 3.81 684 | 6.8 | 7.26 | 3.26 | 4.19 | 533 | 6.41 5.42 6.83 7.45 8.68
E038 0.66 [ 0.74 | 0.58 | 0.99 1.16 1.62 | 057 | 0.74 1.26 1.93 | 0.85 1.12 1.89 2.67
E039 036 | 057 | 042 | 069 [ 077 [ 097 [ 045 | 058 | 0.83 1.02 [ 0.64 0.85 1.26 1.73
E040 065 | 098 | 0.72 1.57 [ 1.57 [ 2.01 0.86 1.23 1.57 | 1.98 1.24 1.76 2.12 2.56

[ mean ] 6.40 [ 9.55 [ 7.89 [ 10.76 [ 11.05 [ 12.13 | 8.18 | 9.12 | 10.05 | 11.33 | 10.21 | 11.44 [ 12.52 | 14.32

[ ] MEDTest 2013

[ mean | 7.07 | 794 692 ] 945 | 9.88 [ 1062 [ 6.86 [ 7.61 [ 879 [ 10.08 | 843 | 9.96 [ 11.64 | 13.46

| ] CCVup

[ mean | 19.05 [ 19.40 [ 20.25 | 21.16 [ 21.89 [ 22.52 | 21.19 [ 22.23 | 22.66 | 23.42 [ 23.08 | 23.87 [ 24.71 [ 25.59

Table 1: Experiment results for OEx event detection on MEDTest 2014, MEDTest 2013, and CCVg,;,. Mean average precision
(mAP), in percentages, is used as the evaluation metric. Larger mAP indicates better performance.

the proposed methods (last eight columns) compare favor-
ably against existing alternatives (first four columns), with
a large margin obtained by the most sophisticated method
wSML+ (14.32% vs the second best 10.76% achieved by
OR) . The improvements are particularly impressive on
some events, including Dog Show (E23), Rock Climbing
(E27), Beekeeping (E31) and Non-motorized vehicle repair
(E33). By further looking into the discovered semantic
concepts for these events, we find they all benefit greatly
from relevant classifiers that are discriminative and reliable.
For example, for the Beekeeping event, the performance of
wSML+ significantly relied on concepts such as “apiary bee
house” and “honeycomb”, which turn out to be the most re-
liable concepts for Beekeeping in our concept vocabulary.
Figure 3 shows the top 9 retrieved videos for the Beekeep-
ing event. It is clear that videos retrieved by the proposed
wSML+ are more accurate and visually coherent.

From Table 1 we make the following observations:

Comparing the columns w/o the “+” suffix, we can see
that concept refinement generally improves performance
than naively using all concepts. This confirms the impor-
tance of using data-driven word embeddings to eliminate
irrelevant and non-discriminative concepts.

Comparing the Border and SML variants we verify the
great benefit of using a principled method such as SML
to combine classifiers. By taking into account the accu-
racy, albeit being estimated using unlabeled data, SML
achieves better performance than simple majority voting.
Comparing the columns w/o the “w” prefix, we observe
that warping through the relevance significantly improves
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performance. This confirms the necessity to improve

base classifiers, and illustrates the limitation of SML.
Similar conclusions can also be made from the results on
MEDTest 2013 dataset and CCVy,;, dataset.

4.4. Few-exemplar event detection

As mentioned in Section 3.6, our semantic event search
framework can also be used for few-exemplar event detec-
tion: We simply combine the concept classifiers and the su-
pervised classifier using the warped spectral meta-learner
(with maximum weight for the latter). In this section, we
demonstrate the benefit of this hybrid approach. Table 2
summarizes the mAP on both MEDTest 2014 and 2013,
while Figure 4 compares the performance event-wise.

As abaseline (denoted as SVM in Table 2), we trained an
SVM classifier using the improved dense trajectory (IDT)
features [52] on 10 positive examples. Interestingly, this
supervised classifier performed even slightly worse than
our wSML+ which had no access to labeled data: mAP
13.92% vs 14.32% on MEDI14. This clearly demonstrates
that a large pool of unsupervised but relevant concept clas-
sifiers, after proper correction of their accuracy, can outper-
form supervised classifiers trained with few positives. How-
ever, with more discriminative features such as convolu-
tional neural networks (CNN), SVM with 10 positives out-
performed wSML+: mAP 24.46% vs 14.32% on MED14.

Figure 4 gives a more detailed view of comparison: the
supervised SVM (with IDT feature) is largely outperformed
by our wSML+ on events E23, E24, E31, and E33, while the
converse is observed on events E28, E30, E39, E40. In par-
ticular, on the event Beekeeping (E31), wSML+ improved
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Figure 3: Top ranked videos for the event Beekeeping. From top to below: Sel (AP: 53. 19) Bi (AP: 45.87), OR (AP: 69.52),
and wSML+ (AP: 82.86). True/false labels (provided by NIST) are marked in the lower-right of each frame.
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Figure 4: Performance comparison of CNN on MEDTest 2014 dataset, wSML+, and the hybrid of CNN and wSML+.

#of positives | Feature | Method [ MEDI4 [ MEDI3
0 IDT wSML 12.52 11.64
0 IDT wSML+ 14.32 13.46
10 IDT SVM 13.92 18.08
10 IDT wSML+ & SVM 16.98 19.65
10 CNN SVM [45] 24.46 29.84
10 IDT & CNN wSML+ & SVM 25.82 31.05

Table 2: Few-exemplar mAPs on MED14 and MED13.

IDT more than 2x (82.86% vs 33.9%). As mentioned be-
fore, this is because wSML+ significantly benefited from
the presence of informative and reliable concepts such as
“apiary bee house” and “honeycomb” on the particular Bee-
keeping event.

Finally we combine SVM with wSML+ as described be-
fore. This again significantly improves the performance
from 13.92% to 16.98% on the MEDTest 2014 dataset.
We also tried to combine with the state-of-the-art algo-
rithm in [54], and increased its performance from 24.46% to
25.82%. As expected, the gain obtained from such simple
hybrid diminishes when combining with more sophisticated
methods. Overall, the results clearly demonstrate the utility
of our framework even in the few-exemplar setting.

4.5. Annotated vs. unannotated data

We also compared the unsupervised SML approach with
a supervised approach as follows. For each event we ran-
domly select k labeled data from the MED14 training set,
which are used to estimate the accuracy of the concept clas-
sifiers (i.e., estimate p; and n; in (3)). Then we plug the
estimates to the MLE (13) and obtain predictions on the
test set. As can be seen from Figure 5, the unsupervised
SML approach is advantageous when roughly 8 or less la-
beled training videos are used to estimate the concept accu-
racies. This experiment again demonstrates the utility of our
method when the number of labeled training data is limited.
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Figure 5: mAPs with increasing number of annotated pairs.
5. Conclusions

To address the challenging task of semantic event search
and few-exemplar event detection, we proposed to leverage
on concept classifiers collected from other sources. Data-
driven word embedding models were used to seek the rel-
evance of the concepts to the event of interest. To further
account for the unreliability of the concept classifiers, we
extended the recent spectral meta-learner that combines the
classifiers based on a principled estimate of their accuracies
using unlabeled data. Efficient implementations were pro-
vided and promising experimental results were obtained on
three real video datasets. In the future we plan to incorpo-
rate temporal and spatial information [32, 48, 6] into our
framework.
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