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ABSTRACT
Classification problems with a large number of classes inevitably

involve overlapping or similar classes. In such cases it seems reason-

able to allow the learning algorithm to make mistakes on similar

classes, as long as the true class is still among the top-k (say) predic-

tions. Likewise, in applications such as search engine or ad display,

we are allowed to present k predictions at a time and the customer

would be satisfied as long as her interested prediction is included.

Inspired by the recent work of [15], we propose a very generic,

robust multiclass SVM formulation that directly aims at minimizing

a weighted and truncated combination of the ordered prediction

scores. Our method includes many previous works as special cases.

Computationally, using the Jordan decomposition Lemma we show

how to rewrite our objective as the difference of two convex func-

tions, based on which we develop an efficient algorithm that allows

incorporating many popular regularizers (such as the l2 and l1

norms). We conduct extensive experiments on four real large-scale

visual category recognition datasets, and obtain very promising

performances.
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1 INTRODUCTION
The multiclass classification problem is a fundamental task in the

filed of machine learning and computer vision [3, 8, 10, 20, 32]. It

plays a central role in many vision applications, e.g., object recog-
nition, image segmentation, and scene classification [21], which

can all be reduced to the task of discriminating multiple categories.

Multiclass classification is difficult because the classifier needs to

distinguish an object from a large number of categories, potentially

overlapping and similar to each other [5, 17]. Indeed, even conser-

vative estimates suggest that there are tens of thousands of object

classes in the visual world [2]. The multiclass classification problem

can be solved by naturally extending the binary classification tech-

nique with the 1-vs-all or 1-vs-1 strategy [22]. These include neural

networks [25], decision trees [1], and Support Vector Machines [4].

When the number of visual categories becomes large, the visual

recognition problem becomes extremely challenging in the presence
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a. Beach b. Mountain

c. Wedding Ceremony d. Wedding Dance

Figure 1: Video examples from the FCVID dataset [11]. The
objects in Figure (a) and Figure (b) have some overlapping,
and the objects in Figure (c) and Figure (d) are similar.

of overlapping or similar classes [9]. We illustrate this phenomenon

in Figure 1, where Fig. (a) and Fig. (b) have some overlapping classes

while Fig. (c) and Fig. (d) have similar classes. One might ask, is it

possible, or even expected, for a human to predict correctly on a

first attempt?

Perhaps not. Therefore, for such challenging circumstances, it

makes sense to allow the learning algorithm to present k predic-

tions altogether to the user, as long as the true category is among

the top-k predictions. This assumption also aligns with many real

applications, such as ad display or search engine [12, 13, 18]. Gener-

ally, the customer will still be happy as long as her item of interest

is included in the top-k candidates [14].

Recently, [15] proposed the top-k multiclass SVM as a direct

method to optimize for top-k performance. It strictly generalizes

the multiclass SVM based on a tight convex upper bound of the

top-k error. The traditional multiclass formulation of [4] aims at

separating the correct class with the top-1 confusing class, which

can be too stringent for applications with severe class overlapping.

In contrast, the top-k extension in [15] gives the algorithm some

slack by ignoring the k − 1 most confusing labels.

The major limitation of the existing top-k extension is its sen-

sitivity to abnormal observations, i.e., outliers, after all its loss is
still convex [31]. To overcome this limitation, we propose a very

generic, robust multiclass SVM formulation. Its goal is to directly

minimize a weighted and truncated combination of the ordered

prediction scores. Particularly, the proposed algorithm allows to

“give up” focusing on any training pair that incurs an excessively
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large loss, namely, outliers. We also show that the algorithm in-

cludes many previous multiclass SVMs as special cases. Based on

the Jordan decomposition Lemma, we propose an efficient algo-

rithm that allows incorporating many popular regularizers. Lastly,

we conduct extensive experiments on several real large-scale visual

category recognition datasets. The experiment results confirm the

effectiveness of our algorithm.

Paper organization: We first review some related works on

multiclass SVM and its recent top-k extension in Section 2. Then

we introduce the proposed Robust Top-k Multiclass SVM in Section

3, followed by the detailed computational algorithm in Section 4.

Experiments are conducted in Section 5. Finally, Section 6 concludes

this paper.

2 PRELIMINARY
In this section we first recall the multiclass SVM of [4] and the

recent top-k extension due to [15].

Given a training sample (xi ,yi ), i = 1, . . . ,n, where xi ∈ X ⊆
Rd

and yi ∈ Y := {1, . . . , c}, the multiclass SVM [4] aims at

minimizing the following regularized empirical risk:

min

W =[w1, ...,wc ]
⊤∈Rc×d

n∑
i=1

¯ℓi (W ) + λ∥W ∥2F, (1)

where the loss
¯ℓi on the i-th training example is given as

¯ℓi = ¯ℓi (W ) := max

j ∈Y
{1j,yi + ⟨wj , xi ⟩ − ⟨wyi , xi ⟩}, (2)

∥W ∥F is the Frobenius norm, and λ ≥ 0 controls the tradeoff be-

tween the model fitting on the training data and the model com-

plexity. Here we use the notation 1A for the indicator which is 1 iff

A is true, and 0 otherwise. The inner product ⟨wj , xi ⟩ is the score
of the i-th example w.r.t. the j-th class.

To predict the label of a test point x, we use the max-rule
1
:

ŷ = argmax

j ∈Y
⟨wj , x⟩. (3)

From this prediction rule it is clear that the prediction is correct,

i.e., ŷ = y (x) =: y, iff the scores satisfy

⟨wy , x⟩ > ⟨wj , x⟩, ∀j , y. (4)

Accordingly, the multiclass loss
¯ℓi in Equation (2) is designed to

enjoy the following property:

¯ℓi (W ) = 0 ⇐⇒ ⟨wyi , xi ⟩ ≥ ⟨wj , xi ⟩ + 1j,yi , (5)

which is clearly a sufficient condition to guarantee Equation (4).

Due to homogeneity of the objective function (1), changing the

margin parameter 1 here to any positive number γ > 0 amounts to

scaling downW and scaling up λ by γ . For simplicity, we do not

consider adding a bias term here.

The multiclass SVM formulation above has been successfully

applied to many real applications, however, it is less appropriate

when we are allowed to predict a set of labels Ŷ for a test point x
and the prediction is deemed “correct” iff y = y (x) ∈ Ŷ . Recently,
[15] considered the following set prediction rule:

Ŷ = argmax

Y ⊆Y, |Y |=k

∑
j ∈Y
⟨wj , x⟩, (6)

1
Ties can be broken in any consistent way.

where the cardinality of Ŷ is constrained to bek . Namely, we present

the k labels whose scores are among the top-k , and the prediction

is considered “correct” iff the scores satisfy
2
:

⟨wy , x⟩ > (W\yx)[k]
, (7)

where we use a
[k]

to denote the k-th largest entry of the vector

a, and the matrix W\y ∈ R
(c−1)×d

removes the y-th row of W .

Accordingly, [15] modified the multiclass SVM loss Equation (2) as

follows:

˜ℓi (W ) := max{0, (W\yi xi )[k]
+ 1 − ⟨wyi , xi ⟩} (8)

= max

{
0,
(
(W − 1w⊤yi )xi + 1 − eyi

)
[k]

}
, (9)

where ej is the j-th canonical basis vector, and 1 is the all ones

vector. Indeed,

˜ℓi (W ) = 0 ⇐⇒ ⟨wyi , xi ⟩ ≥ (W\yi xi )[k]
+ 1, (10)

which is a sufficient condition to guarantee Equation (7). Again, the

margin parameter 1 here can be replaced with any positive number.

The above top-k extension due to [15] is indeed useful for the

following reasons:

• It strictly generalizes the multiclass SVM: Setting k = 1 we

recover the original multiclass SVM of [4], which is clear by

comparing Equation (2) with Equation (8), Equation (3) with

Equation (6), Equation (4) with Equation (7), and Equation

(5) with Equation (10).

• In retrieval tasks such as search engine or ad display, we may

be allowed to present k predictions altogether to the user,

who will remain happy as long as she can easily identify the

desired outcome from the k candidates.

• The multiclass formulation of [4] aims at separating the cor-

rect class with the top-1 confusing class, which is wasteful in

applications (e.g. image classification with extremely many

labels) where the labels inevitably overlap a lot. In contrast,

the top-k extension gives the algorithm some slack by ig-

noring the k − 1 most confusing labels (which could well

resemble the correct class).

The top-k loss in Equation (8) is unfortunately nonconvex. In-

stead, [15] proposed the following convex upper bound (up to a

rescaling of factor k):

˜ℓi (W )=max

{
0,

k∑
j=1

(
(W − 1w⊤yi )xi + 1 − eyi

)
[j]

}
. (11)

However, this convex loss may still be dominated by the top-1

confusing class. Moreover, it grows unboundedly as ∥W ∥F → ∞
in the nonseparable case — an indication of non-robustness w.r.t.

outliers [31].

3 ROBUST TOP-K MULTICLASS SVM
In this section we further extend the top-k multiclass SVM in two as-

pects: We introduce weights on the ordered scores, and we truncate

the loss to induce robustness. Due to its generality, our formulation

includes the aforementioned multiclass SVM works as special cases.

2
Note that for the set prediction rule Equation (6), we can assumew.l.o.g. that k ≤ c−1,

for otherwise the problem is trivial.
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The major limitation of the convex surrogate Equation (11) and

also the original nonconvex top-k loss Equation (8), is their sensi-

tivity to abnormal observations, i.e. outliers. This is mostly due to

the unboundedness of the corresponding losses (as ∥W ∥F → ∞).
To overcome this limitation, we propose the following truncated

loss that extends the multicategoryψ -loss in [19]:

ℓi (W ) := min

{
max

{
0,

c∑
j=1

α js
i
[j]

}
,τ
}
, (12)

where we use the following abbreviation for the scores

si = (W − 1w⊤yi )xi + 1 − eyi , (13)

and α ∈ Rk
is an arbitrary weight that we choose to combine

the ordered scores. Here τ > 0 is a hyperparameter that we use

to cap the loss for any training pair. In particular, it allows the

algorithm to “give up” focusing on any training pair that incurs

an excessively large loss, namely, outliers. In real large application

where the training data are inevitably noisy, it is beneficial to use a

small τ to exclude outliers.

It is clear that our formulation includes many previous multiclass

SVMs as special cases:

• If τ = ∞, α1 = 1,α2 = · · · = αc = 0, then we recover the

multiclass SVM of [4].

• If τ = ∞, αk = 1,α1 = · · · = αk−1
= αk+1

= · · · = αc = 0,

then we recover the nonconvex top-k multiclass SVM of

[15].

• If τ = ∞, α1 = · · · = αk = 1,αk+1
= · · · = αc = 0, then we

recover the convex surrogate of [15].

• If τ = 2, α1 = 1,α2 = · · · = αc = 0, then we recover a similar

formulation as [19].

We can combine the robust multiclass loss Equation (12) with

a regularization function to promote structure, resulting in the

composite minimization problem:

min

W

n∑
i=1

ℓi (W ) + λf (W ), (14)

where we can choose for instance the l2
2
-norm f (W ) = ∥W ∥2F for

generalization or the l1-norm f (W ) = ∥W ∥1 for sparsity. In general,
our rosbut loss ℓi (W ) in Equation (12) is not convex, due to the

truncation by τ and the arbitrariness of the weight α . However,
if τ = ∞ and α1 ≥ α2 ≥ · · · ≥ αc is monotonically decreasing,

such as the multiclass SVM of [4] and the convex surrogate of [15],

then the formulation Equation (14) becomes a convex minimization

problem. In the next section we develop an efficient algorithm for

the general nonconvex setting.

4 COMPUTATIONAL ALGORITHM
The main challenge to numerically solve our formulation Equation

(14) is that the robust loss ℓi (W ) defined in Equation (12) is both

nonconvex and nonsmooth — a setting where not many algorithms

are applicable. Here we propose an efficient implementation based

on the difference of convex algorithm (DCA) [28]. The main idea

is to decompose a nonconvex function, say ℓ, as the difference of

two convex functions, i.e. ℓ = д −h, where both д and h are convex.

Note that not all nonconvex functions can be written this way, but

it is the case for our robust loss (as we shall demonstrate soon).

The decomposition is not unique either and we will simply pick a

convenient one. The next step is to linearize h at the current iterate,

sayWt , so that we have the upper bound

ℓ(W ) ≤ д(W ) − ⟨W −Wt ,∇h(Wt )⟩ − h(Wt ), (15)

where ∇h(Wt ) is any subgradient of h atWt and the inequality

follows from the convexity of h. Since the upper bound is now a

convex function ofW , we can apply our favorite convex optimiza-

tion algorithm to find its minimizer, which will beWt+1, our next

iterate. It is easy to prove that the objective value will decrease

monotonically, and with more efforts it can be shown that the algo-

rithm converges to a critical point, see [28]. We note that another

possibility is to approximate the robust loss ℓi with some (noncon-

vex) differentiable function, and then apply the ordinary gradient

descent.

To implement the above DCA procedure, let us first decompose

ℓi (W ) into the difference of two convex functions. For this we need
the following well-known (Jordan) decomposition:

Lemma 4.1. For any vector α ∈ Rc , we have

α = α+ + α−, where ∀j = 1, . . . , c, (16)

α+j =

j∑
p=1

max{0,αp − αp−1}, (17)

α−j =

j∑
p=1

min{0,αp − αp−1}, (18)

and by convention α0 := 0.

Clearly, α− is monotonically decreasing and α+ is monotonically

increasing. For instance, for the top-k loss:

α = [0, . . . , 0, 1︸︷︷︸
k th

, 0, . . . , 0] (19)

α+ = [0, . . . , 0, 1︸︷︷︸
k th

, 1, . . . , 1] (20)

α− = [0, . . . , 0, −1︸︷︷︸
(k+1)th

,−1, . . . ,−1], (21)

while for the convex upper bound of [15], i.e. Equation (11), we

have

α = [1, . . . , 1, 1︸︷︷︸
k th

, 0, . . . , 0] (22)

α+ = [1, . . . , 1, 1︸︷︷︸
k th

, 1, . . . , 1] (23)

α− = [0, . . . , 0, −1︸︷︷︸
(k+1)th

,−1, . . . ,−1]. (24)

Of course, the decomposition is not unique. For instance, we could

also choose α− = α ,α+ = 0 for the latter case above.
Now we can proceed to the robust top-k loss in Equation (12).

Since

min{max{a, 0},τ }=max{a, 0} −max{a − τ , 0}

=max{a++a−, 0}−max{a++a−−τ , 0}

=max{a−,−a+} −max{a− − τ ,−a+},
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where in the last equality we subtracta+ from both terms. Therefore,

we have the following decomposition for the i-th robust loss:

ℓi (W ) = max




c∑
j=1

α−j s
i
[j],

c∑
j=1

(−α+j )s
i
[j]




(25)

− max




c∑
j=1

α−j s
i
[j] − τ ,

c∑
j=1

(−α+j )s
i
[j]




Since both α− and −α+ are monotonically decreasing, all four

sums in Equation (25) are convex functions ofW . Since convexity

is preserved under taking the maximum, we have successfully de-

composed the robust loss ℓi (W ) into the difference of two convex

functions.

The next step is to linearize the subtrahend convex function, for

which we will need a formula for the subgradient of the convex

functionW 7→
∑c
j=1

βjs[j], where recall from Equation (13) that s
is a linear function ofW and β is any monotonically decreasing

vector. For this purpose we need the following reformulation:

c∑
j=1

βjs[j] = max

P
β⊤P[(W − 1w⊤y )x + 1 − ey ], (26)

where the maximization is over all permutation matrices P . Given
Wt , we can find a maximizer Pt easily in (almost) linear time (es-

sentially sorting s), then we can choose the subgradient to be

P⊤t βx
⊤ − (β⊤1)eyx⊤. (27)

Note that the second term does not depend onWt hence can be pre-

computed once in the beginning. Lastly, let us recall the well-known

subdifferential rule for the max-function max{д,h}: the subgradient
can be simply chosen as the subgradient of д (resp. h) if д (resp. h)
is bigger at the evaluated point. To summarize, a subgradient of

the subtrahend in Equation (25) at the current iterateWt is given

in Equation (27) where β = α− if the first term inside the max

operator is bigger and β = −α+ otherwise.
Denote the subgradient above in Equation (27) as Ht . The next

step is to minimize the convex upper bound:

min

W

n∑
i=1

ℓi (W ;Wt ) + λf (W ), where (28)

ℓi (W ;Wt ) = max

{ c∑
j=1

α−j s
i
[j],

c∑
j=1

(−α+j )s
i
[j]

}
− ⟨H i

t ,W ⟩

Conveniently, we can evaluate the subgradient of the convex upper

bound ℓi (W ;Wt ) similarly as before. Note that H i
t is fixed here. To

solve the convex upper bound Equation (28), we use the stochastic

forward-backward splitting algorithm of [6]. The algorithm is again

iterative, and consists mostly of two steps:

W ←W − η∇ℓI (W ;Wt ) (29)

W ← Pηλf (W ) := argmin

Z

1

2η ∥W − Z ∥
2

F + λf (Z ), (30)

where ∇ℓI (W ;Wt ) is the subgradient evaluated at a (uniformly)

randomly chosen sample index I , η > 0 is a small step size, and

Pηλf (W ) is the proximity operator of the regularizer f . For the

Algorithm 1: DCA for robust top-k multiclass SVM

1 InitializeW ,η,α .

2 for j = 1, . . . , c do
3 α+j = α

+
j−1
+max{0,α j − α j−1}

4 α−j = α
−
j−1
+min{0,α j − α j−1}

5 for t = 1, 2, . . . do
6 H ← 0
7 for i = 1, . . . ,n do
8 s← (W − 1w⊤yi )xi + 1 − eyi
9 [s, P]← sort(s)

10 if s⊤α− − τ > s⊤ (−α+) then
11 β ← α−

12 else
13 β ← −α+

14 H ← H + P⊤βx⊤i − (β⊤1)eyi x
⊤
i

15 form = 1, 2, . . . do
16 randomly draw I from {1, . . . ,n}

17 s← (W − 1w⊤yI )xI + 1 − eyI
18 [s, P]← sort(s)
19 if s⊤α− > s⊤ (−α+) then
20 β ← α−

21 else
22 β ← −α+

23 G ← P⊤βx⊤I − (β⊤1)eyI x
⊤
I

24 W ←W − η(G − H )

25 W ← Pηλf (W )

l2
2
-norm regularizer we have

Pηλ
∥ · ∥2F

(W ) = 1

1+2ηλW (31)

while for the l1-norm regularizer we have

Pηλ
∥ · ∥1

(W ) = sign(W ) ∗max{|W | − ηλ, 0}, (32)

where the algebraic operations are component-wise. For the step

size η we can either choose a small value by try-and-error, or use

the diminishing rule ηm = O (1/
√
m). As shown by [6], this iteration

will converge to the minimum objective value in expectation (and

in high probability).

We summarize the entire procedure in Algorithm 1, where we

make one final modification: Instead of computing the entire sub-

gradient of ℓI (W ;Wt ), we rearrange the terms as follows:

min

W

∑
i

max

{ c∑
j=1

α−j s
i
[j],

c∑
j=1

(−α+j )s
i
[j]

}
(33)

−⟨
∑
i
H i
t ,W ⟩ + λf (W ), (34)

where we treat the terms in Equation (34) as the “regularizer”. There-

fore, in each iteration we need only sample and compute the sub-

gradient of the first max-term in Equation (33), followed by the

proximity operator of the sum in Equation (34), for which we can

apply Theorem 3 of [30]. This amounts to subtracting the term∑
i H

i
t instead of the sampled one H I

t , hence potentially making
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more progress in each iteration. It is clear that in each iteration

the time and space complexity is (almost) linear in terms of the

problem size.

We note that [15] adopted an entirely different algorithm (SDCA

of [23]) for their convex upper bound loss Equation (11). However,

SDCA optimizes the dual problem and relies on a strongly con-

vex regularizer (such as the l2
2
-norm). Instead, our algorithm here,

building on the work of [28] and [6], works for a variety of robust

losses (by choosing different weight vector α ) and any regularizer

(as long as its proximity operator is available cheaply, such as the

l1-norm).

5 EXPERIMENTS
In this section, we carry out extensive experiments to validate

the performance of the proposed robust top-k multiclass SVM,

abbreviated as rtop-k SVM.

5.1 Experimental Setup
Datasets: We test on four real visual category recognition datasets.

• Caltech 101 Silhouettes [27]: This dataset was created based on

the CalTech 101 image annotations. Each image in the CalTech

101 data set includes a high-quality polygon outline of the pri-

mary object in the scene. To create the CalTech 101 Silhouettes

data set, each outline is centered and scaled, and then rendered

on a DtimesD pixel image-plane. It contains 101 classes, each

of which has at most 100 training instances. We use features

provided by [27].

• MIT Indoor 67 [21]: This is a dataset of 15,620 images over 67

indoor scenes assembled by [21]. The indoor scenes range from

specific categories (e.g., dental office) to generic concepts (e.g.,
mall). We follow their experimental setting in [21] by using 80

images from each class for training and 20 for testing. We extract

CNN features of a pre-trained CNN (fc7 layer after ReLU) [24],

resulting in 4096-dimensional feature representation.

• UCF 101 [26]: This dataset consists of 13,320 videos with an av-

erage length of 6.2 seconds belonging to 101 different action

categories. The dataset has 3 standard train/test splits with the

training set containing around 9,500 vidoes in each split (the

rest are used as testing data). Following the hybrid deep learning

framework proposed in [29], we first extract spatial and motion

features with two CNNs trained static frames and stacked optical

flows respectively. The two types of features are used separately

as inputs of the LSTM network for long-term temporal model-

ing. We apply a regularized fusion network to combine the two

features on video level.

• FCVID 239 [11]: The FCVID239 dataset contains 91,223 web

videos annotated into 239 categories, covering a wide range of

topics like social events (e.g., tailgate part), procedural events
(e.g., making cak), objects (e.g., panda), scenes (e.g., beach), etc.
The “data” category has the largest number of positive videos

while “making egg tarts” is the most infrequent category con-

taining only 108 samples. The total duration of FCVID is 4,232

hours with an average video duration of 167 seconds. We use the

4096-dimensional CNN features provided by [11].

Compared Algorithms: To evaluate the performance of the

proposed algorithm, we compare with the following alternatives.

• Probabilistic Model for Top-k Classification [27]: The proabilistic

model explicitly includes a prior distribution over the number of

variables that take on each label. The authors illustrate the utility

of the model by exploring applications to top-K classification.

• SVM
OVA

: The most common technique for multiclass SVMs has

been to build the classifier in a one-versus-rest fashion, and to

choose the class which classifiers the test datum with greatest

margin.

• TopPush [16]: TopPush aims to optimize accuracy at the top that

has computational complexity linear in the number of training

instances.

• Top-k SVM [15]: The top-k multiclass SVM is a direct method to

optimize for top-k performance. The generalization of the well-

known multiclass SVM is based on a tight convex upper bound

of the top-k error.

5.2 Visual Recognition Experiment
For all the compared algorithms, we cross-validate the regulariza-

tion parameter λ in the range of 10
−5

to 10
3
, extending it when

the optimal value is at the boundary. The oficial splits are used for

all the compared algorithms. For the proposed algorithm, we also

cross-validate the hyperparameter τ in the range of 10
−1

to 10
3
.

The multiclass SVM of [4] is compared as a baseline. We use LibLin-

ear [7] for SVM
OVA

and the code provided by [16] for TopPush. For

the latter, we use its one-vs-all version for scalability. Two versions

of top-k multiclass SVM [15], namely top-k SVMα and top-k SVMβ ,

are also compared. Performance is measured in terms of the top-k
accuracy, i.e., the percentage of labels with at least one matching

item retrieved within the top-k predictions.

To begin with, we compare all the algorithms with l2
2
-norm reg-

ularization. The experimental results on all the used datasets are

illustrated in Table 1 and Table 2, fromwhich wemake the following

observations: First, all alternatives of top-k SVM generally outper-

form the multiclass SVM of [4], hence demonstrating the benefit

of allowing k simultaneous predictions. Second, it is interesting to

notice that the alternatives of top-k SVM achieve a decreased top-1

accuracy on MIT Indoor 67 dataset, while achieving a significant

improvement in the top-1 accuracy on the other datasets, like UCF

101 and FCVID 239 datasets. This phenomenon is consistent with

the intuition that optimizing the top-k accuracy is more appropri-

ate for datasets with a large number of categories, especially when

overlapping or similar categories commonly exist. Third, the pro-

posed robust top-k SVM performs better than the other alternatives

of top-k SVM. For example, in top-5 accuracy with the proposed

rtop-10 SVM, compared with top-10 SVMα : +2.06% on Caltech 101,

+1.91% on MIT Indoor 67, +2.39% on UCF 101 and +2.39% on FCVID

239 dataset. This confirms that enhanced robustness does lead to

improved performance. Overall, we get systematic increase in top-k
accuracy over all the dataset that we used.

To step further, we also compare the performance of top-k SVMα ,

top-k SVMβ and the proposed algorithm, when l1-norm regulariza-

tion is used for all the compared alternatives. For space limitation,

we only use the Caltech 101 Sihouettes and MIT Indoor 67 datasets

in this experiment. The experimental results are reported in Ta-

ble 3, from which we observe that it is clear the proposed algorithm

rtop-k SVM performs the best on both datasets. We attribute this
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Table 1: Performance comparison between different multi-class classification algorithms on Caltech 101 Sihouettes and MIT
Indoor 67 datasets. Top-k accuracy is used as an evaluation metric. A larger value indicates a better performance.

Caltech 101 Sihouettes MIT Indoor 67

Top-1 Acc Top-2 Acc Top-3 Acc Top-4 Acc Top-5 Acc Top-10 Acc Top-1 Acc Top-2 Acc Top-3 Acc Top-4 Acc Top-5 Acc Top-10 Acc

Top-1 [27] 62.13 73.68 79.59 80.05 83.08 88.65 69.76 78.64 81.64 83.17 84.62 90.83

Top-2 [27] 61.42 72.11 79.23 79.94 83.42 88.93 68.84 77.33 80.87 82.69 83.96 90.14

Top-5 [27] 60.24 70.65 78.71 79.16 83.42 88.93 69.43 78.52 81.29 82.95 84.25 90.47

SVM
OVA

61.81 73.13 76.25 77.76 78.89 83.57 71.72 81.49 84.93 86.49 87.39 90.45

TopPush 63.11 75.16 78.46 80.19 81.97 86.95 70.52 83.13 86.94 90.00 91.64 95.90

top-1 SVMα 62.81 74.60 77.76 80.02 81.97 86.91 73.96 85.22 89.25 91.94 93.43 96.94

top-2 SVMα 63.11 76.16 79.02 81.01 82.75 87.65 73.06 85.67 90.37 92.24 94.48 97.31

top-3 SVMα 63.37 76.72 79.67 81.49 83.57 88.25 71.57 86.27 91.12 93.21 94.70 97.24

top-4 SVMα 63.20 76.64 79.76 82.36 84.05 88.64 71.42 85.67 90.75 93.28 94.78 97.84

top-5 SVMα 63.29 76.81 80.02 82.75 84.31 88.69 70.67 85.75 90.37 93.21 94.70 97.91

top-10 SVMα 62.98 77.33 80.49 82.66 84.57 89.55 70.00 85.45 90.00 93.13 94.63 97.76

top-20 SVMα 59.21 75.64 80.88 83.49 85.39 90.33 65.90 84.10 89.93 92.69 94.25 97.54

top-1 SVMβ 62.81 74.60 77.76 80.02 81.97 86.91 73.96 85.22 89.25 91.94 93.43 96.94

top-2 SVMβ 63.55 76.25 79.28 81.14 82.62 87.91 74.03 85.90 89.78 92.24 94.10 97.31

top-3 SVMβ 63.94 76.64 79.71 81.36 83.44 87.99 72.99 86.34 90.60 92.76 94.40 97.24

top-4 SVMβ 63.94 76.85 80.15 82.01 83.53 88.73 73.06 86.19 90.82 92.69 94.48 97.69

top-5 SVMβ 63.59 77.03 80.36 82.57 84.18 89.03 72.61 85.60 90.75 92.99 94.48 97.61

top-10 SVMβ 64.02 77.11 80.49 83.01 84.87 89.42 71.87 85.30 90.45 93.36 94.40 97.76

top-20 SVMβ 63.37 77.24 81.06 83.31 85.18 90.03 71.94 85.30 90.07 92.46 94.33 97.39

rtop-1 SVM 64.89 77.03 81.18 83.17 84.49 88.49 74.02 85.13 89.96 92.36 94.03 97.69

rtop-2 SVM 64.97 77.65 82.53 83.42 84.73 89.03 73.75 85.58 90.11 92.49 94.06 97.46

rtop-3 SVM 65.23 77.84 82.64 83.29 84.98 89.44 74.12 85.03 89.59 92.28 93.85 96.58

rtop-4 SVM 65.49 78.35 83.12 83.57 84.77 89.97 74.69 85.98 90.03 92.79 94.13 97.39

rtop-5 SVM 65.83 78.89 83.04 83.29 84.53 90.48 73.84 85.86 91.05 92.86 95.16 97.84

rtop-10 SVM 66.21 78.64 83.28 84.02 85.38 91.73 73.28 86.87 91.68 94.74 96.42 98.22

rtop-20 SVM 66.46 77.63 83.21 84.14 84.35 90.21 72.69 85.68 90.28 94.12 94.89 97.85
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Figure 2: Robust evaluation of the proposed algorithm on Caltech 101 Sihouettes, MIT Indoor, UCF 101 and FCVID datasets.

superiority of the proposed algorithm to the novel truncated loss

function in Equation (12).

5.3 Robustness Evaluation
To conduct additional experiments to illustrate robustness of the

proposed algorithm, we corrupt a varying percentage (0%, 20%, 40%,

60%) of training samples with outliers and compare the performance

of top-k SVM and robust top-k SVM (rtop-k SVM). In this section,

we use Top-5 accuracy as an evaluation metric and choose k = 5 as

an example. We report the experimental results in Figure 2. From

the experimental results we have the following observations: (1)

With the increase of outlier percentages, the performance of all the
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Table 2: Performance comparison between different multi-class classification algorithms on UCF 101 and FCVID datasets.
Top-k accuracy is used as an evaluation metric. A larger value indicates a better performance.

UCF101 FCVID

Top-1 Acc Top-2 Acc Top-3 Acc Top-4 Acc Top-5 Acc Top-10 Acc Top-1 Acc Top-2 Acc Top-3 Acc Top-4 Acc Top-5 Acc Top-10 Acc

Top-1 [27] 70.85 81.57 86.46 87.28 88.35 90.28 56.85 67.57 72.46 73.29 74.35 76.28

Top-2 [27] 70.24 80.83 86.18 86.93 87.85 89.88 56.24 66.84 72.18 72.94 73.85 75.88

Top-5 [27] 70.66 81.16 86.33 87.15 88.04 90.16 56.67 67.17 72.33 73.15 74.05 76.16

SVM
OVA

70.94 83.39 87.29 88.42 89.17 91.68 56.95 69.39 73.30 74.43 75.17 77.68

TopPush 72.49 85.16 88.14 88.98 89.85 92.56 58.50 71.16 74.14 74.98 75.86 78.56

top-1 SVMα 78.83 88.21 91.20 92.89 93.97 96.80 64.84 74.21 77.21 78.89 79.98 82.80

top-2 SVMα 78.56 88.18 91.28 93.10 93.87 96.78 64.56 74.19 77.28 79.10 79.88 82.78

top-3 SVMα 77.98 87.87 91.22 93.13 93.95 96.80 63.99 73.88 77.23 79.13 79.95 82.81

top-4 SVMα 77.58 87.81 91.12 93.02 93.87 96.75 63.59 73.82 77.12 79.03 79.87 82.76

top-5 SVMα 77.06 87.68 91.09 92.86 93.95 96.85 63.07 73.68 77.09 78.86 79.95 82.85

top-10 SVMα 75.61 87.18 90.80 92.84 93.58 96.78 61.62 73.19 76.80 78.85 79.59 82.78

top-20 SVMα 73.83 85.78 89.92 92.33 93.37 96.71 59.84 71.79 75.93 78.33 79.37 82.71

top-1 SVMβ 78.83 88.21 91.20 92.89 93.97 96.80 64.83 74.21 77.20 78.90 79.98 82.81

top-2 SVMβ 79.14 88.78 91.63 93.02 94.18 97.32 65.15 74.78 77.63 79.02 80.18 83.32

top-3 SVMβ 79.37 88.95 91.84 92.96 93.96 97.11 65.37 74.95 77.85 78.97 79.96 83.11

top-4 SVMβ 79.05 88.36 91.38 92.23 93.96 96.86 65.06 74.37 77.39 78.24 79.96 82.87

top-5 SVMβ 77.85 87.95 91.54 92.51 93.89 95.92 63.85 73.95 77.55 78.52 79.89 81.92

top-10 SVMβ 76.53 87.36 91.33 92.87 93.84 95.87 62.53 73.37 77.34 78.87 79.85 81.87

top-20 SVMβ 74.17 86.04 91.28 92.69 93.12 95.46 60.17 72.04 77.28 78.69 79.13 81.46

rtop-1 SVM 78.97 89.59 92.12 94.03 95.16 97.88 65.01 75.58 78.21 80.04 81.12 83.89

rtop-2 SVM 79.23 90.18 92.58 94.16 95.64 98.02 65.21 76.05 78.51 80.12 81.58 84.04

rtop-3 SVM 79.85 90.35 92.29 94.11 95.23 97.61 65.85 76.19 78.27 80.13 81.06 83.52

rtop-4 SVM 79.28 89.59 91.95 93.64 95.02 97.76 65.38 75.69 77.95 79.64 81.02 83.75

rtop-5 SVM 80.17 90.37 92.58 94.25 95.25 97.62 66.21 76.42 78.68 80.29 81.30 83.62

rtop-10 SVM 81.27 91.54 92.87 94.56 95.76 98.32 67.01 77.39 78.89 80.45 81.65 84.42

rtop-20 SVM 80.15 90.27 92.49 94.01 95.51 98.03 65.97 76.12 78.25 89.86 81.25 84.02

compared algorithms dropped. For example, the performance of

the propsoed algorithm decreased from 95.28% to 61.02% when the

outlier percentage increases from 0% to 60% on FCVID. (2) As the

outlier percentage increases, we can see the performance gain of

the proposed robust algorithm becomes more significant, which

confirms the robustness of the proposed algorithm.

5.4 Sensitivity Analysis
We conduct some sensitivity ayalysis in this section, to draw further

insights of the proposed learning algorithm.

Effect of τ and λ: We conduct experiments to assess the sensitivity

of the proposed algorithm w.r.t. the hyperparameter τ . To be more

specific, we fix λ = 1 and record the top-k accuracy by varying τ .
We use Top-5 accuracy as an evaluation metric and choose k = 5

as an example. The experimental results are reported in Figure 3,

from which we observe that the performance is relatively robust

against the paremter τ . Generally speaking, the best performance

is obtained when τ is in the range of {10
0
, 10

1
}. Then we fix τ at 1

and test the sensitivity against the regularization parameter λ. The

top-5 accuracy with varying λ is shown in Figure 4, from which we

see that the performance degrades when λ is overly large. The best

performance is obtained when λ is in the range of {10
−3, 10

−2, 10
−1

}.

Effect of Initialization: The general setting of Equation (14) is

nonconvex, hence in theory it could have multiple local optima.

In practisce we observed that the computational algorithm always

converged to a reasonable solution. To test this point, we repeatedly

run Algorithm 1 20 times, each with a different initialization. The re-

sults in terms of top-5 accuracy on the four datasets are reported in

Figure 5, which confirmed that the proposed algorithm can always

get a promising result on all the datasets.

6 CONCLUSION
We have presented a generic, robust multiclass SVM formulation

that directly aims at minimizing a weighted and truncated combi-

nation of the ordered prediction scores. Computationally, we have

proposed an efficient implementation based on the difference of con-

vex algorithm (DCA). Extensive experiments are conducted on four
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Table 3: Performance comparison between top-k SVMα , top-k SVMβ and the proposed rtop-k SVM while ℓ1 regularizer is used.
Caltech 101 Sihouettes and MIT Indoor 67 datasets are utilized. Top-k accuracy is used as an evaluation metric. A larger value
indicates a better performance.

Caltech 101 Sihouettes MIT Indoor 67

Top-1 Acc Top-2 Acc Top-3 Acc Top-4 Acc Top-5 Acc Top-10 Acc Top-1 Acc Top-2 Acc Top-3 Acc Top-4 Acc Top-5 Acc Top-10 Acc

top-1 SVMα 64.21 76.16 78.85 81.47 83.16 88.22 74.03 85.13 89.42 92.29 93.85 97.27

top-2 SVMα 64.98 77.58 79.89 82.32 83.95 89.14 73.15 85.72 90.08 92.55 94.02 97.17

top-3 SVMα 65.23 78.95 80.33 83.19 84.62 89.83 72.18 85.47 89.96 92.89 94.25 97.13

top-4 SVMα 64.98 77.28 80.79 83.58 85.29 90.32 72.23 85.98 91.05 93.19 94.26 97.17

top-5 SVMα 65.03 78.01 81.57 84.19 86.74 91.59 72.26 85.68 90.84 93.08 94.95 97.66

top-10 SVMα 65.32 78.57 81.92 85.23 87.98 91.23 71.93 86.17 91.14 93.98 95.26 98.05

top-20 SVMα 62.48 76.92 82.59 85.31 86.84 92.42 69.87 84.85 90.19 93.22 94.59 97.67

top-1 SVMβ 64.28 76.29 79.14 82.57 83.17 88.19 74.08 85.18 89.54 92.17 93.94 97.19

top-2 SVMβ 64.97 78.15 80.48 84.12 84.09 89.98 73.23 85.81 90.04 92.42 94.01 97.25

top-3 SVMβ 65.38 78.19 81.59 83.27 85.29 89.48 72.14 86.42 89.95 92.75 94.18 97.08

top-4 SVMβ 65.84 78.47 82.48 84.22 85.29 90.58 72.09 85.83 90.87 93.11 94.18 97.05

top-5 SVMβ 65.28 79.42 81.98 84.27 86.28 91.24 72.16 85.59 90.81 93.02 94.86 97.34

top-10 SVMβ 66.42 79.48 82.86 85.21 86.48 91.16 71.83 85.98 90.79 93.58 94.97 97.65

top-20 SVMβ 65.84 79.11 82.98 85.19 87.04 91.98 71.89 85.19 90.12 92.25 94.19 97.48

rtop-1 SVM 66.52 78.56 82.64 84.67 85.95 89.97 74.13 85.27 90.01 92.88 94.17 97.76

rtop-2 SVM 66.74 79.14 84.15 84.93 86.27 90.52 73.86 85.74 90.26 92.94 94.17 97.58

rtop-3 SVM 66.81 79.37 84.16 84.76 86.18 90.95 74.28 85.19 89.75 92.53 93.99 96.72

rtop-4 SVM 67.03 79.86 84.63 85.02 86.27 91.48 74.84 86.12 90.19 93.04 94.32 97.61

rtop-5 SVM 67.58 80.14 84.59 84.78 86.08 91.92 74.01 85.97 91.14 93.19 95.28 98.04

rtop-10 SVM 67.96 80.39 84.88 85.49 86.63 93.26 73.47 86.98 91.79 95.01 96.54 98.43

rtop-20 SVM 67.28 79.15 84.62 85.36 86.11 91.84 72.85 85.75 90.43 94.26 95.08 97.92
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Figure 3: Sensitivity analysis on τ on Caltech 101 Sihouettes, MIT Indoor, UCF 101 and FCVID datasets.

real visual recognition datasets. The experimental results confirm

the superiority of the proposed algorithm. In the future, we plan to

deploy the proposed robust rtop-k SVM to other applications, i.e.,
person re-identification problems.
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