t.)

Check for
Updates

KDD 2017 Research Paper

KDD’17, August 13-17, 2017, Halifax, NS, Canada

Robust Top-k Multiclass SVM for Visual Category Recognition

Xiaojun Chang
Language Technologies Institute
Carnegie Mellon University
cxj273@gmail.com

ABSTRACT

Classification problems with a large number of classes inevitably
involve overlapping or similar classes. In such cases it seems reason-
able to allow the learning algorithm to make mistakes on similar
classes, as long as the true class is still among the top-k (say) predic-
tions. Likewise, in applications such as search engine or ad display,
we are allowed to present k predictions at a time and the customer
would be satisfied as long as her interested prediction is included.
Inspired by the recent work of [15], we propose a very generic,
robust multiclass SVM formulation that directly aims at minimizing
a weighted and truncated combination of the ordered prediction
scores. Our method includes many previous works as special cases.
Computationally, using the Jordan decomposition Lemma we show
how to rewrite our objective as the difference of two convex func-
tions, based on which we develop an efficient algorithm that allows
incorporating many popular regularizers (such as the Iz and [;
norms). We conduct extensive experiments on four real large-scale
visual category recognition datasets, and obtain very promising
performances.
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1 INTRODUCTION

The multiclass classification problem is a fundamental task in the
filed of machine learning and computer vision [3, 8, 10, 20, 32]. It
plays a central role in many vision applications, e.g., object recog-
nition, image segmentation, and scene classification [21], which
can all be reduced to the task of discriminating multiple categories.
Multiclass classification is difficult because the classifier needs to
distinguish an object from a large number of categories, potentially
overlapping and similar to each other [5, 17]. Indeed, even conser-
vative estimates suggest that there are tens of thousands of object
classes in the visual world [2]. The multiclass classification problem
can be solved by naturally extending the binary classification tech-
nique with the 1-vs-all or 1-vs-1 strategy [22]. These include neural
networks [25], decision trees [1], and Support Vector Machines [4].

When the number of visual categories becomes large, the visual
recognition problem becomes extremely challenging in the presence
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c. Wedding Ceremony d. Wedding Dance
Figure 1: Video examples from the FCVID dataset [11]. The
objects in Figure (a) and Figure (b) have some overlapping,
and the objects in Figure (c) and Figure (d) are similar.

of overlapping or similar classes [9]. We illustrate this phenomenon
in Figure 1, where Fig. (a) and Fig. (b) have some overlapping classes
while Fig. (c) and Fig. (d) have similar classes. One might ask, is it
possible, or even expected, for a human to predict correctly on a
first attempt?

Perhaps not. Therefore, for such challenging circumstances, it
makes sense to allow the learning algorithm to present k predic-
tions altogether to the user, as long as the true category is among
the top-k predictions. This assumption also aligns with many real
applications, such as ad display or search engine [12, 13, 18]. Gener-
ally, the customer will still be happy as long as her item of interest
is included in the top-k candidates [14].

Recently, [15] proposed the top-k multiclass SVM as a direct
method to optimize for top-k performance. It strictly generalizes
the multiclass SVM based on a tight convex upper bound of the
top-k error. The traditional multiclass formulation of [4] aims at
separating the correct class with the top-1 confusing class, which
can be too stringent for applications with severe class overlapping.
In contrast, the top-k extension in [15] gives the algorithm some
slack by ignoring the k — 1 most confusing labels.

The major limitation of the existing top-k extension is its sen-
sitivity to abnormal observations, i.e., outliers, after all its loss is
still convex [31]. To overcome this limitation, we propose a very
generic, robust multiclass SVM formulation. Its goal is to directly
minimize a weighted and truncated combination of the ordered
prediction scores. Particularly, the proposed algorithm allows to
“give up” focusing on any training pair that incurs an excessively
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large loss, namely, outliers. We also show that the algorithm in-
cludes many previous multiclass SVMs as special cases. Based on
the Jordan decomposition Lemma, we propose an efficient algo-
rithm that allows incorporating many popular regularizers. Lastly,
we conduct extensive experiments on several real large-scale visual
category recognition datasets. The experiment results confirm the
effectiveness of our algorithm.

Paper organization: We first review some related works on
multiclass SVM and its recent top-k extension in Section 2. Then
we introduce the proposed Robust Top-k Multiclass SVM in Section
3, followed by the detailed computational algorithm in Section 4.
Experiments are conducted in Section 5. Finally, Section 6 concludes
this paper.

2 PRELIMINARY

In this section we first recall the multiclass SVM of [4] and the
recent top-k extension due to [15].

Given a training sample (x;,y;),i = 1,...,n, where x; € X C
R and yi € Y = {1,...,c}, the multiclass SVM [4] aims at
minimizing the following regularized empirical risk:

n
min Zi(W) + AW I3, )
W=[wy,...,w]T eRexd ; i(W) g 1)
where the loss ¢; on the i-th training example is given as
li = L(W) = max(Lzy, +(wjox) ~ (W xi)l ()
J

[|W||f is the Frobenius norm, and A > 0 controls the tradeoff be-
tween the model fitting on the training data and the model com-
plexity. Here we use the notation 1 4 for the indicator which is 1 iff
Ais true, and 0 otherwise. The inner product (w;,x;) is the score
of the i-th example w.r.t. the j-th class.

To predict the label of a test point x, we use the max-rule!:

®)

§ = argmax (W, X).
jey
From this prediction rule it is clear that the prediction is correct,
ie, § = y(x) =: y, iff the scores satisfy
©

Accordingly, the multiclass loss £; in Equation (2) is designed to
enjoy the following property:

(wy,x) >(wj,x), Vj £ y.

Gi(W) =0 &= (wy,, X)) 2 (W, %) + Ljzy,,

®)
which is clearly a sufficient condition to guarantee Equation (4).
Due to homogeneity of the objective function (1), changing the
margin parameter 1 here to any positive number y > 0 amounts to
scaling down W and scaling up A by y. For simplicity, we do not
consider adding a bias term here.

The multiclass SVM formulation above has been successfully
applied to many real applications, however, it is less appropriate
when we are allowed to predict a set of labels Y for a test point x
and the prediction is deemed “correct” iff y = y(x) € Y. Recently,
[15] considered the following set prediction rule:

Y= argmax Z(Wj,X),
ng,|Y|:kj€y

(6)

ITies can be broken in any consistent way.
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where the cardinality of ¥ is constrained to be k. Namely, we present
the k labels whose scores are among the top-k, and the prediction
is considered “correct” iff the scores satisfy?:

(7)

where we use a[x) to denote the k-th largest entry of the vector

a, and the matrix W, € R(c~D*4 removes the y-th row of W.
Accordingly, [15] modified the multiclass SVM loss Equation (2) as
follows:

(wy, x) > (W yX)[k]

£i(W) = max{0, (W, X;)[k] + 1 — (Wy,, Xi)} ®)
©)

where e; is the j-th canonical basis vector, and 1 is the all ones
vector. Indeed,

= max {0, ((W - 1W;—i)x,~ +1-— eyi)[k]} R

W) =0 = (wy,,x;) > Wiy, xi)[k) + 1, (10)

which is a sufficient condition to guarantee Equation (7). Again, the
margin parameter 1 here can be replaced with any positive number.

The above top-k extension due to [15] is indeed useful for the
following reasons:

o It strictly generalizes the multiclass SVM: Setting k = 1 we
recover the original multiclass SVM of [4], which is clear by
comparing Equation (2) with Equation (8), Equation (3) with
Equation (6), Equation (4) with Equation (7), and Equation
(5) with Equation (10).

o In retrieval tasks such as search engine or ad display, we may
be allowed to present k predictions altogether to the user,
who will remain happy as long as she can easily identify the
desired outcome from the k candidates.

e The multiclass formulation of [4] aims at separating the cor-
rect class with the top-1 confusing class, which is wasteful in
applications (e.g. image classification with extremely many
labels) where the labels inevitably overlap a lot. In contrast,
the top-k extension gives the algorithm some slack by ig-
noring the k — 1 most confusing labels (which could well
resemble the correct class).

The top-k loss in Equation (8) is unfortunately nonconvex. In-
stead, [15] proposed the following convex upper bound (up to a
rescaling of factor k):

k

£;(W)=max {0,; ((W— lw—yri)x,- +1 —eyi)m}.

(11)

However, this convex loss may still be dominated by the top-1
confusing class. Moreover, it grows unboundedly as [|[W||f — oo
in the nonseparable case — an indication of non-robustness w.r.t.
outliers [31].

3 ROBUST TOP-K MULTICLASS SVM

In this section we further extend the top-k multiclass SVM in two as-
pects: We introduce weights on the ordered scores, and we truncate
the loss to induce robustness. Due to its generality, our formulation
includes the aforementioned multiclass SVM works as special cases.

2Note that for the set prediction rule Equation (6), we can assume w.l.o.g. thatk < c¢—1,
for otherwise the problem is trivial.
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The major limitation of the convex surrogate Equation (11) and
also the original nonconvex top-k loss Equation (8), is their sensi-
tivity to abnormal observations, i.e. outliers. This is mostly due to
the unboundedness of the corresponding losses (as [|[W|[f — o).
To overcome this limitation, we propose the following truncated
loss that extends the multicategory ¢/-loss in [19]:

C
(i (W) = min{max {O,Zajsﬁi]},r}, (12)
j=1
where we use the following abbreviation for the scores
s = (W—1wy)x; +1—ey, (13)

and @ € R¥ is an arbitrary weight that we choose to combine
the ordered scores. Here 7 > 0 is a hyperparameter that we use
to cap the loss for any training pair. In particular, it allows the
algorithm to “give up” focusing on any training pair that incurs
an excessively large loss, namely, outliers. In real large application
where the training data are inevitably noisy, it is beneficial to use a
small 7 to exclude outliers.

It is clear that our formulation includes many previous multiclass
SVMs as special cases:

eIfr =00, a1 = 1,2 = --- = ac = 0, then we recover the

multiclass SVM of [4].
elfr =00, =1,00 =

=0k-1 = Q41 = - =0 =0,

then we recover the nonconvex top-k multiclass SVM of

[15].

elfr=00,01 = =ar =1,041 =+ = a = 0, then we
recover the convex surrogate of [15].

e Ifr =201 =1,a9 = --- = ac = 0, then we recover a similar

formulation as [19].
We can combine the robust multiclass loss Equation (12) with
a regularization function to promote structure, resulting in the
composite minimization problem:
n
min ; 6i(W) + AF(W), (14)
where we can choose for instance the Ig—norm fw) = ||W||§ for
generalization or the [1-norm f(W) = ||W||; for sparsity. In general,
our rosbut loss ¢;(W) in Equation (12) is not convex, due to the
truncation by 7 and the arbitrariness of the weight a. However,
ifr =ocoanda; > a2 > -+ > a is monotonically decreasing,
such as the multiclass SVM of [4] and the convex surrogate of [15],
then the formulation Equation (14) becomes a convex minimization
problem. In the next section we develop an efficient algorithm for
the general nonconvex setting.

4 COMPUTATIONAL ALGORITHM

The main challenge to numerically solve our formulation Equation
(14) is that the robust loss ¢; (W) defined in Equation (12) is both
nonconvex and nonsmooth — a setting where not many algorithms
are applicable. Here we propose an efficient implementation based
on the difference of convex algorithm (DCA) [28]. The main idea
is to decompose a nonconvex function, say ¢, as the difference of
two convex functions, i.e. £ = g — h, where both g and h are convex.
Note that not all nonconvex functions can be written this way, but
it is the case for our robust loss (as we shall demonstrate soon).
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The decomposition is not unique either and we will simply pick a
convenient one. The next step is to linearize h at the current iterate,
say W;, so that we have the upper bound

W) < g(W) — (W — W;, VR(W;)) — h(Wp), (15)

where Vh(W;) is any subgradient of h at W; and the inequality
follows from the convexity of h. Since the upper bound is now a
convex function of W, we can apply our favorite convex optimiza-
tion algorithm to find its minimizer, which will be W} 1, our next
iterate. It is easy to prove that the objective value will decrease
monotonically, and with more efforts it can be shown that the algo-
rithm converges to a critical point, see [28]. We note that another
possibility is to approximate the robust loss £; with some (noncon-
vex) differentiable function, and then apply the ordinary gradient
descent.

To implement the above DCA procedure, let us first decompose
€;(W) into the difference of two convex functions. For this we need
the following well-known (Jordan) decomposition:

LEMMA 4.1. For any vector a € R, we have

a=at +a”, whereVj=1,...,c, (16)
J
rx}r = Z max(0, ap — ap-1}, (17)
p=1
J
ocj_ = Z min{0, ap — ap-1}, (18)

p=1

and by convention ag := 0.

Clearly, &~ is monotonically decreasing and a* is monotonically
increasing. For instance, for the top-k loss:

=[0,...,0, 1 ,0,...,0 19
a=10,...,0, ,0,...,0] (19)

(20)
kth
-1

N——
(k+1)th

,—1,...,-1], (21)

while for the convex upper bound of [15], i.e. Equation (11), we
have

(22)

(23)
kth
-1

——

(k+1)th

..,0, —1,...,-1]. (24)

Of course, the decomposition is not unique. For instance, we could
also choose @~ = a, @t = 0 for the latter case above.

Now we can proceed to the robust top-k loss in Equation (12).
Since

min{max{a, 0}, 7} =max{a, 0} — max{a — 7,0}
=max{a”+a~,0}—max{a"+a -1, 0}

=max{a_,—a’} — max{a” - 7,—-a"},



KDD 2017 Research Paper

where in the last equality we subtract a* from both terms. Therefore,
we have the following decomposition for the i-th robust loss:

(4

28,

j=

(4
{;(W) = max Z aj_sb.], (25)
j=1
C

n. e

C

- max Z a; Sfj] -
Jj=1 Jj=1
Since both @~ and —a* are monotonically decreasing, all four
sums in Equation (25) are convex functions of W. Since convexity
is preserved under taking the maximum, we have successfully de-
composed the robust loss £; (W) into the difference of two convex
functions.

The next step is to linearize the subtrahend convex function, for
which we will need a formula for the subgradient of the convex
function W ch':l Bjs(j1» where recall from Equation (13) that s
is a linear function of W and B is any monotonically decreasing
vector. For this purpose we need the following reformulation:

Z Bysy) = max BTPI(W — 1w) )x +1 - ey], (26)

Jj=1

where the maximization is over all permutation matrices P. Given
W;, we can find a maximizer P; easily in (almost) linear time (es-
sentially sorting s), then we can choose the subgradient to be

PIpx" — (B 1)eyx . (27)

Note that the second term does not depend on W; hence can be pre-
computed once in the beginning. Lastly, let us recall the well-known
subdifferential rule for the max-function max{g, h}: the subgradient
can be simply chosen as the subgradient of g (resp. h) if g (resp. h)
is bigger at the evaluated point. To summarize, a subgradient of
the subtrahend in Equation (25) at the current iterate W; is given
in Equation (27) where § = «~ if the first term inside the max
operator is bigger and B = —a ™ otherwise.

Denote the subgradient above in Equation (27) as H;. The next
step is to minimize the convex upper bound:

n
min Z:; C;(W;Wy) + Af(W),  where (28)

C C
£;(W; W;) = max { Z aj_s[ij], Z(—a}r)s[ij]} —(H!, W)
j=1 j=1
Conveniently, we can evaluate the subgradient of the convex upper
bound ¢; (W; W;) similarly as before. Note that H; is fixed here. To
solve the convex upper bound Equation (28), we use the stochastic
forward-backward splitting algorithm of [6]. The algorithm is again

iterative, and consists mostly of two steps:

W« W — nVer(W; W) (29)

W e PJ’ZA(W) = argmin LW - ZIZ + Af(Z),  (30)
Z

where V{p(W; W;) is the subgradient evaluated at a (uniformly)
randomly chosen sample index I, > 0 is a small step size, and

pt

f; (W) is the proximity operator of the regularizer f. For the
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Algorithm 1: DCA for robust top-k multiclass SVM

1 Initialize W, n, a.
2 forj=1,...,cdo

3 a}r = a}r_l + max{0, aj — aj_1}
4 aj’ = ajil + min{0, &tj — atj—1}
s fort =1,2,...do
6 H«o0
7 fori=1,...,ndo
8 s<—(W—1W-y'—L_)xi+1—eyi
9 [s, P] « sort(s)
10 ifsTa™ —7>s"(-a™") then
1 ‘ p—a
12 else
13 ‘ p—-a"
T Ay T T T
14 H« H+P Bx; — (B 1)eyx;
15 form=1,2,...do
16 randomly draw I from {1,...,n}
17 S «— (W—lw;,'—l)x1+l—ey1
18 [s, P] « sort(s)
19 if sTa™ >sT (—a*) then
20 ‘ p—a
21 else
22 ‘ B—-af
23 G« PTﬂx}— - (ﬁTl)eny}'—
24 W« W -n(G-H)
2 W — PTw)

I%—norm regularizer we have

nA - 1
Pl = W (1)
while for the [;-norm regularizer we have
PT\ (W) = sign(W) * max{|W]| - 2,0}, (32)

II-1lx
where the algebraic operations are component-wise. For the step
size n we can either choose a small value by try-and-error, or use
the diminishing rule 7, = O(1/4/m). As shown by [6], this iteration
will converge to the minimum objective value in expectation (and
in high probability).

We summarize the entire procedure in Algorithm 1, where we
make one final modification: Instead of computing the entire sub-
gradient of £1(W; W;), we rearrange the terms as follows:

c c
i S| Sty Sy
i j=1 j=1

~(Q HL W)+ Af (W),

(33)
(34)

where we treat the terms in Equation (34) as the “regularizer”. There-
fore, in each iteration we need only sample and compute the sub-
gradient of the first max-term in Equation (33), followed by the
proximity operator of the sum in Equation (34), for which we can
apply Theorem 3 of [30]. This amounts to subtracting the term
i H; instead of the sampled one H, tI , hence potentially making



KDD 2017 Research Paper

more progress in each iteration. It is clear that in each iteration
the time and space complexity is (almost) linear in terms of the
problem size.

We note that [15] adopted an entirely different algorithm (SDCA
of [23]) for their convex upper bound loss Equation (11). However,
SDCA optimizes the dual problem and relies on a strongly con-
vex regularizer (such as the I%—norm). Instead, our algorithm here,
building on the work of [28] and [6], works for a variety of robust
losses (by choosing different weight vector ) and any regularizer
(as long as its proximity operator is available cheaply, such as the
[1-norm).

5 EXPERIMENTS

In this section, we carry out extensive experiments to validate
the performance of the proposed robust top-k multiclass SVM,
abbreviated as rtop-k SVM.

5.1 Experimental Setup

Datasets: We test on four real visual category recognition datasets.

e Caltech 101 Silhouettes [27]: This dataset was created based on
the CalTech 101 image annotations. Each image in the CalTech
101 data set includes a high-quality polygon outline of the pri-
mary object in the scene. To create the CalTech 101 Silhouettes
data set, each outline is centered and scaled, and then rendered
on a DtimesD pixel image-plane. It contains 101 classes, each
of which has at most 100 training instances. We use features
provided by [27].

e MIT Indoor 67 [21]: This is a dataset of 15,620 images over 67
indoor scenes assembled by [21]. The indoor scenes range from
specific categories (e.g., dental office) to generic concepts (e.g.,
mall). We follow their experimental setting in [21] by using 80
images from each class for training and 20 for testing. We extract
CNN features of a pre-trained CNN (fc7 layer after ReLU) [24],
resulting in 4096-dimensional feature representation.

e UCF 101 [26]: This dataset consists of 13,320 videos with an av-
erage length of 6.2 seconds belonging to 101 different action
categories. The dataset has 3 standard train/test splits with the
training set containing around 9,500 vidoes in each split (the
rest are used as testing data). Following the hybrid deep learning
framework proposed in [29], we first extract spatial and motion
features with two CNNs trained static frames and stacked optical
flows respectively. The two types of features are used separately
as inputs of the LSTM network for long-term temporal model-
ing. We apply a regularized fusion network to combine the two
features on video level.

e FCVID 239 [11]: The FCVID239 dataset contains 91,223 web
videos annotated into 239 categories, covering a wide range of
topics like social events (e.g., tailgate part), procedural events
(e.g., making cak), objects (e.g., panda), scenes (e.g., beach), etc.
The “data” category has the largest number of positive videos
while “making egg tarts” is the most infrequent category con-
taining only 108 samples. The total duration of FCVID is 4,232
hours with an average video duration of 167 seconds. We use the
4096-dimensional CNN features provided by [11].

Compared Algorithms: To evaluate the performance of the
proposed algorithm, we compare with the following alternatives.
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e Probabilistic Model for Top-k Classification [27]: The proabilistic
model explicitly includes a prior distribution over the number of
variables that take on each label. The authors illustrate the utility
of the model by exploring applications to top-K classification.

o SVMOVA: The most common technique for multiclass SVMs has
been to build the classifier in a one-versus-rest fashion, and to
choose the class which classifiers the test datum with greatest
margin.

e TopPush [16]: TopPush aims to optimize accuracy at the top that

has computational complexity linear in the number of training

instances.

Top-k SVM [15]: The top-k multiclass SVM is a direct method to

optimize for top-k performance. The generalization of the well-

known multiclass SVM is based on a tight convex upper bound
of the top-k error.

5.2 Visual Recognition Experiment

For all the compared algorithms, we cross-validate the regulariza-
tion parameter A in the range of 107> to 103, extending it when
the optimal value is at the boundary. The oficial splits are used for
all the compared algorithms. For the proposed algorithm, we also
cross-validate the hyperparameter 7 in the range of 107! to 103
The multiclass SVM of [4] is compared as a baseline. We use LibLin-
ear [7] for SVMOVA and the code provided by [16] for TopPush. For
the latter, we use its one-vs-all version for scalability. Two versions
of top-k multiclass SVM [15], namely top-k SVM, and top-k SVMy,
are also compared. Performance is measured in terms of the top-k
accuracy, i.e., the percentage of labels with at least one matching
item retrieved within the top-k predictions.

To begin with, we compare all the algorithms with Ig-norm reg-
ularization. The experimental results on all the used datasets are
illustrated in Table 1 and Table 2, from which we make the following
observations: First, all alternatives of top-k SVM generally outper-
form the multiclass SVM of [4], hence demonstrating the benefit
of allowing k simultaneous predictions. Second, it is interesting to
notice that the alternatives of top-k SVM achieve a decreased top-1
accuracy on MIT Indoor 67 dataset, while achieving a significant
improvement in the top-1 accuracy on the other datasets, like UCF
101 and FCVID 239 datasets. This phenomenon is consistent with
the intuition that optimizing the top-k accuracy is more appropri-
ate for datasets with a large number of categories, especially when
overlapping or similar categories commonly exist. Third, the pro-
posed robust top-k SVM performs better than the other alternatives
of top-k SVM. For example, in top-5 accuracy with the proposed
rtop-10 SVM, compared with top-10 SVMg: +2.06% on Caltech 101,
+1.91% on MIT Indoor 67, +2.39% on UCF 101 and +2.39% on FCVID
239 dataset. This confirms that enhanced robustness does lead to
improved performance. Overall, we get systematic increase in top-k
accuracy over all the dataset that we used.

To step further, we also compare the performance of top-k SVM,
top-k SVMg and the proposed algorithm, when [;-norm regulariza-
tion is used for all the compared alternatives. For space limitation,
we only use the Caltech 101 Sihouettes and MIT Indoor 67 datasets
in this experiment. The experimental results are reported in Ta-
ble 3, from which we observe that it is clear the proposed algorithm
rtop-k SVM performs the best on both datasets. We attribute this
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Table 1: Performance comparison between different multi-class classification algorithms on Caltech 101 Sihouettes and MIT
Indoor 67 datasets. Top-k accuracy is used as an evaluation metric. A larger value indicates a better performance.

Caltech 101 Sihouettes MIT Indoor 67

Top-1 Acc Top-2 Acc Top-3 Acc Top-4 Acc Top-5 Acc Top-10 Acc Top-1 Acc Top-2 Acc Top-3 Acc Top-4 Acc Top-5 Acc Top-10 Acc

Top-1 [27] 62.13 73.68 79.59 80.05 83.08 88.65 69.76 78.64 81.64 83.17 84.62 90.83
Top-2 [27] 61.42 72.11 79.23 79.94 83.42 88.93 68.84 77.33 80.87 82.69 83.96 90.14
Top-5 [27] 60.24 70.65 78.71 79.16 83.42 88.93 69.43 78.52 81.29 82.95 84.25 90.47
SVMOVA 61.81 73.13 76.25 77.76 78.89 83.57 71.72 81.49 84.93 86.49 87.39 90.45
TopPush 63.11 75.16 78.46 80.19 81.97 86.95 70.52 83.13 86.94 90.00 91.64 95.90
top-1 SVM4 62.81 74.60 77.76 80.02 81.97 86.91 73.96 85.22 89.25 91.94 93.43 96.94
top-2 SVMy 63.11 76.16 79.02 81.01 82.75 87.65 73.06 85.67 90.37 92.24 94.48 97.31
top-3 SVMy 63.37 76.72 79.67 81.49 83.57 88.25 71.57 86.27 91.12 93.21 94.70 97.24
top-4 SVM 4 63.20 76.64 79.76 82.36 84.05 88.64 71.42 85.67 90.75 93.28 94.78 97.84
top-5 SVMy 63.29 76.81 80.02 82.75 84.31 88.69 70.67 85.75 90.37 93.21 94.70 97.91
top-10 SVM,  62.98 77.33 80.49 82.66 84.57 89.55 70.00 85.45 90.00 93.13 94.63 97.76
top-20 SVM,  59.21 75.64 80.88 83.49 85.39 90.33 65.90 84.10 89.93 92.69 94.25 97.54
top-1 SVMpg 62.81 74.60 77.76 80.02 81.97 86.91 73.96 85.22 89.25 91.94 93.43 96.94
top-2 SVMpg 63.55 76.25 79.28 81.14 82.62 87.91 74.03 85.90 89.78 92.24 94.10 97.31
top-3 SVMg 63.94 76.64 79.71 81.36 83.44 87.99 72.99 86.34 90.60 92.76 94.40 97.24
top-4 SVMg 63.94 76.85 80.15 82.01 83.53 88.73 73.06 86.19 90.82 92.69 94.48 97.69
top-5 SVMg 63.59 77.03 80.36 82.57 84.18 89.03 72.61 85.60 90.75 92.99 94.48 97.61
top-10 SVMpg  64.02 77.11 80.49 83.01 84.87 89.42 71.87 85.30 90.45 93.36 94.40 97.76
top-20 SVMpg  63.37 77.24 81.06 83.31 85.18 90.03 71.94 85.30 90.07 92.46 94.33 97.39
rtop-1 SVM 64.89 77.03 81.18 83.17 84.49 88.49 74.02 85.13 89.96 92.36 94.03 97.69
rtop-2 SVM 64.97 77.65 82.53 83.42 84.73 89.03 73.75 85.58 90.11 92.49 94.06 97.46
rtop-3 SVM 65.23 77.84 82.64 83.29 84.98 89.44 74.12 85.03 89.59 92.28 93.85 96.58
rtop-4 SVM 65.49 78.35 83.12 83.57 84.77 89.97 74.69 85.98 90.03 92.79 94.13 97.39
rtop-5 SVM 65.83 78.89 83.04 83.29 84.53 90.48 73.84 85.86 91.05 92.86 95.16 97.84
rtop-10 SVM  66.21 78.64 83.28 84.02 85.38 91.73 73.28 86.87 91.68 94.74 96.42 98.22
rtop-20 SVM  66.46 77.63 83.21 84.14 84.35 90.21 72.69 85.68 90.28 94.12 94.89 97.85
10 10 10 10 =1op75 SWM |
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Figure 2: Robust evaluation of the proposed algorithm on Caltech 101 Sihouettes, MIT Indoor, UCF 101 and FCVID datasets.

superiority of the proposed algorithm to the novel truncated loss 60%) of training samples with outliers and compare the performance
function in Equation (12). of top-k SVM and robust top-k SVM (rtop-k SVM). In this section,

we use Top-5 accuracy as an evaluation metric and choose k = 5 as
5.3 Robustness Evaluation an example. We report the experimental results in Figure 2. From

the experimental results we have the following observations: (1)

To conduct additional experiments to illustrate robustness of the ) ; ’
With the increase of outlier percentages, the performance of all the

proposed algorithm, we corrupt a varying percentage (0%, 20%, 40%,

80
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Table 2: Performance comparison between different multi-class classification algorithms on UCF 101 and FCVID datasets.
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Top-k accuracy is used as an evaluation metric. A larger value indicates a better performance.

UCF101

FCVID

Top-1 Acc Top-2 Acc Top-3 Acc Top-4 Acc Top-5 Acc Top-10 Acc

Top-1 Acc Top-2 Acc Top-3 Acc Top-4 Acc Top-5 Acc Top-10 Acc

Top-1 [27] 70.85 81.57 86.46 87.28 88.35 90.28 56.85 67.57 72.46 73.29 74.35 76.28
Top-2 [27] 70.24 80.83 86.18 86.93 87.85 89.88 56.24 66.84 72.18 72.94 73.85 75.88
Top-5 [27] 70.66 81.16 86.33 87.15 88.04 90.16 56.67 67.17 72.33 73.15 74.05 76.16
SVMOVA 70.94 83.39 87.29 88.42 89.17 91.68 56.95 69.39 73.30 74.43 75.17 77.68
TopPush 72.49 85.16 88.14 88.98 89.85 92.56 58.50 71.16 74.14 74.98 75.86 78.56
top-1 SVM, 78.83 88.21 91.20 92.89 93.97 96.80 64.84 74.21 77.21 78.89 79.98 82.80
top-2 SVMy 78.56 88.18 91.28 93.10 93.87 96.78 64.56 74.19 77.28 79.10 79.88 82.78
top-3 SVMy 77.98 87.87 91.22 93.13 93.95 96.80 63.99 73.88 77.23 79.13 79.95 82.81
top-4 SVM 4 77.58 87.81 91.12 93.02 93.87 96.75 63.59 73.82 77.12 79.03 79.87 82.76
top-5 SVM 4 77.06 87.68 91.09 92.86 93.95 96.85 63.07 73.68 77.09 78.86 79.95 82.85
top-10 SVM,  75.61 87.18 90.80 92.84 93.58 96.78 61.62 73.19 76.80 78.85 79.59 82.78
top-20 SVM,  73.83 85.78 89.92 92.33 93.37 96.71 59.84 71.79 75.93 78.33 79.37 82.71
top-1 SVMpg 78.83 88.21 91.20 92.89 93.97 96.80 64.83 74.21 77.20 78.90 79.98 82.81
top-2 SVMpg 79.14 88.78 91.63 93.02 94.18 97.32 65.15 74.78 77.63 79.02 80.18 83.32
top-3 SVMg 79.37 88.95 91.84 92.96 93.96 97.11 65.37 74.95 77.85 78.97 79.96 83.11
top-4 SVMg 79.05 88.36 91.38 92.23 93.96 96.86 65.06 74.37 77.39 78.24 79.96 82.87
top-5 SVMg 77.85 87.95 91.54 92.51 93.89 95.92 63.85 73.95 77.55 78.52 79.89 81.92
top-10 SVMg  76.53 87.36 91.33 92.87 93.84 95.87 62.53 73.37 77.34 78.87 79.85 81.87
top-20 SVMg  74.17 86.04 91.28 92.69 93.12 95.46 60.17 72.04 77.28 78.69 79.13 81.46
rtop-1 SVM 78.97 89.59 92.12 94.03 95.16 97.88 65.01 75.58 78.21 80.04 81.12 83.89
rtop-2 SVM 79.23 90.18 92.58 94.16 95.64 98.02 65.21 76.05 78.51 80.12 81.58 84.04
rtop-3 SVM 79.85 90.35 92.29 94.11 95.23 97.61 65.85 76.19 78.27 80.13 81.06 83.52
rtop-4 SVM 79.28 89.59 91.95 93.64 95.02 97.76 65.38 75.69 77.95 79.64 81.02 83.75
rtop-5 SVM 80.17 90.37 92.58 94.25 95.25 97.62 66.21 76.42 78.68 80.29 81.30 83.62
rtop-10 SVM  81.27 91.54 92.87 94.56 95.76 98.32 67.01 77.39 78.89 80.45 81.65 84.42
rtop-20 SVM  80.15 90.27 92.49 94.01 95.51 98.03 65.97 76.12 78.25 89.86 81.25 84.02

compared algorithms dropped. For example, the performance of
the propsoed algorithm decreased from 95.28% to 61.02% when the
outlier percentage increases from 0% to 60% on FCVID. (2) As the
outlier percentage increases, we can see the performance gain of
the proposed robust algorithm becomes more significant, which
confirms the robustness of the proposed algorithm.

5.4 Sensitivity Analysis

We conduct some sensitivity ayalysis in this section, to draw further
insights of the proposed learning algorithm.

Effect of 7 and A: We conduct experiments to assess the sensitivity
of the proposed algorithm w.r.t. the hyperparameter 7. To be more
specific, we fix A = 1 and record the top-k accuracy by varying 7.
We use Top-5 accuracy as an evaluation metric and choose k = 5
as an example. The experimental results are reported in Figure 3,
from which we observe that the performance is relatively robust
against the paremter 7. Generally speaking, the best performance
is obtained when 7 is in the range of {10°, 10'}. Then we fix 7 at 1
and test the sensitivity against the regularization parameter A. The
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top-5 accuracy with varying A is shown in Figure 4, from which we
see that the performance degrades when A is overly large. The best
performance is obtained when A is in the range of {1073, 1072, 107!
3

Effect of Initialization: The general setting of Equation (14) is
nonconvex, hence in theory it could have multiple local optima.
In practisce we observed that the computational algorithm always
converged to a reasonable solution. To test this point, we repeatedly
run Algorithm 1 20 times, each with a different initialization. The re-
sults in terms of top-5 accuracy on the four datasets are reported in
Figure 5, which confirmed that the proposed algorithm can always
get a promising result on all the datasets.

6 CONCLUSION

We have presented a generic, robust multiclass SVM formulation
that directly aims at minimizing a weighted and truncated combi-
nation of the ordered prediction scores. Computationally, we have
proposed an efficient implementation based on the difference of con-
vex algorithm (DCA). Extensive experiments are conducted on four
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Table 3: Performance comparison between top-k SVMg, top-k SVMy and the proposed rtop-k SVM while ¢; regularizer is used.
Caltech 101 Sihouettes and MIT Indoor 67 datasets are utilized. Top-k accuracy is used as an evaluation metric. A larger value
indicates a better performance.

Caltech 101 Sihouettes MIT Indoor 67

Top-1 Acc Top-2 Acc Top-3 Acc Top-4 Acc Top-5 Acc Top-10 Acc Top-1 Acc Top-2 Acc Top-3 Acc Top-4 Acc Top-5 Acc Top-10 Acc

top-1 SVM 4 64.21 76.16 78.85 81.47 83.16 88.22 74.03 85.13 89.42 92.29 93.85 97.27
top-2 SVM4 64.98 77.58 79.89 82.32 83.95 89.14 73.15 85.72 90.08 92.55 94.02 97.17
top-3 SVMy 65.23 78.95 80.33 83.19 84.62 89.83 72.18 85.47 89.96 92.89 94.25 97.13
top-4 SVMy 64.98 77.28 80.79 83.58 85.29 90.32 72.23 85.98 91.05 93.19 94.26 97.17
top-5 SVMy 65.03 78.01 81.57 84.19 86.74 91.59 72.26 85.68 90.84 93.08 94.95 97.66
top-10 SVM,  65.32 78.57 81.92 85.23 87.98 91.23 71.93 86.17 91.14 93.98 95.26 98.05
top-20 SVM,  62.48 76.92 82.59 85.31 86.84 92.42 69.87 84.85 90.19 93.22 94.59 97.67
top-1 SVMg 64.28 76.29 79.14 82.57 83.17 88.19 74.08 85.18 89.54 92.17 93.94 97.19
top-2 SVMg 64.97 78.15 80.48 84.12 84.09 89.98 73.23 85.81 90.04 92.42 94.01 97.25
top-3 SVMg 65.38 78.19 81.59 83.27 85.29 89.48 72.14 86.42 89.95 92.75 94.18 97.08
top-4 SVMg 65.84 78.47 82.48 84.22 85.29 90.58 72.09 85.83 90.87 93.11 94.18 97.05
top-5 SVMg 65.28 79.42 81.98 84.27 86.28 91.24 72.16 85.59 90.81 93.02 94.86 97.34
top-10 SVMg  66.42 79.48 82.86 85.21 86.48 91.16 71.83 85.98 90.79 93.58 94.97 97.65
top-20 SVMp  65.84 79.11 82.98 85.19 87.04 91.98 71.89 85.19 90.12 92.25 94.19 97.48
rtop-1 SVM 66.52 78.56 82.64 84.67 85.95 89.97 74.13 85.27 90.01 92.88 94.17 97.76
rtop-2 SVM 66.74 79.14 84.15 84.93 86.27 90.52 73.86 85.74 90.26 92.94 94.17 97.58
rtop-3 SVM 66.81 79.37 84.16 84.76 86.18 90.95 74.28 85.19 89.75 92.53 93.99 96.72
rtop-4 SVM 67.03 79.86 84.63 85.02 86.27 91.48 74.84 86.12 90.19 93.04 94.32 97.61
rtop-5 SVM 67.58 80.14 84.59 84.78 86.08 91.92 74.01 85.97 91.14 93.19 95.28 98.04
rtop-10 SVM  67.96 80.39 84.88 85.49 86.63 93.26 73.47 86.98 91.79 95.01 96.54 98.43
rtop-20 SVM  67.28 79.15 84.62 85.36 86.11 91.84 72.85 85.75 90.43 94.26 95.08 97.92
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Figure 3: Sensitivity analysis on 7 on Caltech 101 Sihouettes, MIT Indoor, UCF 101 and FCVID datasets.

real visual recognition datasets. The experimental results confirm of the authors and should not be interpreted as necessarily rep-
the superiority of the proposed algorithm. In the future, we plan to resenting the official policies or endorsements, either expressed
deploy the proposed robust rtop-k SVM to other applications, i.e., or implied, of the Data to Decisions Cooperative Research Centre
person re-identification problems. (www.d2dcrc.com.au) and NSERC.
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